1
|
Wren J, Goodacre S, Pandor A, Essat M, Clowes M, Cooper G, Hinchliffe R, Reed MJ, Thomas S, Wilson S. Diagnostic accuracy of alternative biomarkers for acute aortic syndrome: a systematic review. Emerg Med J 2024; 41:678-685. [PMID: 39107052 PMCID: PMC11503200 DOI: 10.1136/emermed-2023-213772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/21/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND D-dimer is the only biomarker currently recommended in guidelines for the diagnosis of acute aortic syndrome (AAS). We undertook a systematic review to determine whether any alternative biomarkers could be useful in AAS diagnosis. METHODS We searched electronic databases (including MEDLINE, EMBASE and the Cochrane Library) from inception to February 2024. Diagnostic studies were eligible if they examined biomarkers other than D-dimer for diagnosing AAS compared with a reference standard test in people presenting to the ED with symptoms of AAS. Case-control studies were identified but excluded due to high risk of bias. Selection of studies, data extraction and risk of bias assessments using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool were undertaken independently by at least two reviewers. We used narrative synthesis to summarise the findings. RESULTS We identified 2017 citations, included 13 cohort studies (n=76-999), and excluded 38 case-control studies. Methodological quality was variable, with most included studies having unclear or high risk of bias and applicability concerns in at least one item of the QUADAS-2 tool. Only two studies reported biomarkers with sensitivity and specificity comparable to D-dimer (ie, >90% and >50%, respectively). Wang et al reported 99.1% sensitivity and 84.9% specificity for soluble ST2; however, these findings conflicted with estimates of 58% sensitivity and 70.8% specificity reported in another study. Chun and Siu reported 95.6% sensitivity and 56.1% specificity for neutrophil count, but this has not been confirmed elsewhere. CONCLUSION There are many potential alternative biomarkers for AAS but few have been evaluated in more than one study, study designs are often weak and reported biomarker accuracy is modest or inconsistent between studies. Alternative biomarkers to D-dimer are not ready for routine clinical use. PROSPERO REGISTRATION NUMBER CRD42022252121.
Collapse
Affiliation(s)
- Joshua Wren
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | | | | | | | | | - Graham Cooper
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Aortic Dissection Charitable Trust, Sheffield, UK
| | - Robert Hinchliffe
- Department of Vascular Surgery, North Bristol NHS Trust, Westbury on Trym, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Matthew J Reed
- Emergency Medicine Research Group Edinburgh (EMERGE), NHS Lothian, Edinburgh, UK
- Acute Care Group, The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | - Steven Thomas
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sarah Wilson
- Emergency Department, Wexham Park Hospital, Slough, UK
| |
Collapse
|
2
|
Butnariu LI, Russu G, Luca AC, Sandu C, Trandafir LM, Vasiliu I, Popa S, Ghiga G, Bălănescu L, Țarcă E. Identification of Genetic Variants Associated with Hereditary Thoracic Aortic Diseases (HTADs) Using Next Generation Sequencing (NGS) Technology and Genotype-Phenotype Correlations. Int J Mol Sci 2024; 25:11173. [PMID: 39456956 PMCID: PMC11508433 DOI: 10.3390/ijms252011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Hereditary thoracic aorta diseases (HTADs) are a heterogeneous group of rare disorders whose major manifestation is represented by aneurysm and/or dissection frequently located at the level of the ascending thoracic aorta. The diseases have an insidious evolution and can be encountered as an isolated manifestation or can also be associated with systemic, extra-aortic manifestations (syndromic HTADs). Along with the development of molecular testing technologies, important progress has been made in deciphering the heterogeneous etiology of HTADs. The aim of this study is to identify the genetic variants associated with a group of patients who presented clinical signs suggestive of a syndromic form of HTAD. Genetic testing based on next-generation sequencing (NGS) technology was performed using a gene panel (Illumina TruSight Cardio Sequencing Panel) or whole exome sequencing (WES). In the majority of cases (8/10), de novo mutations in the FBN1 gene were detected and correlated with the Marfan syndrome phenotype. In another case, a known mutation in the TGFBR2 gene associated with Loeys-Dietz syndrome was detected. Two other pathogenic heterozygous variants (one de novo and the other a known mutation) in the SLC2A10 gene (compound heterozygous genotype) were identified in a patient diagnosed with arterial tortuosity syndrome (ATORS). We presented the genotype-phenotype correlations, especially related to the clinical evolution, highlighting the particularities of each patient in a family context. We also emphasized the importance of genetic testing and patient monitoring to avoid acute aortic events.
Collapse
Affiliation(s)
- Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Georgiana Russu
- Departament of Cardiology, Saint Mary’s Emergency Children Hospital, 700309 Iași, Romania; (G.R.); (A.-C.L.)
| | - Alina-Costina Luca
- Departament of Cardiology, Saint Mary’s Emergency Children Hospital, 700309 Iași, Romania; (G.R.); (A.-C.L.)
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Constantin Sandu
- Department of Medical Abilities, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Laura Mihaela Trandafir
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Ioana Vasiliu
- Department of Morphofunctional Sciences II, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Gabriela Ghiga
- Department of Mother and Child, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania; (L.M.T.); (G.G.)
| | - Laura Bălănescu
- Department of Pediatric Surgery and Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Elena Țarcă
- Department of Surgery II—Pediatric Surgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| |
Collapse
|
3
|
Ganizada BH, Veltrop RJA, Akbulut AC, Koenen RR, Accord R, Lorusso R, Maessen JG, Reesink K, Bidar E, Schurgers LJ. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol 2024; 119:371-395. [PMID: 38700707 PMCID: PMC11143007 DOI: 10.1007/s00395-024-01053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Animals
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Vascular Remodeling
- Extracellular Matrix/pathology
- Extracellular Matrix/metabolism
- Phenotype
Collapse
Affiliation(s)
- Berta H Ganizada
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Disease, University Medical Center Groningen, Groningen, The Netherlands
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Koen Reesink
- Department of Biomedical Engineering, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Tracking an Elusive Killer: State of the Art of Molecular-Genetic Knowledge and Laboratory Role in Diagnosis and Risk Stratification of Thoracic Aortic Aneurysm and Dissection. Diagnostics (Basel) 2022; 12:diagnostics12081785. [PMID: 35892496 PMCID: PMC9329974 DOI: 10.3390/diagnostics12081785] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
The main challenge in diagnosing and managing thoracic aortic aneurysm and dissection (TAA/D) is represented by the early detection of a disease that is both deadly and “elusive”, as it generally grows asymptomatically prior to rupture, leading to death in the majority of cases. Gender differences exist in aortic dissection in terms of incidence and treatment options. Efforts have been made to identify biomarkers that may help in early diagnosis and in detecting those patients at a higher risk of developing life-threatening complications. As soon as the hereditability of the TAA/D was demonstrated, several genetic factors were found to be associated with both the syndromic and non-syndromic forms of the disease, and they currently play a role in patient diagnosis/prognosis and management-guidance purposes. Likewise, circulating biomarker could represent a valuable resource in assisting the diagnosis, and several studies have attempted to identify specific molecules that may help with risk stratification outside the emergency department. Even if promising, those data lack specificity/sensitivity, and, in most cases, they need more testing before entering the “clinical arena”. This review summarizes the state of the art of the laboratory in TAA/D diagnostics, with particular reference to the current and future role of molecular-genetic testing.
Collapse
|
5
|
Gene Expression Profiling in Abdominal Aortic Aneurysms. J Clin Med 2022; 11:jcm11123260. [PMID: 35743331 PMCID: PMC9225238 DOI: 10.3390/jcm11123260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gene expression profiling of abdominal aortic aneurysms (AAA) indicates that chronic inflammatory responses, active matrix metalloproteinases, and degradation of the extracellular matrix components are involved in disease development and progression. This study investigates intra- and interpersonal RNA genome-wide expression profiling differences (Illumina HumanHT-12, BeadCHIP expression) of 24 AAA biopsies from 12 patients using a single gene and pathway (GeneOntology, GO enrichment) analysis. Biopsies were collected during open surgical AAA repair and according to prior finite element analysis (FEA) from regions with the highest and lowest wall stress. Single gene analysis revealed a strong heterogeneity of RNA expression parameters within the same and different AAA biopsies. The pathway analysis of all samples showed significant enrichment of genes from three different signaling pathways (integrin signaling pathway: fold change FC 1.63, p = 0.001; cholecystokinin receptor pathway: FC 1.60, p = 0.011; inflammation mediated by chemokine signaling pathway: FC 1.45, p = 0.028). These results indicate heterogeneous gene expression patterns within the AAA vascular wall. Single biopsy investigations do not permit a comprehensive characterization of activated molecular processes in AAA disease.
Collapse
|
6
|
Simões G, Pereira T, Caseiro A. Matrix metaloproteinases in vascular pathology. Microvasc Res 2022; 143:104398. [PMID: 35671836 DOI: 10.1016/j.mvr.2022.104398] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/01/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022]
Abstract
Vascular diseases are the main cause of morbidity and mortality. The vascular extracellular matrix (ECM) is essential in mechanical support, also regulating the cellular behavior fundamental to vascular function and homeostasis. Vascular remodeling is an adaptive response to various physiological and pathological changes and is associated with aging and vascular diseases. The aim of this review is provide a general overview of the involvement of MMPs in the pathogenesis of vascular diseases, namely, arterial hypertension, atherosclerosis, aortic aneurysms and myocardial infarction. The change in the composition of the ECM by matrix metalloproteinases (MMPs) generates a pro-inflammatory microenvironment that modifies the phenotypes of endothelial cells and vascular smooth muscle cells. They play a central role in morphogenesis, tissue repair and remodeling in response to injury, e.g., after myocardial infarction, and in progression of diseases such as atherosclerosis. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension and aneurysm formation. MMPs are regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio generally determines the extent of ECM protein degradation and tissue remodeling. Studies are currently focused on improving the diagnostic and prognostic value of MMPs involved in the pathogenic process, increasing their therapeutic potential, and monitoring the disease. New selective MMP inhibitors may improve the specificity of these inhibitors, target specific MMPs in relevant pathological conditions and mitigate some of the side effects.
Collapse
Affiliation(s)
- Gonçalo Simões
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Telmo Pereira
- LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Politécnico de Coimbra, ESTeSC, Fisiologia Clínica, Rua 5 de Outubro, 3046-854 Coimbra, Portugal.
| | - Armando Caseiro
- Politécnico de Coimbra, ESTeSC, Ciências Biomédicas Laboratoriais, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; LABINSAÚDE - Laboratório de Investigação em Ciências Aplicadas à Saúde, Instituto Politécnico de Coimbra, ESTeSC, Rua 5 de Outubro, 3046-854 Coimbra, Portugal; Unidade I&D Química-Física Molecular, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Lymphocyte-to-monocyte ratio associated with severe post-stenotic aortic dilation in a case-control study. BMC Cardiovasc Disord 2022; 22:195. [PMID: 35473483 PMCID: PMC9044758 DOI: 10.1186/s12872-022-02636-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/15/2022] [Indexed: 12/01/2022] Open
Abstract
Background Calcific aortic valve stenosis (CAVS) represents a serious health threat to elderly patients. Post-stenotic aortic dilation, a common feature in CAVS patients, might progress into aneurysm and even dissection, potential consequences of CAVS, and predicts a poor prognosis. This study sought to investigate the association of lymphocyte-to-monocyte ratio (LMR), an inflammatory biomarker, with severe post-stenotic aortic dilation in a case–control study in Chinese population. Materials and methods 208 consecutive patients with CAVS were recruited retrospectively in a case–control study in Chinese population, from July 1, 2015 to June 31, 2018. LMR was statistically analyzed using the ROC curve and binary logistic regression analyses for its prognostic value in severe post-stenotic aortic dilation. Results LMR was significantly reduced in patients with severe post-stenotic aortic dilation (2.72 vs. 3.53, p = 0.002 < 0.05) compared to patients without severe post-stenotic aortic dilation. There was an inverse correlation observed between the maximal diameter of ascending aorta and LMR in the overall patients (r = − 0.217, p = 0.002 < 0.05). For post-stenotic aortic dilation, the prevalence of high-LMR group was statistically lower than that of low-LMR group (19.7% vs. 43.9%, p < 0.001). The maximal diameter of ascending aorta was significantly reduced in the high-LMR group (4.35 vs. 4.76, p = 0.003 < 0.05) compared to low-LMR group. Additionally, LMR was identified in the multivariate analysis independently associated with severe post-stenotic aortic dilation (AUC 0.743, 95% CI: [0.573–0.964], p = 0.025). Conclusions This study provided the evidence of an inverse correlation between severe post-stenotic aortic dilation and LMR. LMR is potentially independently associated with severe post-stenotic aortic dilation. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02636-3.
Collapse
|
8
|
Yan P, Wei Y, Wang M, Tao J, Ouyang H, Du Z, Li S, Jiang H. Network pharmacology combined with metabolomics and lipidomics to reveal the hypolipidemic mechanism of Alismatis rhizoma in hyperlipidemic mice. Food Funct 2022; 13:4714-4733. [PMID: 35383784 DOI: 10.1039/d1fo04386b] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alismatis rhizoma (AR), the dried rhizome of Alisma orientale (Sam) Juzep, is effective in treating hyperlipidemia, but the mechanisms involved require further exploration. This study evaluated the hypolipidemic properties of AR using an integrated strategy combining network pharmacology with metabolomics and lipidomics. Firstly, a hyperlipidemia mouse model induced by a high-fat diet was established to evaluate the therapeutic effects of AR. Secondly, plasma metabolomics and lipidomics were used to identify differential metabolites and lipids, and metabolic pathway analysis was performed using MetaboAnalyst. Thirdly, network pharmacology, based on the metabolic profile of AR in vivo, was used to discover potential therapeutic targets. Finally, key targets were obtained through a compound-target-metabolite network, which was verified by molecular docking and quantitative real-time PCR (qPCR). Biochemistry analysis and histological examinations showed that AR exerted hypolipidemic effects on hyperlipidemic mice. Seventy potential biomarkers for the AR treatment of hyperlipidemia were identified by metabolomics and lipidomics, which were mainly involved in lipid metabolism, energy metabolism and amino acid metabolism. Eighteen potentially active compounds were identified in the plasma of mice after oral administration of AR, which were associated with 83 potential therapeutic targets. The PPAR signaling pathway was considered a crucial signaling pathway of AR against hyperlipidemia by KEGG analysis. The joint analysis showed that 6 upstream key targets were regulated by AR, including ALB, TNF, IL1B, MMP9, PPARA and PPARG. Molecular docking showed that active compounds of AR had high binding affinity with these key targets. qPCR further demonstrated that AR could reverse the mRNA expression of these key targets in hyperlipidemic mice. This study integrates network pharmacology with metabolomics and lipidomics to reveal the regulatory effects of AR on endogenous metabolites and validates key therapeutic targets, and represents the most systematic and in-depth study on the hypolipidemic activity of AR.
Collapse
Affiliation(s)
- Pan Yan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yinyu Wei
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Meiqin Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jianmei Tao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330000, China
| | - Zhifeng Du
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Sen Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hongliang Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Romancik P, Meyer F, Redlich U, Halloul Z, Tautenhahn J. Nahtaneurysmen - Ätiopathogenese, Symptomatologie, Diagnostik, Therapie, Outcome und Einflussfaktoren nach offen gefäßchirurgischer und interventioneller
Rekonstruktion. Zentralbl Chir 2022; 147:460-471. [DOI: 10.1055/a-1758-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Zusammenfassung
Hintergrund Die über die letzten Jahre/Jahrzehnte ausgebaute und optimierte gefäßchirurgische Grundversorgung hat auch das Fallaufkommen von Sekundärkomplikationen wie das
Nahtaneurysma (NA) wesentlich erhöht.
Ziel Darstellung der sekundären Versorgungsdiagnose NA in ihrem/r Fallaufkommen, Ätiopathogenese, Symptomatologie, Diagnostik, periinterventionellem/-operativem Management und
Outcome, basierend auf selektiven Referenzen der medizinisch-wissenschaftlichen Literatur und eigenen klinischen Versorgungserfahrungen.
Methode Narratives Review
Ergebnisse
Schlussfolgerung Das NA als relevante Versorgungsgröße ist inzwischen längst mit in den Fokus eines basalen gefäßchirurgischen/-interventionellen Betreuungsprofils gerückt, dem sich
der Gefäßchirurg/-interventionalist aufgrund der bestehenden Herausforderung hinsichtlich des anspruchsvollen diagnostischen und therapeutischen Managements mit seiner ganzen
fachspezifischen Kompetenz widmen muss.
Collapse
Affiliation(s)
- Peter Romancik
- Klinik für Gefäßchirurgie, Klinikum Magdeburg gGmbH, Magdeburg, Deutschland
| | - Frank Meyer
- Klinik für Allgemein-, Viszeral-, Gefäß- und Transplantationschirurgie, Universitätsklinikum Magdeburg A.ö.R., Magdeburg, Deutschland
| | - Ulf Redlich
- Institut für Diagnostische und Interventionelle Radiologie, Klinikum Magdeburg gGmbH, Magdeburg, Deutschland
| | - Zuhir Halloul
- Arbeitsbereich Gefäßchirurgie, Klinik für Allgemein-, Viszeral-, Gefäß- und Transplantationschirurgie, Universitätsklinikum Magdeburg A.ö.R., Magdeburg, Deutschland
| | - Jörg Tautenhahn
- Klinik für Gefäßchirurgie, Klinikum Magdeburg gGmbH, Magdeburg, Deutschland
| |
Collapse
|
10
|
Harky A, Sokal PA, Hasan K, Papaleontiou A. The Aortic Pathologies: How Far We Understand It and Its Implications on Thoracic Aortic Surgery. Braz J Cardiovasc Surg 2021; 36:535-549. [PMID: 34617429 PMCID: PMC8522328 DOI: 10.21470/1678-9741-2020-0089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Thoracic aortic diseases contribute to a major part of cardiac surgeries. The severity of pathologies varies significantly from emergency and life-threatening to conservatively managed conditions. Life-threatening conditions include type A aortic dissection and rupture. Aortic aneurysm is an example of a conservatively managed condition. Pathologies that affect the arterial wall can have a profound impact on the presentation of such cases. Several risk factors have been identified that increase the risk of emergency presentations such as connective tissue disease, hypertension, and vasculitis. The understanding of aortic pathologies is essential to improve management and clinical outcomes.
Collapse
Affiliation(s)
- Amer Harky
- Department of Cardiothoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.,School of Medicine, University of Liverpool, Liverpool, United Kingdom.,Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | | | - Khubbaib Hasan
- School of Medicine, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
11
|
Li T, Li X, Liu X, Yang J, Ma C. The elevated expression of TLR4 and MMP9 in human abdominal aortic aneurysm tissues and its implication. BMC Cardiovasc Disord 2021; 21:378. [PMID: 34348653 PMCID: PMC8336015 DOI: 10.1186/s12872-021-02193-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/30/2021] [Indexed: 01/16/2023] Open
Abstract
Background Toll-like receptor 4 (TLR4) and matrix metalloproteinase 9 (MMP9) have been investigated to play significant roles in the formation of abdominal aortic aneurysm (AAA). But the reports on the expression pattern of TLR4 and MMP9 in human AAA specimens were relatively scant. The aim of this study was to make a detailed analysis of TLR4 and MMP9 expression in situ and their association with clinical parameters involved in human AAA. Methods 40 AAA specimens were obtained from full-thickness aneurysmal tissues at the maximal dilation area during the open surgical repair, and 8 non-aneurysmal abdominal aortas from transplant donors served as controls. Expression of TLR4 and MMP9 protein was determined by immunohistochemistry. Results There were increased levels of TLR4 and MMP9 expression in human AAA tissues. Compared with macrophages or SMCs, lymphocytes showed a higher positive rate of TLR4 and MMP9 staining, and an elevated ratio of high MMP9 expression (all P < 0.05). There existed a significant association between TLR4 and MMP9 expression (r = 0.767, P < 0.001), and both TLR4 and MMP9 levels were statistically related to circulating CRP. Moreover, TLR4 expression in situ indicated a positive correlation with its serum level (r = 0.654, P = 0.006). Multiple analysis revealed that high TLR4 expression in situ was associated with the risk of large AAA (OR = 6.211, 95%CI = 1.226–31.480, P = 0.027), while high MMP9 expression was correlated to the presence of thrombus within AAA (OR = 5.494, 95%CI = 1.181–25.562, P = 0.030), separately compared with their low expression. Conclusions This study confirmed the overexpression of TLR4 and MMP9 in human AAA tissues, and their close relationship implying in the pathogenesis of AAA. We further provided evidence that TLR4 had a potential effect on AAA size and MMP9 could influence the occurrence of thrombus within AAA.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Xintong Li
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Xiaozheng Liu
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Jun Yang
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
12
|
Martin‐Blazquez A, Heredero A, Aldamiz‐Echevarria G, Martin‐Lorenzo M, Alvarez‐Llamas G. Non-syndromic thoracic aortic aneurysm: cellular and molecular insights. J Pathol 2021; 254:229-238. [PMID: 33885146 PMCID: PMC8251829 DOI: 10.1002/path.5683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm (TAA) develops silently and asymptomatically and is a major cause of mortality. TAA prevalence is greatly underestimated, it is usually diagnosed incidentally, and its treatment consists mainly of prophylactic surgery based on the aortic diameter. The lack of effective drugs and biological markers to identify and stratify TAAs by risk before visible symptoms results from scant knowledge of its pathophysiological mechanisms. Here we integrate the structural impairment affecting non-syndromic non-familial TAA with the main cellular and molecular changes described so far and consider how these changes are interconnected through specific pathways. The ultimate goal is to define much-needed novel markers of TAA, and so the potential of previously identified molecules to aid in early diagnosis/prognosis is also discussed. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Angeles Heredero
- Department of Cardiac SurgeryFundación Jiménez Díaz, UAMMadridSpain
| | | | | | - Gloria Alvarez‐Llamas
- Department of ImmunologyIIS‐Fundación Jiménez Díaz, UAMMadridSpain
- REDInRENMadridSpain
| |
Collapse
|
13
|
Niebauer S, Niebauer J, Dalman R, Myers J. Effects of Exercise Training on Vascular Markers of Disease Progression in Patients with Small Abdominal Aortic Aneurysms. Am J Med 2021; 134:535-541. [PMID: 32835687 DOI: 10.1016/j.amjmed.2020.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Currently, no medical therapy is effective in limiting progression of small abdominal aortic aneurysms (AAA; ≤5.5 cm). Previously, we have demonstrated safety and efficacy of exercise training in patients with AAA. However, the impact of exercise training on vascular markers of AAA progression, such as lipid accumulation product and matrix metalloproteinase 9 (MMP-9, linked to destruction of aortic matrix), is unknown. The aim of this study was to assess the impact of exercise training on AAA diameter, lipid accumulation product, MMP-9, and other risk markers of vascular disease. METHODS In this randomized trial, complete data of 96 patients (male: n = 87, female: n = 9; exercise training (exercise) n = 42, usual care n = 54) were studied. Changes in AAA diameter, exercise capacity, lipid accumulation product (men = [waist circumference 65] × fasting triglycerides; women = [waist circumference -58] × triglycerides) and MMP-9 were performed. RESULTS The exercise group demonstrated a significant increase in maximal exercise time and estimated metabolic equivalent of tasks. Lipid accumulation product decreased in exercise and increased in usual care (P < .001 between groups); MMP-9 remained statistically unchanged in exercise, but increased significantly in usual care (P = .005; between groups P = .094). In both groups, there was a significant increase in transverse diameter, but no difference between groups; neither group assignment nor level of fitness correlated with AAA enlargement. No adverse clinical events occurred. CONCLUSIONS This is the first study to demonstrate that in AAA, exercise beneficially modifies lipid accumulation product and MMP-9, both markers of vascular disease, without inducing aneurysmal growth beyond what is otherwise observed during usual care.
Collapse
Affiliation(s)
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | | | - Jonathan Myers
- Veterans Affairs Palo Alto Health Care System, Division of Cardiology, Department of Medicine, Stanford University, Stanford, Calif.
| |
Collapse
|
14
|
Yap ZJ, Sharif M, Bashir M. Is there an immunogenomic difference between thoracic and abdominal aortic aneurysms? J Card Surg 2021; 36:1520-1530. [PMID: 33604952 DOI: 10.1111/jocs.15440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIM Aortic aneurysms most commonly occur in the infra-renal and proximal thoracic regions. While generally asymptomatic, progressive aneurysmal dilation can become rapidly lethal when dissection or ruptures occurs, highlighting the need for more robust screening. Abdominal aortic aneurysm (AAA) is more prevalent compared to thoracic aortic aneurysm (TAA). The true incidence of TAA is underreported due to the absence of population screening and the silent nature of TAA. To achieve the optimum survival rate in aortic aneurysms, knowledge of natural course, genetic association, and surgical results are needed to be applied with adequate medical treatment and careful selection of patients for operation. The purpose of this paper is to provide a comprehensive review of the literature on natural history, immunology, and genetic differences between thoracic and AAAs. METHOD The literature was collected from OVID, SCOPUS, and PubMed. RESULTS (1) AAA expands faster than TAA. AAA expands at approximately 0.3-0.45 cm annually, depending on various factors (advancing age, diameter of aorta, smoking etc.). TAA expands up to 0.3 cm annually in a non-bicuspid aortic valve patient. (2) An increase in Matrix metallopeptidase 1, 2, 9, 12, 14 led to degrading extracellular matrix of the aortic vessel wall. This significantly contributed to the pathogenesis in AAA, whereas overactive Transforming growth factor-beta played a major role in the pathogenesis of TAA. CONCLUSION In the future, genetic testing may be the gold standard for tackling the geneticheterogeneity of aneurysms, therefore, identifying at-risk individuals developing TAA andAAA earlier.
Collapse
Affiliation(s)
- Zhi Jiun Yap
- Department of Anaesthetic, Dorset County Hospital, Dorset, England
| | - Monira Sharif
- Department of Molecular & Clinical Medicine, Ninewells Hospital and Medical School, Dundee, Scotland
| | - Mohamad Bashir
- Department of Emergency Medicine and Surgery, Royal Blackburn Teaching Hospital, Blackburn, England
| |
Collapse
|
15
|
Remes A, Arif R, Franz M, Jungmann A, Zaradzki M, Puehler T, Md MBH, Frey N, Karck M, Kallenbach K, Hecker M, Müller OJ, Wagner AH. AAV-mediated AP-1 decoy oligonucleotide expression inhibits aortic elastolysis in a mouse model of marfan syndrome. Cardiovasc Res 2021; 117:2459-2473. [PMID: 33471064 DOI: 10.1093/cvr/cvab012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/02/2019] [Accepted: 01/12/2021] [Indexed: 01/05/2023] Open
Abstract
AIMS Marfan syndrome is one of the most common inherited disorders of connective tissue caused by fibrillin-1 mutations, characterized by enhanced transcription factor AP-1 DNA binding activity and subsequently abnormally increased expression and activity of matrix-metalloproteinases (MMPs). We aimed to establish a novel adeno-associated virus (AAV)-based strategy for long-term expression of an AP-1 neutralising RNA hairpin (hp) decoy oligonucleotide (dON) in the aorta to prevent aortic elastolysis in a murine model of Marfan syndrome. METHODS AND RESULTS Using fibrillin-1 hypomorphic mice (mgR/mgR), aortic grafts from young (9 weeks old) donor mgR/mgR mice were transduced ex vivo with AAV vectors and implanted as infrarenal aortic interposition grafts in mgR/mgR mice. Grafts were explanted after 30 days. For in vitro studies isolated primary aortic smooth muscle cells from mgR/mgR mice were used. Elastica-van-Giesson staining visualized elastolysis, ROS production was assessed using DHE staining. RNA F.I.S.H. verified AP-1 hp dON generation in the ex vivo transduced aortic tissue. MMP expression and activity were assessed by western blotting and immunoprecipitation combined with zymography.Transduction resulted in stable therapeutic dON expression in endothelial and smooth muscle cells. MMP expression and activity, ROS formation as well as expression of monocyte chemoattractant protein-1 were significantly reduced. Monocyte graft infiltration declined and the integrity of the elastin architecture was maintained. RNAseq analyzis confirmed the beneficial effect of AP-1 neutralisation on the pro-inflammatory environment in smooth muscle cells. CONCLUSIONS This novel approach protects from deterioration of aortic stability by sustained delivery of nucleic acids-based therapeutics and further elucidated how to interfere with the mechanism of elastolysis. TRANSLATIONAL PERSPECTIVE This study provides a novel single treatment option to achieve long-term expression of a transcription factor AP-1 neutralising decoy oligonucleotide in the aorta of mgR/mgR mice with the potential to prevent life-threatening elastolysis and aortic complications.
Collapse
Affiliation(s)
- Anca Remes
- Department of Internal Medicine III, University of Kiel, and University Hospital Schleswig-Holstein, Kiel, and German Centre for Cardiovascular Research, Partner Site, Hamburg/Kiel/Lübeck, Germany.,Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| | - Rawa Arif
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | - Maximilian Franz
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | | | - Marcin Zaradzki
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | - Thomas Puehler
- Department of Cardiac and Vascular Surgery, University of Kiel and University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Norbert Frey
- Department of Internal Medicine III, University of Kiel, and University Hospital Schleswig-Holstein, Kiel, and German Centre for Cardiovascular Research, Partner Site, Hamburg/Kiel/Lübeck, Germany.,Internal Medicine III, University Hospital Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Germany
| | | | - Markus Hecker
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, and University Hospital Schleswig-Holstein, Kiel, and German Centre for Cardiovascular Research, Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Andreas H Wagner
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
16
|
Bi S, Liu R, He L, Li J, Gu J. Bioinformatics analysis of common key genes and pathways of intracranial, abdominal, and thoracic aneurysms. BMC Cardiovasc Disord 2021; 21:14. [PMID: 33407182 PMCID: PMC7788746 DOI: 10.1186/s12872-020-01838-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background Aneurysm is a severe and fatal disease. This study aims to comprehensively identify the highly conservative co-expression modules and hub genes in the abdominal aortic aneurysm (AAA), thoracic aortic aneurysm (TAA) and intracranial aneurysm (ICA) and facilitate the discovery of pathogenesis for aneurysm. Methods GSE57691, GSE122897, and GSE5180 microarray datasets were downloaded from the Gene Expression Omnibus database. We selected highly conservative modules using weighted gene co‑expression network analysis before performing the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway and Reactome enrichment analysis. The protein–protein interaction (PPI) network and the miRNA-hub genes network were constructed. Furtherly, we validated the preservation of hub genes in three other datasets. Results Two modules with 193 genes and 159 genes were identified as well preserved in AAA, TAA, and ICA. The enrichment analysis identified that these genes were involved in several biological processes such as positive regulation of cytosolic calcium ion concentration, hemostasis, and regulation of secretion by cells. Ten highly connected PPI networks were constructed, and 55 hub genes were identified. In the miRNA-hub genes network, CCR7 was the most connected gene, followed by TNF and CXCR4. The most connected miRNAs were hsa-mir-26b-5p and hsa-mir-335-5p. The hub gene module was proved to be preserved in all three datasets. Conclusions Our study highlighted and validated two highly conservative co-expression modules and miRNA-hub genes network in three kinds of aneurysms, which may promote understanding of the aneurysm and provide potential therapeutic targets and biomarkers of aneurysm.
Collapse
Affiliation(s)
- Siwei Bi
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Linfeng He
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingyi Li
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
17
|
Guo Y, Wan S, Han M, Zhao Y, Li C, Cai G, Zhang S, Sun Z, Hu X, Cao H, Li Z. Plasma Metabolomics Analysis Identifies Abnormal Energy, Lipid, and Amino Acid Metabolism in Abdominal Aortic Aneurysms. Med Sci Monit 2020; 26:e926766. [PMID: 33257643 PMCID: PMC7718721 DOI: 10.12659/msm.926766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a complicated aortic dilatation disease. Metabolomics is an emerging system biology method. This aim of this study was to identify abnormal metabolites and metabolic pathways associated with AAA and to discover potential biomarkers that could affect the size of AAAs. Material/Methods An untargeted metabolomic method was used to analyze the plasma metabolic profiles of 39 patients with AAAs and 30 controls. Multivariate analysis methods were used to perform differential metabolite screening and metabolic pathway analysis. Cluster analysis and univariate analysis were performed to identify potential metabolites that could affect the size of an AAA. Results Forty-five different metabolites were identified with an orthogonal projection to latent squares-discriminant analysis model and the differences between them in the patients with AAAs and the control group were compared. A variable importance in the projection score >1 and P<0.05 were considered statistically significant. In patients with AAAs, the pathways involving metabolism of alanine, aspartate, glutamate, D-glutamine, D-glutamic acid, arginine, and proline; tricarboxylic acid cycling; and biosynthesis of arginine are abnormal. The progression of an AAA may be related to 13 metabolites: citric acid, 2-oxoglutarate, succinic acid, coenzyme Q1, pyruvic acid, sphingosine-1-phosphate, platelet-activating factor, LysoPC (16: 00), lysophosphatidylcholine (18: 2(9Z,12Z)/0: 0), arginine, D-aspartic acid, and L- and D-glutamine. Conclusions An untargeted metabolomic analysis using ultraperformance liquid chromatography-tandem mass spectrometry identified metabolites that indicate disordered metabolism of energy, lipids, and amino acids in AAAs.
Collapse
Affiliation(s)
- Yaming Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Shuwei Wan
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Mingli Han
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yubo Zhao
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Chuang Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Gaopo Cai
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Shuai Zhang
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xinhua Hu
- Department of Endovascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Hui Cao
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
18
|
Kasashima S, Kawashima A, Kasashima F, Matsumoto Y, Yamamoto Y, Ozaki S, Takemura H. Adventitial matrix metalloproteinase production and distribution of immunoglobulin G4-related abdominal aortic aneurysms. JVS Vasc Sci 2020; 1:151-165. [PMID: 34617043 PMCID: PMC8489202 DOI: 10.1016/j.jvssci.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Objective IgG4-related diseases are systemic inflammatory fibrous lesions characterized by elevated serum IgG4 and infiltration of IgG4-positive plasmacytes. They can manifest in vascular lesions as frequently formed aneurysms with prominent thickening of the adventitia (IgG4-related abdominal aortic aneurysm; IgG4-AAA). Matrix metalloproteinases (MMPs) degrade the extracellular matrix, mainly in the tunica media, resulting in destruction of aortic structures to cause enlargement of the aneurysm. However, the expression of adventitial MMPs in IgG4-AAAs is poorly understood. Methods MMPs and MMPs-presenting cells in the adventitia of IgG4-AAAs (n = 19) of human surgical specimens were evaluated by immunohistochemistry and dual messenger RNA in situ hybridization. The results were compared with those from control groups of non-IgG4-related inflammatory AAA (n = 18), atherosclerotic AAA (aAAA; n = 11), and autopsy cases (n = 11). Preoperative serum MMPs levels of these groups were compared with the histologic data. Results Expression of MMP-9, MMP-2, and MMP-14 at the protein and messenger RNA levels in the adventitia was significantly higher in IgG4-AAAs than in controls. Other MMPs were scarce. The total number of MMP-9-positive cells was positively correlated with the diameter of the aneurysm (R = 0.461; P = .031), the adventitial thickness (R = 0.688; P < .001), and the number of IgG4-positive cells (R = 0.764; P < .001). Within lymphoid follicles, MMP-9-presenting cells were predominantly detected in large follicular dendritic cells, followed by histiocytes, fibroblasts, and plasmacytic dendritic cells. Outside lymphoid follicles, fibroblasts, and histiocytes mainly expressed MMP-9, and tissue dendritic cells also produced MMP-9. The levels of MMP-9 derived from follicular dendritic cells and histiocytes and plasmacytic dendritic cells outside lymphoid follicles were significantly higher in IgG4-AAA group than in other groups. Expression of adventitial MMP-2 and MMP-14 by histiocytes and fibroblasts was predominantly detected outside lymphoid follicles. Serum MMP-9 levels were significantly higher in IgG4-AAAs (835 ng/mL) than in controls, and correlated with serum IgG4 levels and the total numbers of adventitial MMP-9-positive cells, whereas serum MMP-2 levels did not differ among the three aneurysmal groups. Conclusions MMP-9 production in adventitial immune cells concerning lymphoid follicles was characteristic of IgG4-AAAs and might work in its activity with aneurysmal dilatation and adventitial thickening. Expressions of adventitial MMP-2 and MMP-14 were detected in histiocytes and fibroblasts outside lymphoid follicles, and were less concerned with the activity of IgG4-AAAs. This retrospective multicenter study analyzed adventitial matrix metalloproteinases (MMPs) production in 19 patients with IgG4-related abdominal aortic aneurysms (AAAs) and 40 control cases. Adventitial MMP-9 production by various kinds of immune cells was increased in patients with IgG4-related AAAs and concerned with IgG4-AAA activity to cause aneurysmal progression and adventitial fibrosis, compared with aAAA. Serum MMP-9 levels reflected histologic MMP-9. Adventitial MMP-2 and MMP-14 were less concerned with IgG4-AAA activity. Thus, for IgG4-AAA patients, monitoring serum MMP-9 level might be the exacerbating factors related to adverse events during the treatment course.
Collapse
Affiliation(s)
- Satomi Kasashima
- Department of Clinical Laboratory Science, Graduate School of Health Science, Kanazawa University, Kanazawa, Japan
- Department of Pathology, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
- Department of Clinical Laboratory, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
- Correspondence: Satomi Kasashima, MD, PhD, Department of Clinical Laboratory Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, Japan
| | - Atsuhiro Kawashima
- Department of Pathology, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
- Department of Clinical Laboratory, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
| | - Fuminori Kasashima
- Department of Cardiovascular Surgery, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
| | - Yasushi Matsumoto
- Department of Cardiovascular Surgery, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
| | - Yoshitaka Yamamoto
- Department of Cardiovascular Surgery, National Hospital Organization, Kanazawa Medical Center, Kanazawa, Japan
| | - Satoru Ozaki
- Department of Clinical Laboratory Science, Graduate School of Health Science, Kanazawa University, Kanazawa, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
19
|
Sezer M, Atici A, Coskun I, Cizgici Y, Ozcan A, Umman B, Bugra Z, Ozcan I, Hasdemir H, Kocaaga M, Davies JE, Umman S. Reducing Aortic Barotrauma and Vascular Extracellular Matrix Degradation by Pacemaker-Mediated QRS Widening. J Am Heart Assoc 2020; 9:e014804. [PMID: 32390533 PMCID: PMC7660883 DOI: 10.1161/jaha.119.014804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The extent of pressure‐related damage might be related to acceleration rate of the applied pressure (peak dP/dt) in the vascular system. In this study, we sought to determine whether dP/dt applied to the aortic wall (aortic dP/dt) and in turn vascular extracellular matrix degradation can be mitigated via modulation of left ventricular (LV) contractility (LV dP/dt) by pacemaker‐mediated desynchronization. Methods and Results First, in 34 patients, changes in aortic dP/dt values in 3 aortic segments in response to pacemaker‐mediated stepwise QRS widening leading to gradual desynchronization of the LV contraction by means of steadily changed atrioventricular delay (AVD) with temporary dual‐chamber pacing was examined before and after beta‐blocker (15 mg IV metoprolol) administration. Second, serum matrix metalloproteinase‐9 levels were measured in the 20 patients with permanent pacemaker while they were on sinus rhythm with normal QRS width and 3 weeks after wide QRS rhythm ensured by dual pacing, dual sensing, and dual response to sensing with short AVD. LV dP/dt substantially correlated with dP/dt measured in ascending (r=0.83), descending (r=0.89), and abdominal aorta (r=0.96). QRS width strongly correlated with dP/dt measured in ascending (r=−0.95), descending (r=−0.92), and abdominal (r=−0.96) aortic segments as well. In patients with permanent pacemaker, wide QRS rhythm led to a significant reduction in serum matrix metalloproteinase‐9 levels (from 142.5±32.9 pg/mL to 87.5±32.4 pg/mL [P<0.001]) at the end of 3 weeks follow‐up. Conclusions QRS prolongation by short AVD dual pacing, dual sensing, and dual response to sensing results in concomitant decreases in peak dP/dt values in the LV and in all aortic segments with or without background beta‐blocker administration, which in turn led to a significant reduction in circulating matrix metalloproteinase‐9 levels. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03665558.
Collapse
Affiliation(s)
- Murat Sezer
- Department of Cardiology Capa Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Adem Atici
- Department of Cardiology Capa Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | | | - Yaşar Cizgici
- Department of Cardiology Capa Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Alp Ozcan
- Department of Cardiology Capa Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Berrin Umman
- Department of Cardiology Capa Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Zehra Bugra
- Department of Cardiology Capa Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Ilke Ozcan
- Department of Cardiology Capa Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Hakan Hasdemir
- Department of Cardiology Acibadem University, School of Medicine Istanbul Turkey
| | - Mehmet Kocaaga
- Department of Cardiology Capa Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Justin E Davies
- Department of Cardiology Hammersmith Hospital Imperial College NHS Trust London United Kingdom
| | - Sabahattin Umman
- Department of Cardiology Capa Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| |
Collapse
|
20
|
Yagi H, Nishigori M, Murakami Y, Osaki T, Muto S, Iba Y, Minatoya K, Ikeda Y, Ishibashi-Ueda H, Morisaki T, Ogino H, Tanaka H, Sasaki H, Matsuda H, Minamino N. Discovery of novel biomarkers for atherosclerotic aortic aneurysm through proteomics-based assessment of disease progression. Sci Rep 2020; 10:6429. [PMID: 32286426 PMCID: PMC7156426 DOI: 10.1038/s41598-020-63229-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/25/2020] [Indexed: 01/21/2023] Open
Abstract
Since aortic aneurysms (AAs) are mostly asymptomatic, but they have a high mortality rate upon rupture, their detection and progression evaluation are clinically important issues. To discover diagnostic biomarkers for AA, we performed proteome analysis of aortic media from patients with thoracic atherosclerotic AA (TAAA), comparing protein levels between the aneurysm and normal tissue areas. After hierarchical clustering analysis of the proteome analysis data, tissue samples were classified into three groups, regardless of morphological features. This classification was shown to reflect disease progression stage identified by pathological examination. This proteomics-based staging system enabled us to identify more significantly altered proteins than the morphological classification system. In subsequent data analysis, Niemann-Pick disease type C2 protein (NPC2) and insulin-like growth factor-binding protein 7 (IGFBP7) were selected as novel biomarker candidates for AA and were compared with the previously reported biomarker, thrombospondin 1 (THBS1). Blood concentrations of NPC2 and IGFBP7 were significantly increased, while THBS1 levels were decreased in TAAA and abdominal atherosclerotic AA patients. Receiver operating characteristic analysis of AA patients and healthy controls showed that NPC2 and IGFBP7 have higher specificity and sensitivity than THBS1. Thus, NPC2 and IGFBP7 are promising biomarkers for the detection and progression evaluation of AA.
Collapse
Affiliation(s)
- Hiroaki Yagi
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Mitsuhiro Nishigori
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yusuke Murakami
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Tsukasa Osaki
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Sayaka Muto
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yutaka Iba
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kenji Minatoya
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hatsue Ishibashi-Ueda
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takayuki Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hitoshi Ogino
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroshi Tanaka
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroaki Sasaki
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hitoshi Matsuda
- Department of Vascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Naoto Minamino
- Department of Molecular Pharmacology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan. .,Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
| |
Collapse
|
21
|
Myeloid related protein 8/14 is a new candidate biomarker and therapeutic target for abdominal aortic aneurysm. Biomed Pharmacother 2019; 118:109229. [DOI: 10.1016/j.biopha.2019.109229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
|
22
|
Xu H, Chen S, Zhang H, Zou Y, Zhao J, Yu J, Le S, Cui J, Jiang L, Wu J, Xia J. Network-based analysis reveals novel gene signatures in the peripheral blood of patients with sporadic nonsyndromic thoracic aortic aneurysm. J Cell Physiol 2019; 235:2478-2491. [PMID: 31489966 DOI: 10.1002/jcp.29152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
Thoracic aortic aneurysm (TAA), a serious cardiovascular disease that causes morbidity and mortality worldwide. At present, few biomarkers can accurately diagnose the appearance of TAA before dissection or rupture. Our research has the intention to investigate the developing applicable biomarkers for TAA promising clinically diagnostic biomarkers or probable regulatory targets for TAA. In our research, we built correlation networks utilizing the expression profile of peripheral blood mononuclear cell obtained from a public microarray data set (GSE9106). Furthermore, we chose the turquoise module, which has the strongest significance with TAA and was further analyzed. Fourteen genes that overlapped with differentially expressed proteins in the medial aortic layer were obtained. Subsequently, we verified the results applying quantitative polymerase chain reaction (Q-PCR) to our clinical specimen. In general, the Q-PCR results coincide with the majority of the expression profile. Fascinatingly, a notable change occurred in CLU, DES, MYH10, and FBLN5. In summary, using weighted gene coexpression analysis, our study indicates that CLU, DES, MYH10, and FBLN5 were identified and validated to be related to TAA and might be candidate biomarkers or therapeutic targets for TAA.
Collapse
Affiliation(s)
- Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|