1
|
Sulkowska J, Melles AW, Skranes JB, Berge T, Tveit A, Røsjø H, Lyngbakken MN, Omland T, Heck SL. Cardiac troponin T associates with left ventricular function and synchrony assessed by CMR in the general population: results from the Akershus Cardiac Examination 1950 Study. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae078. [PMID: 39351316 PMCID: PMC11441316 DOI: 10.1093/ehjimp/qyae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024]
Abstract
Background and aim Cardiac troponin T (cTnT) is a blood biomarker of myocardial injury that is associated with future adverse cardiovascular events in the general population. Left ventricular (LV) global longitudinal strain (GLS) and mechanical dispersion (MD) are metrics of systolic function and synchrony that can be obtained from cardiac imaging. Studies suggest an association between cTnT and echocardiographically assessed GLS and MD, but it is unknown whether cTnT relates to these metrics when assessed by cardiac magnetic resonance (CMR). We hypothesized that cTnT associates with GLS and with MD assessed by CMR feature tracking (CMR-FT) in the general population. Methods and results cTnT and CMR-FT measurements were performed in 186 community dwellers from the Akershus Cardiac Examination 1950 Study. The participants' age ranged from 68 to 70 years. Median cTnT concentration was 7.0 ng/L (interquartile interval 5.0-12.6 ng/L), median absolute value of GLS was 17.3% (interquartile interval 15.7-18.8%), and median MD was 80.7 milliseconds (interquartile interval 61.8-105.0 milliseconds). In multivariable linear regression models adjusted for common clinical risk factors of cardiovascular disease, with GLS and MD as outcome and cTnT as the predictor variable of interest, log10 transformed cTnT was significantly associated with both absolute GLS [β-coefficient -1.65, confidence interval (-2.84, -0.46)] and MD [β-coefficient 28.56, confidence interval (12.14, 44.92)]. Conclusion In older adults from the general population, higher cTnT concentrations are associated with worse systolic function and synchrony assessed by CMR-FT LV GLS and MD, adding information about myocardial function to traditional risk factors.
Collapse
Affiliation(s)
- Joanna Sulkowska
- K.G. Jebsen Center for Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, P.b. 1000 NO-1478 Lørenskog, Norway
- Department of Diagnostic Imaging, Akershus University Hospital, Sykehusveien 25, Nordbyhagen, 1478 Lørenskog, Norway
| | - Aikilu Woldegabriel Melles
- Department of Diagnostic Imaging, Akershus University Hospital, Sykehusveien 25, Nordbyhagen, 1478 Lørenskog, Norway
| | - Julia Brox Skranes
- K.G. Jebsen Center for Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, P.b. 1000 NO-1478 Lørenskog, Norway
| | - Trygve Berge
- Department of Medical Research, Vestre Viken Bærum Hospital, Gjettum, Norway
| | - Arnljot Tveit
- Department of Medical Research, Vestre Viken Bærum Hospital, Gjettum, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Helge Røsjø
- K.G. Jebsen Center for Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, P.b. 1000 NO-1478 Lørenskog, Norway
- Division for Research and Innovation, Akershus Clinical Research Center, Akershus University Hospital, Lørenskog, Norway
| | - Magnus Nakrem Lyngbakken
- K.G. Jebsen Center for Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, P.b. 1000 NO-1478 Lørenskog, Norway
- Department of Infectious Diseases, Division of Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Torbjørn Omland
- K.G. Jebsen Center for Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, P.b. 1000 NO-1478 Lørenskog, Norway
- Department of Cardiology, Akershus University Hospital, Lørenskog, Norway
| | - Siri Lagethon Heck
- K.G. Jebsen Center for Cardiac Biomarkers, Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, P.b. 1000 NO-1478 Lørenskog, Norway
- Department of Diagnostic Imaging, Akershus University Hospital, Sykehusveien 25, Nordbyhagen, 1478 Lørenskog, Norway
| |
Collapse
|
2
|
Werner O, Martins D, Bertini F, Bennati E, Collia D, Olivotto I, Spaziani G, Baruteau AE, Pedrizzetti G, Raimondi F. Comparative analysis of left ventricle function and deformation imaging in short and long axis plane in cardiac magnetic resonance imaging. Front Cardiovasc Med 2024; 11:1388171. [PMID: 38756751 PMCID: PMC11097778 DOI: 10.3389/fcvm.2024.1388171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background Advancements in cardiac imaging have revolutionized our understanding of ventricular contraction. While ejection fraction (EF) is still the gold standard parameter to assess left ventricle (LV) function, strain imaging (SI) has provided valuable insights into ventricular mechanics. The lack of an integrative method including SI parameters in a single, validated formula may limit its use. Our aim was to compare different methods for evaluating global circumferential strain (GCS) and their relationship with global longitudinal strain (GLS) and EF in CMR and how the different evaluations fit in the theoretical relationship between EF and global strain. Methods Retrospective monocenter study. Inclusion of every patient who underwent a CMR during a 15 months period with various clinical indication (congenital heart defect, myocarditis, cardiomyopathy). A minimum of three LV long-axis planes and a stack of short-axis slices covering the LV using classical steady-state free precession cine sequences. A single assessment of GLS on long axis (LAX) slices and a double assessment of GCS and EF with both short axis (SAX) and LAX slices were made by a single experienced CMR investigator. Results GCS-SAX and GCS-LAX were correlated (r = 0.77, P < 0.001) without being interchangeable with a high reproducibility for GCS, GLS and EF. EF calculated from LAX images showed an overestimation compared to EF derived from SAX images of 7%. The correlation between calculated EF and theoretical EF derived from SI was high (r = 0.88 with EF-SAX, 0.95 with EF-LAX). Data conclusion This study highlights the need to integrate strain imaging techniques into clinical by incorporating strain parameters into EF calculations, because it gives a deeper understanding of cardiac mechanics.
Collapse
Affiliation(s)
- Oscar Werner
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
- Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, CHU Nantes, Nantes, France
| | - Duarte Martins
- Pediatric and Adult Congenital Cardiology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Federico Bertini
- Pediatric Radiology Department, University Hospital Meyer, Florence, Italy
| | - Elena Bennati
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
| | - Dario Collia
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Iacopo Olivotto
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
| | - Gaia Spaziani
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
| | - Alban-Elouen Baruteau
- Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PRECICARE, Nantes Université, CHU Nantes, Nantes, France
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Francesca Raimondi
- Pediatric Cardiology Unit, University Hospital Meyer, Florence, Italy
- Pediatric and Adult Congenital Cardiology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
3
|
Wang C, Wang L, Yin J, Xuan H, Chen J, Li D, Hou X, Xu T. Direct comparison of coronary microvascular obstruction evaluation using CMR feature tracking and layer-specific speckle tracking echocardiography in STEMI patients. Int J Cardiovasc Imaging 2024; 40:237-247. [PMID: 37953371 PMCID: PMC10884157 DOI: 10.1007/s10554-023-02998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE Layer-specific speckle tissue echocardiography (LS-STE) is a unique technique used to assess coronary microvascular obstruction (CMVO) that may offer more information on the myocardial anatomy of patients with ST-elevation myocardial infarction (STEMI). Cardiovascular magnetic resonance feature tracking (CMR-FT) has also been gaining popularity as a way to evaluate CMVO. The aim of the present study was to directly compare CMVO assessment in STEMI patients using CMR-FT and LS-STE. PATIENTS AND METHODS A total of 105 STEMI patients with LS-STE, CMR-FT, and primary percutaneous coronary intervention (PPCI) were included in the study. Longitudinal peak systolic strain (LS), circumferential peak systolic strain (CS), and radial peak systolic strain (RS) were each used to evaluate CMVO using CMR-FT and LS-STE. RESULTS Correlation coefficients were 0.56, 0.53, and 0.55 for CMR-FT CS vs. endocardial CS, midcardial CS, and epicardial CS comparisons, respectively, and 0.87, 0.51, and 0.32 for CMR-FT LS vs. endocardial LS, midcardial LS, and epicardial LS comparisons, respectively. Bland-Altman analysis revealed strong inter-modality agreement and little bias in endocardial LS, while the absolute of limited of agreement (LOA) value was 2.28 ± 4.48. The absolutes LOA values were 1.26 ± 11.16, -0.02 ± 12.21, and - 1.3 ± 10.27 for endocardial, midcardial, and epicardial respectively. Intraclass correlation coefficient value of 0.87 showed good reliability in endocardial LS, and moderate reliability with values of 0.71, 0.70, and 0.64 in endocardial, midcardial, and epicardial CS, respectively (all p < 0.001). CONCLUSIONS CMR-FT is a viable technique for CMVO evaluation in STEMI patients. Endocardial LS showed good reliability for CMR-FT. STEMI patients can undergo LS-STE to assess the CMVO before PPCI.
Collapse
Affiliation(s)
- Chaofan Wang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Lili Wang
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Jie Yin
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Haochen Xuan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Junhong Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Dongye Li
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Xiancun Hou
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Craft J, Weber J, Cao JJ, Passick M, Ngai N, Bond K, Khalique OK, Barasch E. Left Ventricular Mass, Myocardial Structure, and Function in Severe Aortic Stenosis: an Echocardiographic and Cardiac Magnetic Resonance Imaging Study. Am J Cardiol 2023; 205:311-320. [PMID: 37633066 DOI: 10.1016/j.amjcard.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/28/2023]
Abstract
In severe aortic stenosis (AS), there are conflicting data on the prognostic implications of left ventricular (LV) hypertrophy (LVH). We aimed to characterize the LV geometry, myocardial matrix structural changes, and prognostic stratification using cardiac magnetic resonance imaging (CMR) and echocardiography in subjects with severe AS with and without LVH. Consecutive patients who had severe isolated AS and sufficient quality echocardiography and CMR within 6 months of each other were evaluated for LVH, cardiac structure, morphology, and late gadolinium-enhancement imaging. Kaplan-Meier curves, linear models, and proportional hazards models were used for prognostic stratification. There were 93 patients enrolled (mean age 74 ± 11 years, 48% female), of whom 38 (41%) had a normal LV mass index (LVMI), 41 (44%) had LVH defined at CMR by LVMI >2 SD higher than normal, and 14 (15% of the total) with >4 SD higher than the reference LVMI (severely elevated). The Society of Thoracic Surgeons scores were similar among the LVMI groups. Compared with those with normal LVMI, patients with LVH had higher LV end-diastolic and end-systolic volumes, increased late gadolinium-enhancement burden, and lower LV ejection fraction. Most notably, CMR feature-tracking global radial strain, 2-dimensional speckle-tracking echocardiography global longitudinal strain, and left atrial reservoir function were significantly worse. On the survival analyses, LVMI was not associated with a composite of all-cause mortality and/or heart failure hospitalization. In conclusion, compared with normal LVMI, elevated LVMI was not associated with a higher risk of adverse outcomes.
Collapse
Affiliation(s)
- Jason Craft
- DeMatteis Cardiovascular Institute; Division of Cardiac Imaging, St. Francis Hospital & Heart Center, Roslyn, New York.
| | | | - Jane J Cao
- DeMatteis Cardiovascular Institute; Division of Cardiac Imaging, St. Francis Hospital & Heart Center, Roslyn, New York
| | | | | | | | - Omar K Khalique
- DeMatteis Cardiovascular Institute; Division of Cardiac Imaging, St. Francis Hospital & Heart Center, Roslyn, New York
| | - Eddy Barasch
- DeMatteis Cardiovascular Institute; Division of Cardiac Imaging, St. Francis Hospital & Heart Center, Roslyn, New York
| |
Collapse
|
5
|
Calvieri C, Riva A, Sturla F, Dominici L, Conia L, Gaudio C, Miraldi F, Secchi F, Galea N. Left Ventricular Adverse Remodeling in Ischemic Heart Disease: Emerging Cardiac Magnetic Resonance Imaging Biomarkers. J Clin Med 2023; 12:jcm12010334. [PMID: 36615133 PMCID: PMC9820966 DOI: 10.3390/jcm12010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Post-ischemic left ventricular (LV) remodeling is a biologically complex process involving myocardial structure, LV shape, and function, beginning early after myocardial infarction (MI) and lasting until 1 year. Adverse remodeling is a post-MI maladaptive process that has been associated with long-term poor clinical outcomes. Cardiac Magnetic Resonance (CMR) is the best tool to define adverse remodeling because of its ability to accurately measure LV end-diastolic and end-systolic volumes and their variation over time and to characterize the underlying myocardial changes. Therefore, CMR is the gold standard method to assess in vivo myocardial infarction extension and to detect the presence of microvascular obstruction and intramyocardial hemorrhage, both associated with adverse remodeling. In recent times, new CMR quantitative biomarkers emerged as predictive of post-ischemic adverse remodeling, such as T1 mapping, myocardial strain, and 4D flow. Additionally, CMR T1 mapping imaging may depict infarcted tissue and assess diffuse myocardial fibrosis by using surrogate markers such as extracellular volume fraction, which may predict functional recovery or risk stratification of remodeling. Finally, there is emerging evidence supporting the utility of intracavitary blood flow kinetic energy and hemodynamic features assessed by the 4D flow CMR technique as early predictors of remodeling.
Collapse
Affiliation(s)
- Camilla Calvieri
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00100 Rome, Italy
- Correspondence:
| | - Alessandra Riva
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20129 Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20129 Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Lorenzo Dominici
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Luca Conia
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Carlo Gaudio
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Fabio Miraldi
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00100 Rome, Italy
| | - Francesco Secchi
- Unit of Radiology, IRCCS Policlinico San Donato, 20097 Milan, Italy
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, 20129 Milan, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy
| |
Collapse
|
6
|
Unnithan VB, Beaumont A, Rowland T, George K, Sculthorpe N, Lord RN, Bakhshi A, Oxborough D. Left Ventricular Responses during Exercise in Highly Trained Youth Athletes: Echocardiographic Insights on Function and Adaptation. J Cardiovasc Dev Dis 2022; 9:jcdd9120438. [PMID: 36547435 PMCID: PMC9787332 DOI: 10.3390/jcdd9120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
There is an increase in the prevalence of elite youth sports academies, whose sole aim is to develop future elite athletes. This involves the exposure of the child and adolescent athlete to high-volume training during a period of volatile growth. The large amount of data in this area has been garnered from the resting echocardiographic left ventricular (LV) evaluation of the youth athlete; while this can provide some insight on the functional adaptations to training, it is unable to elucidate a comprehensive overview of the function of the youth athletes' LV during exercise. Consequently, there is a need to interrogate the LV responses in-exercise. This review outlines the feasibility and functional insight of capturing global indices of LV function (Stroke Index-SVIndex and Cardiac Index-QIndex), systolic and diastolic markers, and cardiac strain during submaximal and maximal exercise. Larger SVI and QI were noted in these highly trained young athletes compared to recreationally active peers during submaximal and maximal exercise. The mechanistic insights suggest that there are minimal functional systolic adaptions during exercise compared to their recreationally active peers. Diastolic function was superior during exercise in these young athletes, and this appears to be underpinned by enhanced determinants of pre-load.
Collapse
Affiliation(s)
- Viswanath B. Unnithan
- Sport and Physical Activity Research Institute, Division of Sport and Exercise, School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK
- Correspondence: ; Tel.: +44-01698-894413
| | - Alexander Beaumont
- School of Science, Technology and Health, York St. John University, York YO31 7EX, UK
| | - Thomas Rowland
- Sport and Physical Activity Research Institute, Division of Sport and Exercise, School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK
| | - Keith George
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Nicholas Sculthorpe
- Sport and Physical Activity Research Institute, Division of Sport and Exercise, School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK
| | - Rachel N. Lord
- Cardiff Centre for Exercise and Health, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | | | - David Oxborough
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
7
|
Rezaei-Kalantari K, Babaei R, Bakhshandeh H, Motevalli M, Bitarafan-Rajabi A, Kasani K, Jafari M, Farahmand AM, Sharifian M. Myocardial strain by cardiac magnetic resonance: A valuable predictor of outcome after infarct revascularization. Eur J Radiol 2021; 144:109989. [PMID: 34627105 DOI: 10.1016/j.ejrad.2021.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the prognostic value of left ventricular strains by cardiac magnetic resonance feature tracking (CMR-FT) in patients with re-perfused myocardial infarction (MI). METHODS The study enrolled 58 patients with re-vascularized MI who underwent CMR within a week from acute MI. An 18-month follow-up was carried out for the composite endpoint of major adverse cardiovascular events (MACE). A 3 to 6-month post-MI ejection fraction (EF) was also measured. The predictive value of global longitudinal, circumferential, and radial strains (GLS, GCS, and GRS, respectively) for MACE and the follow-up EF was evaluated. RESULTS All the global strains showed significant impairment in MACE positive cases (P < 0.05 for all). On univariate regression, MACE was reversely associated with early post-MI EF (OR: 0.90, 95% CI: 0.83-0.98, P: 0.01), and directly associated with GLS (OR: 1.32, 95% CI: 1.03-1.69, P: 0.02), GCS (OR: 1.23, 95% CI: 1.00-1.50, P: 0.04) and EDVI (OR:1.02, 95 %CI: 1.00-1.04, P: 0.01). On multivariate regression model, only the interaction between EF and GLS showed a significant association with MACE (OR[CI95%]: 1.1 [1.06-1.21]). EF < 30% and GLS > -8.9% had the highest sensitivity (78.9% and 89.5%, respectively) and specificity (45.2% and 54.8%, respectively) to predict MACE. The combination of EF < 30% and GLS > -8.9% increased the sensitivity to 94.7%. In addition, the cutoff values of 35.1% for early post-MI EF and -10% for GLS could identify patients with impaired follow-up EF with more than 80% sensitivity and specificity [AUC (CI95%): 0.893(0.76-1.00) for EF and AUC (CI95%):0.836(0.67-1,00) for GLS, P < 0.05 for both)]. CONCLUSIONS GLS by CMR-FT is a powerful prognosticator of MACE and functional recovery in MI survivors, with incremental value added to early post-MI EF alone.
Collapse
Affiliation(s)
- Kiara Rezaei-Kalantari
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rosa Babaei
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hooman Bakhshandeh
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Motevalli
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Bitarafan-Rajabi
- Echocardiography Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Cardiovascular Interventional Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kianosh Kasani
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Jafari
- Department of Radiology, Ali Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maedeh Sharifian
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|