1
|
Bernard J, Yanamala N, Shah R, Seetharam K, Altes A, Dupuis M, Toubal O, Mahjoub H, Dumortier H, Tartar J, Salaun E, O'Connor K, Bernier M, Beaudoin J, Côté N, Vincentelli A, LeVen F, Maréchaux S, Pibarot P, Sengupta PP. Integrating Echocardiography Parameters With Explainable Artificial Intelligence for Data-Driven Clustering of Primary Mitral Regurgitation Phenotypes. JACC Cardiovasc Imaging 2023; 16:1253-1267. [PMID: 37178071 DOI: 10.1016/j.jcmg.2023.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Primary mitral regurgitation (MR) is a heterogeneous clinical disease requiring integration of echocardiographic parameters using guideline-driven recommendations to identify severe disease. OBJECTIVES The purpose of this preliminary study was to explore novel data-driven approaches to delineate phenotypes of MR severity that benefit from surgery. METHODS The authors used unsupervised and supervised machine learning and explainable artificial intelligence (AI) to integrate 24 echocardiographic parameters in 400 primary MR subjects from France (n = 243; development cohort) and Canada (n = 157; validation cohort) followed up during a median time of 3.2 years (IQR: 1.3-5.3 years) and 6.8 (IQR: 4.0-8.5 years), respectively. The authors compared the phenogroups' incremental prognostic value over conventional MR profiles and for the primary endpoint of all-cause mortality incorporating time-to-mitral valve repair/replacement surgery as a covariate for survival analysis (time-dependent exposure). RESULTS High-severity (HS) phenogroups from the French cohort (HS: n = 117; low-severity [LS]: n = 126) and the Canadian cohort (HS: n = 87; LS: n = 70) showed improved event-free survival in surgical HS subjects over nonsurgical subjects (P = 0.047 and P = 0.020, respectively). A similar benefit of surgery was not seen in the LS phenogroup in both cohorts (P = 0.70 and P = 0.50, respectively). Phenogrouping showed incremental prognostic value in conventionally severe or moderate-severe MR subjects (Harrell C statistic improvement; P = 0.480; and categorical net reclassification improvement; P = 0.002). Explainable AI specified how each echocardiographic parameter contributed to phenogroup distribution. CONCLUSIONS Novel data-driven phenogrouping and explainable AI aided in improved integration of echocardiographic data to identify patients with primary MR and improved event-free survival after mitral valve repair/replacement surgery.
Collapse
Affiliation(s)
- Jérémy Bernard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Naveena Yanamala
- Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Rohan Shah
- Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Karthik Seetharam
- Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Alexandre Altes
- Department of Cardiology, GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | - Marlène Dupuis
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Oumhani Toubal
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Haïfa Mahjoub
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Hélène Dumortier
- Department of Cardiology, GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | - Jean Tartar
- Department of Cardiology, GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | - Erwan Salaun
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Kim O'Connor
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Mathieu Bernier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Jonathan Beaudoin
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - Nancy Côté
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada
| | - André Vincentelli
- Cardiac Surgery Department, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Florent LeVen
- Department of Cardiology, Hôpital La Cavale Blanche-Centre Hospitalier Regional Universitaire de Brest, Brest, France
| | - Sylvestre Maréchaux
- Department of Cardiology, GCS-Groupement des Hôpitaux de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | - Philippe Pibarot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval/Québec Heart and Lung Institute, Laval University, Québec City, Québec, Canada.
| | - Partho P Sengupta
- Robert Wood Johnson University Hospital, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.
| |
Collapse
|
2
|
Liu B, Sharma H, Su Khin K, Wesolowski R, Hothi SS, Myerson SG, Steeds RP. Left ventricular T1-mapping in diastole versus systole in patients with mitral regurgitation. Sci Rep 2022; 12:20000. [PMID: 36411300 PMCID: PMC9678898 DOI: 10.1038/s41598-022-23314-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/29/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular magnetic resonance T1-mapping enables myocardial tissue characterisation, and is capable of quantifying both intracellular and extracellular volume. T1-mapping is conventionally performed in diastole, however, we hypothesised that systolic readout would reduce variability due to a reduction in myocardial blood volume. This study investigated whether T1-mapping in systole alters T1 values compared to diastole and whether reproducibility alters in atrial fibrillation compared to sinus rhythm. We prospectively identified 103 consecutive patients recruited to the Mitral FINDER study who had T1 mapping in systole and diastole. These patients had moderate or severe mitral regurgitation and a high incidence of ventricular dilatation and atrial fibrillation. T1, ECV and goodness-of-fit (R2) values of the T1 times were calculated offline using Circle cvi42 and in house-developed software. Systolic T1 mapping was associated with fewer myocardial segments being affected by artefact compared to diastolic T1 mapping [217/2472 (9%) vs 515/2472 (21%)]. Mean native T1 values were not significantly different when measured in systole and diastole (985 ± 26 ms vs 988 ± 29 respectively; p = 0.061) and mean post-contrast values showed similar good agreement (462 ± 32 ms vs 459 ± 33 respectively, p = 0.052). No clinically significant differences in ECV, native T1 and post-contrast T1 were identified between diastolic and systolic T1 maps in males versus females, or in patients with permanent atrial fibrillation versus sinus rhythm. A statistically significant improvement in R2 value was observed with systolic over diastolic T1 mapping in all analysed maps (n = 411) (96.2 ± 1.4% vs 96.0 ± 1.4%; p < 0.001) and in subgroup analyses [Sinus rhythm: 96.1 ± 1.4 vs 96.3 ± 1.4 (n = 327); p < 0.001. AF: 95.5 ± 1.3 vs 95.9 ± 1.2 (n = 80); p < 0.001] [Males: 95.8 ± 1.4 vs 96.1 ± 1.3 (n = 264); p < 0.001; Females: 96.2 ± 1.3 vs 96.4 ± 1.4 (n = 143); p = 0.009]. In conclusion, myocardial T1 mapping is associated with similar T1 and ECV values in systole and diastole. Furthermore, systolic acquisition is less prone to gating artefact in arrhythmia.
Collapse
Affiliation(s)
- Boyang Liu
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
| | - Harish Sharma
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Department of Cardiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK.
| | - Kyaw Su Khin
- Department of Cardiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK
| | - Roman Wesolowski
- Institute of Translational Medicine, University Hospitals Birmingham, Birmingham, UK
| | - Sandeep S Hothi
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Royal Wolverhampton NHS Hospitals Trust, Wolverhampton Road, Wolverhampton, WV10 0QP, UK
| | - Saul G Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Richard P Steeds
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Department of Cardiology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TH, UK.
| |
Collapse
|
3
|
Fragasso G, Sanvito F, Monaca G, Ardizzone V, De Bonis M, Pappalardo F, Smart C, Montanaro C, Lapenna E, Calabrese MC, Castiglioni A, Benussi S, Maisano F, Zangrillo A, Ambrosi A, Doglioni C, Alfieri O, Margonato A. Myocardial fibrosis in asymptomatic patients undergoing surgery for mitral and aortic valve regurgitation. J Cardiovasc Med (Hagerstown) 2022; 23:505-512. [PMID: 35904996 DOI: 10.2459/jcm.0000000000001347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Chronic heart valve regurgitation induces left ventricular (LV) volume overload, leading to the development of hypertrophy and progressive dilatation of the ventricle to maintain physiological cardiac output. In order to prevent potential irreversible LV structural changes, the identification of the best timing for treatment is pivotal. OBJECTIVE To assess the presence and extent of fibrosis in myocardial tissue in asymptomatic patients with valvular heart disease (VHD) and preserved LV dimensions and function undergoing cardiac surgery. METHODS Thirty-nine patients were enrolled. Sixteen patients were affected by aortic or mitral regurgitation: they were all asymptomatic, undergoing valve surgery according to VHD European Society of Cardiology guidelines. Twenty-three patients with end-stage nonischemic dilated cardiomyopathy (DCM) and severe LV dysfunction undergoing cardiac surgery for implantation of a durable left ventricular assist device (LVAD) served as controls. During surgery, VHD patients underwent three myocardial biopsies at the level of the septum, the lateral wall and LV apex, while in LVAD patients the coring of the apex of the LV was used. For both groups, the tissue samples were analyzed on one section corresponding to the apical area. All slides were stained with hematoxylin and eosin and Masson's trichrome staining and further digitalized. The degree of fibrosis was then calculated as a percentage of the total area. RESULTS Of 39 patients, 23 met the inclusion criteria: 12 had mitral or aortic insufficiency with a preserved ejection fraction and 11 had idiopathic dilated cardiomyopathy. Quantitative analysis of apical sections revealed a myocardial fibrosis amount of 10 ± 6% in VHD patients, while in LVAD patients the mean apical myocardial fibrosis rate was 38 ± 9%. In VHD patients, fibrosis was also present in the lateral wall (9 ± 4%) and in the septum (9 ± 6%). CONCLUSION Our case series study highlights the presence of tissue remodeling with fibrosis in asymptomatic patients with VHD and preserved LV function. According to our results, myocardial fibrosis is present at an early stage of the disease, well before developing detectable LV dysfunction and symptoms. Since the relationship between the progressive magnitude of myocardial fibrosis and potential prognostic implications are not yet defined, further studies on this topic are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Federico Pappalardo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano
- Department of Cardiothoracic and Vascular Anesthesia and Intensive Care, AO SS Antonio e Biagio e Cesare Arrigo, Alessandria
| | - Chanel Smart
- Pathology Unit, Division of Experimental Oncology
| | - Claudia Montanaro
- Department of Clinical Cardiology
- Department of Cardiology, Royal Brompton Hospital, London, United Kingdom
| | | | | | | | - Stefano Benussi
- Department of Cardiac Surgery
- Department of Cardiac Surgery, ASST degli Spedali Civili di Brescia
| | | | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milano
| | - Alessandro Ambrosi
- Department of Biostatistics, University Vita/Salute San Raffaele, Milano, Italy
| | | | | | | |
Collapse
|
4
|
Liu B, Neil DAH, Bhabra M, Patel R, Barker TA, Nikolaidis N, Billing JS, Hayer M, Baig S, Price AM, Vijapurapu R, Treibel TA, Edwards NC, Steeds RP. Reverse Myocardial Remodeling Following Valve Repair in Patients With Chronic Severe Primary Degenerative Mitral Regurgitation. JACC Cardiovasc Imaging 2021; 15:224-236. [PMID: 34419393 DOI: 10.1016/j.jcmg.2021.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The aims of this study were to quantify preoperative myocardial fibrosis using late gadolinium enhancement (LGE), extracellular volume fraction (ECV%), and indexed extracellular volume (iECV) on cardiac magnetic resonance; determine whether this varies following surgery; and examine the impact on postoperative outcomes. BACKGROUND Myocardial fibrosis complicates chronic severe primary mitral regurgitation and is associated with left ventricular dilatation and dysfunction. It is not known if this nonischemic fibrosis is reversible following surgery or if it affects ventricular remodeling and patient outcomes. METHODS A multicenter prospective study was conducted among 104 subjects with primary mitral regurgitation undergoing mitral valve repair. Cardiac magnetic resonance and cardiopulmonary exercise stress testing were performed preoperatively and ≥6 months after surgery. Symptoms were assessed using the Minnesota Living With Heart Failure Questionnaire. RESULTS Mitral valve repair was performed for Class 2a indications in 65 patients and Class 1 indications in 39 patients. Ninety-three patients were followed up at 8.8 months (interquartile range: 7.4 months-10.6 months). Following surgery, there were significant reductions in both ECV% (from 27.4% to 26.6%; P = 0.027) and iECV (from 17.9 to 15.4 mL/m2; P < 0.001), but the incidence of LGE was unchanged. Neither preoperative ECV% nor LGE affected postoperative function, but iECV predicted left ventricular end-systolic volume index (β = 1.04; 95% CI: 0.49 to 1.58; P < 0.001) and left ventricular ejection fraction (β = -0.61; 95% CI: -1.05 to -0.18; P = 0.006). Patients with above-median iECV of ≥17.6 mL/m2 had significantly larger postoperative values of left ventricular end-systolic volume index (30.5 ± 12.7 mL/m2 vs 23.9 ± 8.0 mL/m2; P = 0.003), an association that remained significant in subcohort analyses of patients in New York Heart Association functional class I. CONCLUSIONS Mitral valve surgery results in reductions in ECV% and iECV, which are surrogates of diffuse myocardial fibrosis, and preoperative iECV predicts the degree of postoperative remodeling irrespective of symptoms. (The Role of Myocardial Fibrosis in Degenerative Mitral Regurgitation; NCT02355418).
Collapse
Affiliation(s)
- Boyang Liu
- Department of Cardiology, University Hospital Birmingham, Birmingham, United Kingdom; Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Desley A H Neil
- Department of Cellular Pathology, University Hospital Birmingham, Birmingham, United Kingdom
| | - Moninder Bhabra
- Department of Cardiac Surgery, University Hospital Birmingham, Birmingham, United Kingdom
| | - Ramesh Patel
- Department of Cardiac Surgery, University Hospital Coventry, Coventry, United Kingdom
| | - Thomas A Barker
- Department of Cardiac Surgery, University Hospital Coventry, Coventry, United Kingdom
| | - Nicolas Nikolaidis
- Department of Cardiac Surgery, New Cross Hospital, Wolverhampton, United Kingdom
| | - J Stephen Billing
- Department of Cardiac Surgery, New Cross Hospital, Wolverhampton, United Kingdom
| | - Manvir Hayer
- Department of Cardiology, University Hospital Birmingham, Birmingham, United Kingdom; Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Shanat Baig
- Department of Cardiology, University Hospital Birmingham, Birmingham, United Kingdom; Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Anna M Price
- Department of Cardiology, University Hospital Birmingham, Birmingham, United Kingdom; Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Ravi Vijapurapu
- Department of Cardiology, University Hospital Birmingham, Birmingham, United Kingdom; Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Thomas A Treibel
- Institute for Cardiovascular Sciences, University College London, and Department for Cardiac Imaging, Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Nicola C Edwards
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom; Green Lane Cardiovascular Service, Department of Cardiology, Auckland City Hospital, Auckland, New Zealand
| | - Richard P Steeds
- Department of Cardiology, University Hospital Birmingham, Birmingham, United Kingdom; Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
5
|
Paddock S, Tsampasian V, Assadi H, Mota BC, Swift AJ, Chowdhary A, Swoboda P, Levelt E, Sammut E, Dastidar A, Broncano Cabrero J, Del Val JR, Malcolm P, Sun J, Ryding A, Sawh C, Greenwood R, Hewson D, Vassiliou V, Garg P. Clinical Translation of Three-Dimensional Scar, Diffusion Tensor Imaging, Four-Dimensional Flow, and Quantitative Perfusion in Cardiac MRI: A Comprehensive Review. Front Cardiovasc Med 2021; 8:682027. [PMID: 34307496 PMCID: PMC8292630 DOI: 10.3389/fcvm.2021.682027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/04/2021] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is a versatile tool that has established itself as the reference method for functional assessment and tissue characterisation. CMR helps to diagnose, monitor disease course and sub-phenotype disease states. Several emerging CMR methods have the potential to offer a personalised medicine approach to treatment. CMR tissue characterisation is used to assess myocardial oedema, inflammation or thrombus in various disease conditions. CMR derived scar maps have the potential to inform ablation therapy—both in atrial and ventricular arrhythmias. Quantitative CMR is pushing boundaries with motion corrections in tissue characterisation and first-pass perfusion. Advanced tissue characterisation by imaging the myocardial fibre orientation using diffusion tensor imaging (DTI), has also demonstrated novel insights in patients with cardiomyopathies. Enhanced flow assessment using four-dimensional flow (4D flow) CMR, where time is the fourth dimension, allows quantification of transvalvular flow to a high degree of accuracy for all four-valves within the same cardiac cycle. This review discusses these emerging methods and others in detail and gives the reader a foresight of how CMR will evolve into a powerful clinical tool in offering a precision medicine approach to treatment, diagnosis, and detection of disease.
Collapse
Affiliation(s)
- Sophie Paddock
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vasiliki Tsampasian
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hosamadin Assadi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Bruno Calife Mota
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Peter Swoboda
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre & Division of Biomedical Imaging, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva Sammut
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Amardeep Dastidar
- Bristol Heart Institute and Translational Biomedical Research Centre, Faculty of Health Science, University of Bristol, Bristol, United Kingdom
| | - Jordi Broncano Cabrero
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Javier Royuela Del Val
- Cardiothoracic Imaging Unit, Hospital San Juan De Dios, Ressalta, HT Medica, Córdoba, Spain
| | - Paul Malcolm
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Julia Sun
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Alisdair Ryding
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Chris Sawh
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Richard Greenwood
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - David Hewson
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Vassilios Vassiliou
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Pankaj Garg
- Department of Cardiovascular and Metabolic Health, Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Zheng R, Kusunose K. Review: application of current imaging modalities in the management of left-sided valvular heart disease. Cardiovasc Diagn Ther 2021; 11:793-803. [PMID: 34295706 DOI: 10.21037/cdt.2020.02.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/31/2020] [Indexed: 11/06/2022]
Abstract
In terms of valvular heart disease (VHD) imaging, transthoracic echocardiography (TTE) is the preferred first choice because of its widespread availability. Other modalities, such as transesophageal echocardiography, computed tomography and magnetic resonance imaging, have played a supplementary role in diagnosis for severity, deciding the timing/type of treatment, detection of post procedural complications, and prognostic predictions. However, there are few consensuses on how to employ these modalities, as the evidence is not extensive as that for TTE. On the other hand, these imaging modalities also have their own unique strengths. If employed properly, these modalities have the potential to play a more prominent role in clinical decision making. In this review, we focus on the potential, limitations and application of current imaging modalities in the management of left-sided VHD.
Collapse
Affiliation(s)
- Robert Zheng
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
7
|
Delgado V, Podlesnikar T. Focal Replacement and Diffuse Fibrosis in Primary Mitral Regurgitation: A New Piece to the Puzzle. JACC Cardiovasc Imaging 2020; 14:1161-1163. [PMID: 33341411 DOI: 10.1016/j.jcmg.2020.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Victoria Delgado
- Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, the Netherlands.
| | - Tomaž Podlesnikar
- Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, the Netherlands; Department of Cardiac Surgery, University Medical Centre Maribor, Maribor, Slovenia; Department of Cardiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Liu B, Neil DAH, Premchand M, Bhabra M, Patel R, Barker T, Nikolaidis N, Billing JS, Treibel TA, Moon JC, González A, Hodson J, Edwards NC, Steeds RP. Myocardial fibrosis in asymptomatic and symptomatic chronic severe primary mitral regurgitation and relationship to tissue characterisation and left ventricular function on cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:86. [PMID: 33308240 PMCID: PMC7734760 DOI: 10.1186/s12968-020-00674-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/18/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Myocardial fibrosis occurs in end-stage heart failure secondary to mitral regurgitation (MR), but it is not known whether this is present before onset of symptoms or myocardial dysfunction. This study aimed to characterise myocardial fibrosis in chronic severe primary MR on histology, compare this to tissue characterisation on cardiovascular magnetic resonance (CMR) imaging, and investigate associations with symptoms, left ventricular (LV) function, and exercise capacity. METHODS Patients with class I or IIa indications for surgery underwent CMR and cardiopulmonary exercise testing. LV biopsies were taken at surgery and the extent of fibrosis was quantified on histology using collagen volume fraction (CVFmean) compared to autopsy controls without cardiac pathology. RESULTS 120 consecutive patients (64 ± 13 years; 71% male) were recruited; 105 patients underwent MV repair while 15 chose conservative management. LV biopsies were obtained in 86 patients (234 biopsy samples in total). MR patients had more fibrosis compared to 8 autopsy controls (median: 14.6% [interquartile range 7.4-20.3] vs. 3.3% [2.6-6.1], P < 0.001); this difference persisted in the asymptomatic patients (CVFmean 13.6% [6.3-18.8], P < 0.001), but severity of fibrosis was not significantly higher in NYHA II-III symptomatic MR (CVFmean 15.7% [9.9-23.1] (P = 0.083). Fibrosis was patchy across biopsy sites (intraclass correlation 0.23, 95% CI 0.08-0.39, P = 0.001). No significant relationships were identified between CVFmean and CMR tissue characterisation [native T1, extracellular volume (ECV) or late gadolinium enhancement] or measures of LV function [LV ejection fraction (LVEF), global longitudinal strain (GLS)]. Although the range of ECV was small (27.3 ± 3.2%), ECV correlated with multiple measures of LV function (LVEF: Rho = - 0.22, P = 0.029, GLS: Rho = 0.29, P = 0.003), as well as NTproBNP (Rho = 0.54, P < 0.001) and exercise capacity (%PredVO2max: R = - 0.22, P = 0.030). CONCLUSIONS Patients with chronic primary MR have increased fibrosis before the onset of symptoms. Due to the patchy nature of fibrosis, CMR derived ECV may be a better marker of global myocardial status. Clinical trial registration Mitral FINDER study; Clinical Trials NCT02355418, Registered 4 February 2015, https://clinicaltrials.gov/ct2/show/NCT02355418.
Collapse
Affiliation(s)
- Boyang Liu
- Department of Cardiology, University Hospital Birmingham, Birmingham, UK
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK
| | - Desley A H Neil
- Department of Cellular Pathology, University Hospital Birmingham, Birmingham, UK
- School of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Monisha Premchand
- Department of Cardiology, University Hospital Birmingham, Birmingham, UK
| | - Moninder Bhabra
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Birmingham, UK
| | - Ramesh Patel
- Department of Cardiothoracic Surgery, University Hospital Coventry, Coventry, UK
| | - Thomas Barker
- Department of Cardiothoracic Surgery, University Hospital Coventry, Coventry, UK
| | - Nicolas Nikolaidis
- Department of Cardiothoracic Surgery, New Cross Hospital, Wolverhampton, UK
| | - J Stephen Billing
- Department of Cardiothoracic Surgery, New Cross Hospital, Wolverhampton, UK
| | - Thomas A Treibel
- Institute for Cardiovascular Sciences, University College London, London, UK
- Department for Cardiac Imaging, Barts Heart Centre, St. Bartholomew's Hospital, London, UK
| | - James C Moon
- Institute for Cardiovascular Sciences, University College London, London, UK
- Department for Cardiac Imaging, Barts Heart Centre, St. Bartholomew's Hospital, London, UK
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - James Hodson
- Department of Statistics, Institute of Translational Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Nicola C Edwards
- Green Lane Cardiovascular Service, Department of Cardiology, Auckland City Hospital, Auckland, New Zealand
| | - Richard P Steeds
- Department of Cardiology, University Hospital Birmingham, Birmingham, UK.
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, UK.
| |
Collapse
|
9
|
Levine RA, Jerosch-Herold M, Hajjar RJ. Mitral Valve Prolapse: A Disease of Valve and Ventricle. J Am Coll Cardiol 2019; 72:835-837. [PMID: 30115221 DOI: 10.1016/j.jacc.2018.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Robert A Levine
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts.
| | | | - Roger J Hajjar
- Cardiovascular Research Center, Mount Sinai Medical School, New York, New York
| |
Collapse
|
10
|
Liu B, Edwards NC, Pennell D, Steeds RP. The evolving role of cardiac magnetic resonance in primary mitral regurgitation: ready for prime time? Eur Heart J Cardiovasc Imaging 2019; 20:123-130. [PMID: 30364971 PMCID: PMC6343082 DOI: 10.1093/ehjci/jey147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/16/2018] [Indexed: 12/26/2022] Open
Abstract
A fifth of patients with primary degenerative mitral regurgitation continue to present with de novo ventricular dysfunction following surgery and higher rates of heart failure, morbidity, and mortality. This raises questions as to why the left ventricle (LV) might fail to recover and has led to support for better LV characterization; cardiac magnetic resonance (CMR) may play a role in this regard, pending further research and outcome data. CMR has widely acknowledged advantages, particularly in repeatability of measurements of volume and ejection fraction, yet recent guidelines relegate its use to cases where there is discordant information or poor-quality imaging from echocardiography because of the lack of data regarding the CMR-based ejection fraction threshold for surgery and CMR-based outcome data. This article reviews the current evidence regarding the role of CMR in an integrated surveillance and surgical timing programme.
Collapse
Affiliation(s)
- Boyang Liu
- Department of Cardiology, University Hospital Birmingham and Institute of Cardiovascular Science, University of Birmingham, Edgbaston, Birmingham, UK
| | - Nicola C Edwards
- Department of Cardiology, University Hospital Birmingham and Institute of Cardiovascular Science, University of Birmingham, Edgbaston, Birmingham, UK
| | - Dudley Pennell
- CMR Unit, Royal Brompton Hospital, Sydney Street, London, UK
| | - Richard P Steeds
- Department of Cardiology, University Hospital Birmingham and Institute of Cardiovascular Science, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|