1
|
Xu H, Su J, Chen X, Li J, Li Z, Zheng N, Yu R, Li X, Song Y, Li J, Xu F, Li C, Fei X, Du W, Yu Q. Identification of hsa_circ_0076957 and miR-4512-targeted COL19A1 as regulators in clopidogrel resistance among stable coronary heart disease patients through comprehensive circRNA and miRNA analysis. Eur J Pharmacol 2025; 986:177156. [PMID: 39615866 DOI: 10.1016/j.ejphar.2024.177156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Clopidogrel resistance (CR) increases the risk of atherothrombotic events. Emerging evidence suggests that circRNAs may influence pharmacodynamic responses to clopidogrel. METHODS A total of 25 CR and 25 non-clopidogrel resistance (NCR) patients were enrolled. To identify circRNAs and miRNAs associated with CR, a microarray analysis was performed on RNA samples from 5 CR to 5 NCR patients. Based on the 10 most dysregulated circRNAs, a circRNA-miRNA network was constructed to explore target interactions. Next, the expression of selected circRNAs and their targeted mRNAs was measured, and their diagnostic value for CR was evaluated. Through joint analysis, the candidate miRNAs were identified and verified by RT‒PCR. Finally, after THLE-2 cells were cultivated and transfected with plasmids, the interactions among circ_007695, miR-4512 and COL19A1 were detected. RESULTS Our present study revealed circRNA and miRNA microarray expression profiles in CR and NCR patients and constructed a circRNA‒miRNA network. Moreover, in the CR group, hsa_circ_0076837, hsa_circ_0057714, and hsa_circ_0076957 were downregulated, and the mRNA expression of AOX1 and COL19A1 was also lower in these CR patients. ROC curve analysis indicated that hsa_circ_0057714 (targeting AOX1) and hsa_circ_0076957 (targeting COL19A1) may serve as reliable biomarkers for distinguishing CR. Furthermore, we revealed that the level of miR-4512 was greater in CR and circ-0076957 could regulate COL19A1 expression by targeting miR4512 in THLE-2 cells. CONCLUSION These findings highlight hsa_circ_0057714 and hsa_circ_0076957 as novel biomarkers for CR and suggest that circ-0076957 may regulate COL19A1 expression by targeting miR-4512, providing insights that could improve management of clopidogrel resistance in CAD.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jia Su
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China.
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Jiyi Li
- Department of Cardiology, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang, China
| | - Zhengwei Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Nan Zheng
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Ruoyan Yu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Xiaojing Li
- Department of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yudie Song
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Jiahui Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Fan Xu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Cui Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Xiaohong Fei
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China
| | - Weiping Du
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, China.
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
2
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Zhang Z, Li L, Shi H, Chen B, Li X, Zhang Y, Liu F, Wei W, Zhou Y, Liu K, Xia W, Gu X, Huang J, Tu S, Yin C, Shao A, Jiang L. Role of Circular RNAs in Atherosclerosis through Regulation of Inflammation, Cell Proliferation, Migration, and Apoptosis: Focus on Atherosclerotic Cerebrovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1461. [PMID: 37629751 PMCID: PMC10456328 DOI: 10.3390/medicina59081461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Atherosclerosis (AS) is a disease dangerous to human health and the main pathological cause of ischemic cardiovascular diseases. Although its pathogenesis is not fully understood, numerous basic and clinical studies have shown that AS is a chronic inflammatory disease existing in all stages of atherogenesis. It may be a common link or pathway in the pathogenesis of multiple atherogenic factors. Inflammation is associated with AS complications, such as plaque rupture and ischemic cerebral infarction. In addition to inflammation, apoptosis plays an important role in AS. Apoptosis is a type of programmed cell death, and different apoptotic cells have different or even opposite roles in the process of AS. Unlike linear RNA, circular RNA (circRNA) a covalently closed circular non-coding RNA, is stable and can sponge miRNA, which can affect the stages of AS by regulating downstream pathways. Ultimately, circRNAs play very important roles in AS by regulating inflammation, apoptosis, and some other mechanisms. The study of circular RNAs can provide new ideas for the prediction, prevention, and treatment of AS.
Collapse
Affiliation(s)
- Zheng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Huanqing Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Biao Chen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Xiaoqin Li
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Yuyao Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Fei Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wan Wei
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Keqin Liu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Xin Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China;
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310006, China;
| | - Congguo Yin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou 310009, China
| | - Lin Jiang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Z.); (H.S.); (B.C.); (X.L.); (Y.Z.); (X.G.)
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (L.L.); (F.L.); (W.W.); (Y.Z.); (K.L.); (W.X.)
| |
Collapse
|
4
|
Triska J, Mathew C, Zhao Y, Chen YE, Birnbaum Y. Circular RNA as Therapeutic Targets in Atherosclerosis: Are We Running in Circles? J Clin Med 2023; 12:4446. [PMID: 37445481 DOI: 10.3390/jcm12134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Much attention has been paid lately to harnessing the diagnostic and therapeutic potential of non-coding circular ribonucleic acids (circRNAs) and micro-RNAs (miRNAs) for the prevention and treatment of cardiovascular diseases. The genetic environment that contributes to atherosclerosis pathophysiology is immensely complex. Any potential therapeutic application of circRNAs must be assessed for risks, benefits, and off-target effects in both the short and long term. A search of the online PubMed database for publications related to circRNA and atherosclerosis from 2016 to 2022 was conducted. These studies were reviewed for their design, including methods for developing atherosclerosis and the effects of the corresponding atherosclerotic environment on circRNA expression. Investigated mechanisms were recorded, including associated miRNA, genes, and ultimate effects on cell mechanics, and inflammatory markers. The most investigated circRNAs were then further analyzed for redundant, disparate, and/or contradictory findings. Many disparate, opposing, and contradictory effects were observed across experiments. These include levels of the expression of a particular circRNA in atherosclerotic environments, attempted ascertainment of the in toto effects of circRNA or miRNA silencing on atherosclerosis progression, and off-target, cell-specific, and disease-specific effects. The high potential for detrimental and unpredictable off-target effects downstream of circRNA manipulation will likely render the practice of therapeutic targeting of circRNA or miRNA molecules not only complicated but perilous.
Collapse
Affiliation(s)
- Jeffrey Triska
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christo Mathew
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Zhao
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yuqing E Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yochai Birnbaum
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Liu S, Zheng Z, Zhao Y, Yao H, Zhang L, Chen C, Jin S. DRP1 knockdown and atorvastatin alleviate ox-LDL-induced vascular endothelial cells injury: DRP1 is a potential target for preventing atherosclerosis. Exp Cell Res 2023:113688. [PMID: 37315759 DOI: 10.1016/j.yexcr.2023.113688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Vascular endothelial cells (VECs) injury is the first step in the pathogenesis of atherosclerosis (AS). Mitochondrial dysfunction plays a significant role in VECs injury, but the underlying mechanisms are still unclear. Here, the human umbilical vein endothelial cells were exposed to 100 μg/mL oxidized low-density lipoprotein for 24 h to establish AS model in vitro. We reported that mitochondrial dynamics disorder is a prominent feature of VECs in AS models and associated with mitochondrial dysfunction. Moreover, the knockdown of dynamin-related protein 1 (DRP1) in AS model significantly alleviated the mitochondrial dynamics disorder and VECs injury. On the contrary, DRP1 overexpression significantly aggravated this injury. Interestingly, atorvastatin (ATV), a classical anti-atherosclerotic drug, prominently inhibited the expression of DRP1 in AS models and similarly alleviated the mitochondrial dynamics disorder and VECs injury in vitro and in vivo. At the same time, we found that ATV alleviated VECs damage but did not significantly reduce lipid concentration in vivo. Our findings provide a potential therapeutic target of AS and a new mechanism of the anti-atherosclerotic effect of ATV.
Collapse
Affiliation(s)
- Shengnan Liu
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zhinan Zheng
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yingyin Zhao
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Hanming Yao
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Lizhen Zhang
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Cui Chen
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Sanqing Jin
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
6
|
Li P, Hong G, Zhan W, Deng M, Tu C, Wei J, Lin H. Endothelial progenitor cell derived exosomes mediated miR-182-5p delivery accelerate diabetic wound healing via down-regulating PPARG. Int J Med Sci 2023; 20:468-481. [PMID: 37057206 PMCID: PMC10087624 DOI: 10.7150/ijms.78790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023] Open
Abstract
Diabetic wound is one of the most common and serious complications of diabetes, which is characterized by abnormal number and quality of wound repair related cells. Previous studies have shown that human endothelial progenitor cells derived exosomes (EPCs-EXO) can promote diabetic wound healing through modulating vascular endothelial cell function. The purpose of this study was to investigate the biological effects and molecular mechanisms of EPCs-EXO on diabetic wound healing. The regulation of EPCs-EXO on human immortalized epidermal cell line HaCaT in high glucose (HG) environment was evaluated. Our data showed that EPCs-EXO promoted the proliferation, migration, while inhibited apoptosis of HaCaTs challenged by HG via elevating miR-182-5p expression level in vitro. Skin wound healing was significantly enhanced by EPCs-EXO in diabetic mice. Moreover, bioinformatics analyses and luciferase reporter assay indicated that exosomal miR-182-5p was bound to PPARG 3' UTR sequence and inhibited the expression of PPARG. Collectively, our findings provided a new role of EPCs-EXO in the clinical treatment of diabetic skin wounds. Diabetic wound is one of the most common and serious complications of diabetes, which is characterized by abnormal number and quality of wound repair related cells. Previous studies have shown that human endothelial progenitor cells derived exosomes (EPCs-EXO) can promote diabetic wound healing through modulating vascular endothelial cell function. The purpose of this study was to investigate the biological effects and molecular mechanisms of EPCs-EXO on diabetic wound healing. The regulation of EPCs-EXO on human immortalized epidermal cell line HaCaT in high glucose (HG) environment was evaluated. Our data showed that EPCs-EXO promoted the proliferation, migration, while inhibited apoptosis of HaCaTs challenged by HG via elevating miR-182-5p expression level in vitro. Skin wound healing was significantly enhanced by EPCs-EXO in diabetic mice. Moreover, bioinformatics analyses and luciferase reporter assay indicated that exosomal miR-182-5p was bound to PPARG 3' UTR sequence and inhibited the expression of PPARG. Collectively, our findings provided a new role of EPCs-EXO in the clinical treatment of diabetic skin wounds.
Collapse
Affiliation(s)
- Peng Li
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Guanhao Hong
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Weiqiang Zhan
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Mingzhu Deng
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chenlin Tu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinsong Wei
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Hao Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| |
Collapse
|
7
|
Rui X, Wu X, Rong Z, Wang Z. Upgulation of lncRNA GASL1 inhibits atherosclerosis by regulating miR-106a/LKB1 axis. BMC Cardiovasc Disord 2023; 23:11. [PMID: 36627571 PMCID: PMC9832782 DOI: 10.1186/s12872-023-03038-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a common frequently-occurring disease in the clinic and a serious threat to human health. This research aimed to explore the value between GASL1 and AS. METHODS The expression and values of GASL1 in AS patients were revealed by qRT-PCR and ROC curve. The HUVEC cells were induced by ox-LDL to construct in-vitro models. Cell viability was detected by MTT assay, and apoptosis was detected by flow cytometry. The inflammatory situation was reflected by the ELISA assay. Double luciferase reporter gene assay verified the regulatory relationship between GASL1 and miR-106a, miR-106a and LKB1. RESULTS The levels of GASL1 was lower in AS group than those in control group. The value of GASL1 in predicting AS patients was also tested by the ROC curve. After HUVEC cells were induced by ox-LDL, the levels of GASL1 and LKB1 decreased significantly, while the level of miR-106a increased significantly. Upregulation of LKB1 reversed the effect of upregulation of GASL1 on viability, apoptosis, and inflammation of HUVEC cells induced by ox-LDL. CONCLUSION Overexpression of GASL1 might suppress ox-LDL-induced HUVEC cell viability, apoptosis, and inflammation by regulating miR-106a/LKB1 axis.
Collapse
Affiliation(s)
- Xueqi Rui
- Department of Cardiovascular Medicine, Liyang People’s Hospital, Liyang, 213399 China
| | - Xinning Wu
- grid.452710.5Department of Cardiovascular Medicine, People’s Hospital of Rizhao, No. 126 Tai’an Road, Donggang District, Rizhao, 276827 China
| | - Zheyi Rong
- Department of Cardiovascular Medicine, Renhe Hospital, Baoshan District, Shanghai, 201900 China
| | - Zipeng Wang
- grid.417303.20000 0000 9927 0537Department of Neurology, Huai’an Second People’s Hospital, The Affiliated Huai’an Hospital of Xuzhou Medical University, No. 62, Huaihai South Road, Qingjiangpu District, Huai’an, 223000 China
| |
Collapse
|
8
|
Hou Z, Lin Y, Yang X, Chen J, Li G. Therapeutics of Extracellular Vesicles in Cardiocerebrovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:187-205. [PMID: 37603281 DOI: 10.1007/978-981-99-1443-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Extracellular vesicles (EVs) are nanoscale membranous vesicles containing DNA, RNA, lipids, and proteins, which play versatile roles in intercellular communications. EVs are increasingly being recognized as the promising therapeutic agents for many diseases, including cardiocerebrovascular and metabolic diseases, due to their ability to deliver functional and therapeutical molecules. In this chapter, the biological characteristics and functions of EVs are briefly summarized. Importantly, the current state of applying EVs in the prevention and treatment of cardiocerebrovascular and metabolic diseases, including myocardial infarction, atrial fibrillation, myocardial hypertrophy, stroke, diabetes, Alzheimer's disease, fatty liver, obesity, thyroid diseases, and osteoporosis, is discussed. Lastly, the challenges and prospects related to the preclinical and clinical application of EVs receive a particular focus.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, China
| | - Yiyan Lin
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, China
- Fangshan Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Jing Chen
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Zhang P, Wang W, Li M. Role and mechanism of circular RNA circ_0050486 in regulating oxidized low-density lipoprotein-induced injury in endothelial cells. Clin Hemorheol Microcirc 2022; 82:107-124. [PMID: 35723090 DOI: 10.3233/ch-211259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dysfunction of endothelial cells in the arterial vasculature is an essential contributor to the pathogenesis of atherosclerosis. Circular RNAs (circRNAs) exert important regulatory functions in endothelial cell dysfunction. Here, we explored the precise role and mechanism of circ_0050486 in regulating endothelial cell injury induced by oxidized low-density lipoprotein (ox-LDL). METHODS Circ_0050486, microRNA (miR)-182-5p and myeloid differentiation primary response gene 88 (MyD88) were quantified by quantitative real-time PCR or western blot. Cell viability, proliferation and apoptosis were examined by MTS, 5-Ethynyl-2'-Deoxyuridine (EdU), and flow cytometry assays, respectively. Direct relationship between miR-182-5p and circ_0050486 or MYD88 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS Circ_0050486 was upregulated in atherosclerosis serum and ox-LDL-treated human aortic endothelial cells (HAECs). Silencing of circ_0050486 suppressed HAEC injury induced by ox-LDL. Mechanistically, circ_0050486 targeted miR-182-5p, and the effects of circ_0050486 silencing were partially due to the upregulation of miR-182-5p. MYD88 was a direct target of miR-182-5p, and miR-182-5p-mediated inhibition of MYD88 attenuated ox-LDL-evoked HAEC injury. Circ_0050486 bound to miR-182-5p to regulate MYD88 expression. Additionally, the NF-κB signaling pathway was involved in the regulation of circ_0050486/miR-182-5p/MYD88 axis in ox-LDL-treated HAECs. CONCLUSION Our study identifies the functional role of circ_0050486 in ox-LDL-induced endogenous cell injury and establishes a mechanism of circ_0050486 function by affecting MYD88 through competitively binding to shared miR-182-5p.
Collapse
Affiliation(s)
- Pu Zhang
- Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Weiping Wang
- Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Meilan Li
- Second Department of Cardiology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| |
Collapse
|
10
|
Histone Deacetylase 1 Depletion Alleviates Coronary Heart Disease Via the MicroRNA-182-Mediated Transforming Growth Factor β/Smad Signaling Pathway. J Cardiovasc Pharmacol 2022; 79:815-826. [PMID: 35289769 DOI: 10.1097/fjc.0000000000001260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Histone deacetylase (HDAC) determines the acetylation status of histones, thereby regulating gene expression. HDAC inhibitors have been demonstrated to suppress cardiomyocyte growth in vitro and in vivo. We assessed here whether HDAC1 exerts an aggravating effect on coronary heart disease (CHD). Epigenetic probe array revealed that HDAC1 was overexpressed in patients with CHD. HDAC1 was then downregulated in rat cardiomyocytes, and microRNA microarray analysis was performed to detect downstream targets of HDAC1, followed by chromatin immunoprecipitation validation. HDAC1 inhibited miR-182 expression through deacetylation. miR-182 was poorly expressed in patients with CHD. Using enzyme-linked immunosorbent assay, Reverse transcription-quantitative PCR, hematoxylin-eosin staining, terminal deoxynucleotidyl transferase (TdT)-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling assay, and immunohistochemistry, we observed that HDAC1 downregulation promoted cardiac function, restored lipid levels, reduced myocardial injury markers and inflammatory factors, and alleviated myocardial tissue damage and apoptosis in CHD rats. By contrast, miR-182 downregulation exacerbated injury in rats in the presence of HDAC1 knockdown. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes of miR-182 were mainly enriched in the transforming growth factor (TGF)-β/Smad pathway. Western blot also validated that HDAC1/miR-182 modulated the TGF-β/Smad pathway activity. Our results demonstrated that HDAC1 repressed miR-182 and activated the TGF-β/Smad pathway to promote CHD.
Collapse
|