1
|
McMullan B, Kim HY, Alastruey-Izquierdo A, Tacconelli E, Dao A, Oladele R, Tanti D, Govender NP, Shin JH, Heim J, Ford NP, Huttner B, Galas M, Nahrgang SA, Gigante V, Sati H, Alffenaar JW, Morrissey CO, Beardsley J. Features and global impact of invasive fungal infections caused by Pneumocystis jirovecii: A systematic review to inform the World Health Organization fungal priority pathogens list. Med Mycol 2024; 62:myae038. [PMID: 38935910 PMCID: PMC11210620 DOI: 10.1093/mmy/myae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 06/29/2024] Open
Abstract
This systematic review evaluates the current global impact of invasive infections caused by Pneumocystis jirovecii (principally pneumonia: PJP), and was carried out to inform the World Health Organization Fungal Priority Pathogens List. PubMed and Web of Science were used to find studies reporting mortality, inpatient care, complications/sequelae, antifungal susceptibility/resistance, preventability, annual incidence, global distribution, and emergence in the past 10 years, published from January 2011 to February 2021. Reported mortality is highly variable, depending on the patient population: In studies of persons with HIV, mortality was reported at 5%-30%, while in studies of persons without HIV, mortality ranged from 4% to 76%. Risk factors for disease principally include immunosuppression from HIV, but other types of immunosuppression are increasingly recognised, including solid organ and haematopoietic stem cell transplantation, autoimmune and inflammatory disease, and chemotherapy for cancer. Although prophylaxis is available and generally effective, burdensome side effects may lead to discontinuation. After a period of decline associated with improvement in access to HIV treatment, new risk groups of immunosuppressed patients with PJP are increasingly identified, including solid organ transplant patients.
Collapse
Affiliation(s)
- Brendan McMullan
- Faculty of Medicine and Health, UNSW, Sydney, New South Wales, Australia
- Department of Immunology and Infectious Diseases, Sydney Children’s Hospital, Sydney, New South Wales, Australia
| | - Hannah Yejin Kim
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Western Sydney LHD, North Parramatta, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Evelina Tacconelli
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, North Parramatta, New South Wales, Australia
| | - Rita Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Daniel Tanti
- Department of Immunology and Infectious Diseases, Sydney Children’s Hospital, Sydney, New South Wales, Australia
- Discipline of Paediatrics, Faculty of Medicine and Health, University of NSW, Sydney, Australia
| | - Nelesh P Govender
- Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Infection and Immunity, St George’s University of London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jong-Hee Shin
- Department of Laboratory Medicine, Chonnam National University School of Medicine, Gwangju, South Korea
| | - Jutta Heim
- Scientific Advisory Committee, Helmholtz Centre for Infection Research, Germany
| | - Nathan Paul Ford
- Department of HIV, Viral Hepatitis and STIs, World Health Organization, Geneva, Switzerland
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Marcelo Galas
- Antimicrobial Resistance Special Program, Communicable Diseases and Environmental Determinants of Health, Pan American Health Organization, Washingdom, District of Columbia, USA
| | - Saskia Andrea Nahrgang
- Antimicrobial Resistance Programme, World Health Organization European Office, Copenhagen, Denmark
| | | | | | - Jan Willem Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Western Sydney LHD, North Parramatta, New South Wales, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash University, Clayton, Victoria, Australia
| | - Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Westmead Hospital, Western Sydney LHD, North Parramatta, New South Wales, Australia
| |
Collapse
|
2
|
Iturrieta-González I, Chahin C, Cabrera J, Concha C, Olivares-Ferretti P, Briones J, Vega F, Bustos-Medina L, Fonseca-Salamanca F. Molecular Study of Pneumocystis jirovecii in Respiratory Samples of HIV Patients in Chile. J Fungi (Basel) 2024; 10:117. [PMID: 38392789 PMCID: PMC10889964 DOI: 10.3390/jof10020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 02/24/2024] Open
Abstract
Pneumocystis is an opportunistic fungus that causes potentially fatal pneumonia (PCP) in immunocompromised patients. The objective of this study was to determine the prevalence of P. jirovecii in HIV patients through phenotypic and molecular study, to investigate the genetic polymorphisms of P. jirovecii at the mitochondrial gene mtLSU and at the nuclear dihydropteroate synthase gene (DHPS), and by analysis of molecular docking to study the effect of DHPS mutations on the enzymatic affinity for sulfamethoxazole. A PCP prevalence of 28.3% was detected, with mtLSU rRNA genotypes 3 (33.3%) and 2 (26.6%) being the most common. A prevalence of 6.7% (1/15) mutations in the DHPS gene was detected, specifically at codon 55 of the amino acid sequence of dihydropteroate synthase. Molecular docking analysis showed that the combination of mutations at 55 and 98 codons is required to significantly reduce the affinity of the enzyme for sulfamethoxazole. We observed a low rate of mutations in the DHPS gene, and molecular docking analysis showed that at least two mutations in the DHPS gene are required to significantly reduce the affinity of dihydropteroate synthase for sulfamethoxazole.
Collapse
Affiliation(s)
- Isabel Iturrieta-González
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
- Jeffrey Modell Foundation for Diagnosis and Research in Primary Immunodeficiencies, Center of Excellence in Translational Medicine, Medicine Faculty, Universidad de La Frontera, Temuco 4810296, Chile
| | - Carolina Chahin
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Johanna Cabrera
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Carla Concha
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | | | - Javier Briones
- Infectology Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Fernando Vega
- Critical Patient Unit, Hospital Dr. Hernán Henríquez Aravena, Temuco 4781151, Chile
| | - Luis Bustos-Medina
- Department of Public Health and CIGES, Faculty of Medicine, Universidad de La Frontera, Temuco 4781176, Chile
| | - Flery Fonseca-Salamanca
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Molecular Immunoparasitology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
3
|
de la Horra C, Friaza V, Morilla R, Delgado J, Medrano FJ, Miller RF, de Armas Y, Calderón EJ. Update on Dihydropteroate Synthase (DHPS) Mutations in Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7100856. [PMID: 34682277 PMCID: PMC8540849 DOI: 10.3390/jof7100856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
A Pneumocystis jirovecii is one of the most important microorganisms that cause pneumonia in immunosupressed individuals. The guideline for treatment and prophylaxis of Pneumocystis pneumonia (PcP) is the use of a combination of sulfa drug-containing trimethroprim and sulfamethoxazole. In the absence of a reliable method to culture Pneumocystis, molecular techniques have been developed to detect mutations in the dihydropteroate synthase gene, the target of sulfa drugs, where mutations are related to sulfa resistance in other microorganisms. The presence of dihydropteroate synthase (DHPS) mutations has been described at codon 55 and 57 and found almost around the world. In the current work, we analyzed the most common methods to identify these mutations, their geographical distribution around the world, and their clinical implications. In addition, we describe new emerging DHPS mutations. Other aspects, such as the possibility of transmitting Pneumocystis mutated organisms between susceptible patients is also described, as well as a brief summary of approaches to study these mutations in a heterologous expression system.
Collapse
Affiliation(s)
- Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| | - Rubén Morilla
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Departamento de Enfermería, Universidad de Sevilla, 41009 Seville, Spain
| | - Juan Delgado
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
| | - Francisco J. Medrano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Robert F. Miller
- Institute for Global Health, University College London, London WC1E 6JB, UK;
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Pathology Department, Hospital Center of Institute of Tropical Medicine “Pedro Kourí,” Havana 11400, Cuba
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (C.d.l.H.); (R.M.); (J.D.); (F.J.M.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Departamento de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Correspondence: (V.F.); (E.J.C.); Tel.: +34-955923096 (E.J.C.)
| |
Collapse
|
4
|
Hosseini-Moghaddam SM, Dufresne PJ, Hunter Gutierrez E, Dufresne SF, House AA, Humar A, Kumar D, Jevnikar AM. Long-lasting cluster of nosocomial pneumonia with a single Pneumocystis jirovecii genotype involving different organ allograft recipients. Clin Transplant 2020; 34:e14108. [PMID: 33048378 DOI: 10.1111/ctr.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 02/04/2023]
Abstract
Pneumocystis pneumonia (PCP) outbreaks may occur in solid organ transplant (SOT) patients. Transmissibility of Pneumocystis jirovecii among SOT and non-SOT patients has not been investigated. Ten SOT (ie, 4 heart, 4 kidney, 2 liver allograft recipients) and 11 non-SOT (ie, 7 HIV-infected, 3 hematologic malignancies, and 1 stem cell transplant) patients with PCP were admitted to London Health Sciences Center (LHSC) from October 2014 to August 2016. We investigated the course of illness and outcome of PCP in SOT and non-SOT patients. Post-transplant PCP was frequently an acute-onset disease (90% vs. 18.2%, p = .01) requiring ICU admission (70% vs. 20%, p = .03) and hemodialysis (60% vs. 0, p = .003). Mortality was more frequent in SOT patients (40% vs. 18.1%, p = .36). Multilocus sequence typing (MLST) demonstrated circulation of a single genotype of P. jirovecii among SOT patients. However, 8 different genotypes were detected from non-SOT patients. Reinstitution of prophylaxis successfully controlled post-transplant cluster until end of observation period in October 2019. No transmission was detected from non-SOT patients to SOT recipients. Detection of a single P. jirovecii genotype from all SOT recipients highlights the likelihood of nosocomial transmission. No source control method is recommended by current guidelines. Improvement of preventive strategies is required.
Collapse
Affiliation(s)
- Seyed M Hosseini-Moghaddam
- Transplant Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Multiorgan Transplant Program, London Health Sciences Center, Western University, London, ON, Canada
| | - Philippe J Dufresne
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Ste-Anne-de-Bellevue, QC, Canada
| | - Elaine Hunter Gutierrez
- Multiorgan Transplant Program, London Health Sciences Center, Western University, London, ON, Canada
| | - Simon F Dufresne
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Ste-Anne-de-Bellevue, QC, Canada
| | - Andrew A House
- Multiorgan Transplant Program, London Health Sciences Center, Western University, London, ON, Canada
| | - Atul Humar
- Transplant Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Deepali Kumar
- Transplant Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anthony M Jevnikar
- Multiorgan Transplant Program, London Health Sciences Center, Western University, London, ON, Canada
| |
Collapse
|
5
|
Ricci G, Santos DW, Kovacs JA, Nishikaku AS, de Sandes-Freitas TV, Rodrigues AM, Kutty G, Affonso R, Silva HT, Medina-Pestana JO, de Franco MF, Colombo AL. Genetic diversity of Pneumocystis jirovecii from a cluster of cases of pneumonia in renal transplant patients: Cross-sectional study. Mycoses 2018; 61:845-852. [PMID: 29992629 DOI: 10.1111/myc.12823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/25/2022]
Abstract
Pneumocystis jirovecii can cause severe potentially life-threatening pneumonia (PCP) in kidney transplant patients. Prophylaxis of patients against PCP in this setting is usually performed during 6 months after transplantation. The aim of this study is to describe the molecular epidemiology of a cluster of PCP in renal transplant recipients in Brazil. Renal transplant patients who developed PCP between May and December 2011 had their formalin-fixed paraffin-embedded (FFPE) lung biopsy samples analysed. Pneumocystis jirovecii 23S mitochondrial large subunit of ribosomal RNA (23S mtLSU-rRNA), 26S rRNA, and dihydropteroate synthase (DHPS) genes were amplified by polymerase chain reaction (PCR), sequenced, and analysed for genetic variation. During the study period, 17 patients developed PCP (only four infections were documented within the first year after transplantation) and six (35.3%) died. Thirty FFPE samples from 11 patients, including one external control HIV-infected patient, had fungal DNA successfully extracted for further amplification and sequencing for all three genes. A total of five genotypes were identified among the 10 infected patients. Of note, four patients were infected by more than one genotype and seven patients were infected by the same genotype. DNA extracted from FFPE samples can be used for genotyping; this approach allowed us to demonstrate that multiple P. jirovecii strains were responsible for this cluster, and one genotype was found infecting seven patients. The knowledge of the causative agents of PCP may help to develop new initiatives for control and prevention of PCP among patients undergoing renal transplant and improve routine PCP prophylaxis.
Collapse
Affiliation(s)
- Giannina Ricci
- Special Mycology Laboratory, Division of Infectious Diseases, Department of Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daniel Wagner Santos
- Special Mycology Laboratory, Division of Infectious Diseases, Department of Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.,Hospital do Rim, Fundação Oswaldo Ramos, São Paulo, SP, Brazil
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Angela Satie Nishikaku
- Special Mycology Laboratory, Division of Infectious Diseases, Department of Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Anderson Messias Rodrigues
- Molecular Biology Division, Department of Microbiology, Immunology and Parasitology (DMIP), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Geetha Kutty
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Regina Affonso
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN), São Paulo, SP, Brazil
| | | | | | | | - Arnaldo Lopes Colombo
- Special Mycology Laboratory, Division of Infectious Diseases, Department of Medicine, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
6
|
Singh Y, Mirdha BR, Guleria R, Khalil S, Panda A, Chaudhry R, Mohan A, Kabra SK, Kumar L, Agarwal SK. Circulating genotypes of Pneumocystis jirovecii and its clinical correlation in patients from a single tertiary center in India. Eur J Clin Microbiol Infect Dis 2017; 36:1635-1641. [PMID: 28401321 DOI: 10.1007/s10096-017-2977-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
The present study was carried out with the objectives of genotyping Pneumocystis jirovecii at three distinct loci, to identify the single nucleotide polymorphisms (SNPs), and to study its clinical implications in patients with Pneumocystis pneumonia (PCP). Analysis of genetic diversity in P. jirovecii from immunocompromised patients was carried out by genotyping at three distinct loci encoding mitochondrial large subunit rRNA (mtLSU rRNA), cytochrome b (CYB), and superoxide dismutase (SOD) using polymerase chain reaction (PCR) assays followed by direct DNA sequencing. Of the 300 patients enrolled in the present study, 31 (10.33%) were positive for PCP by a specific mtLSU rRNA nested PCR assay, whereas only 15 P. jirovecii could be amplified at the other two loci (SOD and CYB). These positives were further subjected to sequence typing. Important genotypic combinations between four SNPs (mt85, SOD110, SOD215, and CYB838) and clinical outcomes could be observed in the present study, and mt85A, mt85T, and SOD110C/SOD215T were frequently associated with "negative follow-up". These SNPs were also noted to be relatively more prevalent amongst circulating genotypes in our study population. The present study is the first of its kind from the Indian subcontinent and demonstrated that potential SNPs of P. jirovecii may possibly be attributed to the clinical outcome of PCP episodes in terms of severity or fatality in different susceptible populations likely to develop PCP during their course of illness.
Collapse
Affiliation(s)
- Y Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - B R Mirdha
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - R Guleria
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - S Khalil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - A Panda
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - R Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - A Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - S K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - L Kumar
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - S K Agarwal
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|