1
|
Liu Q, Yang H, Zhao L, Huang N, Ping J. A Novel lncRNA SAAL Suppresses IAV Replication by Promoting Innate Responses. Microorganisms 2022; 10:microorganisms10122336. [PMID: 36557591 PMCID: PMC9785332 DOI: 10.3390/microorganisms10122336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A virus (IAV) infection has traditionally been a serious problem in animal husbandry and human public health security. Recently, many studies identified that long noncoding RNAs play an important role in the antiviral immune response after the infection of the influenza virus. However, there are still lots of IAV-related lncRNAs that have not been well-characterized. Using RNA sequencing analysis, we identified a lncRNA, named Serpina3i Activation Associated lncRNA (SAAL), which can be significantly upregulated in mice after IAV infection. In this study, we found that overexpression of SAAL inhibited the replication of A/WSN/33(WSN). SAAL upregulated Serpina3i with or without WSN infection. Overexpression of Serpina3i reduced influenza virus infection. Meanwhile, knockdown of Serpina3i enhanced the replication of WSN. Furthermore, knockdown of Serpina3i abolished the SAAL-mediated decrease in WSN infection. Overexpression of SAAL or Serpina3i positively regulated the transcription of interferon β (IFN-β) and several critical ISGs after WSN infection. In conclusion, we found that the novel lncRNA SAAL is a critical anti-influenza regulator by upregulating the mRNA level of Serpina3i.
Collapse
Affiliation(s)
- Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hongjun Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
2
|
Pepin KM, Hopken MW, Shriner SA, Spackman E, Abdo Z, Parrish C, Riley S, Lloyd-Smith JO, Piaggio AJ. Improving risk assessment of the emergence of novel influenza A viruses by incorporating environmental surveillance. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180346. [PMID: 31401963 PMCID: PMC6711309 DOI: 10.1098/rstb.2018.0346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reassortment is an evolutionary mechanism by which influenza A viruses (IAV) generate genetic novelty. Reassortment is an important driver of host jumps and is widespread according to retrospective surveillance studies. However, predicting the epidemiological risk of reassortant emergence in novel hosts from surveillance data remains challenging. IAV strains persist and co-occur in the environment, promoting co-infection during environmental transmission. These conditions offer opportunity to understand reassortant emergence in reservoir and spillover hosts. Specifically, environmental RNA could provide rich information for understanding the evolutionary ecology of segmented viruses, and transform our ability to quantify epidemiological risk to spillover hosts. However, significant challenges with recovering and interpreting genomic RNA from the environment have impeded progress towards predicting reassortant emergence from environmental surveillance data. We discuss how the fields of genomics, experimental ecology and epidemiological modelling are well positioned to address these challenges. Coupling quantitative disease models and natural transmission studies with new molecular technologies, such as deep-mutational scanning and single-virus sequencing of environmental samples, should dramatically improve our understanding of viral co-occurrence and reassortment. We define observable risk metrics for emerging molecular technologies and propose a conceptual research framework for improving accuracy and efficiency of risk prediction. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Kim M. Pepin
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
- e-mail:
| | - Matthew W. Hopken
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
- Colorado State University, Fort Collins, CO 80523, USA
| | - Susan A. Shriner
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Research, USDA-ARS, Athens, GA 30605, USA
| | - Zaid Abdo
- Colorado State University, Fort Collins, CO 80523, USA
| | - Colin Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Imperial College, London, SW7 2AZ, UK
| | - James O. Lloyd-Smith
- UCLA, Los Angeles, CA 90095, USA
- Department of Ecology and Evolutionary Biology, Fogarty International Center, National Institutes of Health, Bethesda MD 20892, USA
| | | |
Collapse
|
3
|
Patel U, Gingerich A, Widman L, Sarr D, Tripp RA, Rada B. Susceptibility of influenza viruses to hypothiocyanite and hypoiodite produced by lactoperoxidase in a cell-free system. PLoS One 2018; 13:e0199167. [PMID: 30044776 PMCID: PMC6059396 DOI: 10.1371/journal.pone.0199167] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/01/2018] [Indexed: 12/03/2022] Open
Abstract
Lactoperoxidase (LPO) is an enzyme found in several exocrine secretions including the airway surface liquid producing antimicrobial substances from mainly halide and pseudohalide substrates. Although the innate immune function of LPO has been documented against several microbes, a detailed characterization of its mechanism of action against influenza viruses is still missing. Our aim was to study the antiviral effect and substrate specificity of LPO to inactivate influenza viruses using a cell-free experimental system. Inactivation of different influenza virus strains was measured in vitro system containing LPO, its substrates, thiocyanate (SCN-) or iodide (I-), and the hydrogen peroxide (H2O2)-producing system, glucose and glucose oxidase (GO). Physiologically relevant concentrations of the components of the LPO/H2O2/(SCN-/I-) antimicrobial system were exposed to twelve different strains of influenza A and B viruses in vitro and viral inactivation was assessed by determining plaque-forming units of non-inactivated viruses using Madin-Darby canine kidney cells (MDCK) cells. Our data show that LPO is capable of inactivating all influenza virus strains tested: H1N1, H1N2 and H3N2 influenza A viruses (IAV) and influenza B viruses (IBV) of both, Yamagata and Victoria lineages. The extent of viral inactivation, however, varied among the strains and was in part dependent on the LPO substrate. Inactivation of H1N1 and H1N2 viruses by LPO showed no substrate preference, whereas H3N2 influenza strains were inactivated significantly more efficiently when iodide, not thiocyanate, was the LPO substrate. Although LPO-mediated inactivation of the influenza B strains tested was strain-dependent, it showed slight preference towards thiocyanate as the substrate. The results presented here show that the LPO/H2O2/(SCN-/I-) cell-free, in vitro experimental system is a functional tool to study the specificity, efficiency and the molecular mechanism of action of influenza inactivation by LPO. These studies tested the hypothesis that influenza strains are all susceptible to the LPO-based antiviral system but exhibit differences in their substrate specificities. We propose that a LPO-based antiviral system is an important contributor to anti-influenza virus defense of the airways.
Collapse
Affiliation(s)
- Urmi Patel
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Aaron Gingerich
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Lauren Widman
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Demba Sarr
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Ralph A. Tripp
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
| | - Balázs Rada
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
4
|
Xu L, Jiang X, Zhu Y, Duan Y, Huang T, Huang Z, Liu C, Xu B, Xie Z. A Multiplex Asymmetric Reverse Transcription-PCR Assay Combined With an Electrochemical DNA Sensor for Simultaneously Detecting and Subtyping Influenza A Viruses. Front Microbiol 2018; 9:1405. [PMID: 30013525 PMCID: PMC6036258 DOI: 10.3389/fmicb.2018.01405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
The reliable and rapid detection of viral pathogens that cause respiratory infections provide physicians several advantages in treating patients and managing outbreaks. The Luminex respiratory virus panel (RVP) assay has been shown to be comparable to or superior to culture/direct fluorescent-antibody assays (DFAs) and nucleic acid tests that are used to diagnose respiratory viral infections. We developed a multiplex asymmetric reverse transcription (RT)-PCR assay that can simultaneously differentiate all influenza A virus epidemic subtypes. The amplified products were hybridized with an electrochemical DNA sensor, and the results were automatically acquired. The limits of detection (LoDs) of both the Luminex RVP assay and the multiplex RT-PCR-electrochemical DNA sensor were 101 TCID50 for H1N1 virus and 102 TCID50 for H3N2 virus. The specificity assessment of the multiplex RT-PCR-electrochemical DNA sensor showed no cross-reactivity among different influenza A subtypes or with other non-influenza respiratory viruses. In total, 3098 respiratory tract specimens collected from padiatric patients diagnosed with pneumonia were tested. More than half (43, 53.75%) of the specimens positive for influenza A viruses could not be further subtyped using the Luminex RVP assay. Among the remaining 15 specimens that were not subtyped, not degraded, and in sufficient amounts for the multiplex RT-PCR-electrochemical DNA sensor test, all (100%) were H3N2 positive. Therefore, the sensitivity of the Luminex RVP assay for influenza A virus was 46.25%, whereas the sensitivity of the multiplex RT-PCR-electrochemical DNA sensor for the clinical H1N1 and H3N2 specimens was 100%. The sensitivities of the multiplex RT-PCR-electrochemical DNA sensor for the avian H5N1, H5N6, H9N2, and H10N8 viruses were 100%, whereas that for H7N9 virus was 85.19%. We conclude that the multiplex RT-PCR-electrochemical DNA sensor is a reliable method for the rapid and accurate detection of highly variable influenza A viruses in respiratory infections with greater detection sensitivity than that of the Luminex xTAG assay. The high mutation rate of influenza A viruses, particularly H3N2 during the 2014 to 2016 epidemic seasons, has a strong impact on diagnosis. A study involving more positive specimens from all influenza A virus epidemic subtypes is required to fully assess the performance of the assay.
Collapse
Affiliation(s)
- Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiwen Jiang
- DAAN Gene Co., Ltd., Sun Yat-sen University, Guangzhou, China
- The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yali Duan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Taosheng Huang
- DAAN Gene Co., Ltd., Sun Yat-sen University, Guangzhou, China
- The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, China
| | - Zhiwen Huang
- DAAN Gene Co., Ltd., Sun Yat-sen University, Guangzhou, China
- The Medicine and Biological Engineering Technology Research Center of the Ministry of Health, Guangzhou, China
| | - Chunyan Liu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Baoping Xu
- National Clinical Research Center for Respiratory Diseases, Department of Respiratory, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
5
|
The Drift in Molecular Testing for Influenza: Mutations Affecting Assay Performance. J Clin Microbiol 2018; 56:JCM.01531-17. [PMID: 29305549 DOI: 10.1128/jcm.01531-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza is associated with rapid evolution due to lack of RNA polymerase proofreading, immunogenic selection, and frequent rearrangement of gene segments. Evolutionary changes affecting the performance of diagnostic testing have long been recognized. Hence, it is not surprising that such challenges apply to nucleic acid amplification tests, even though they are designed to target highly conserved regions. Initially, case reports involved single isolates of A(H1N1)pdm09. Over the past 4 years, subtype H3N2 viruses evolved to viral clades with mutations in the WHO-recommended target region, such that almost all isolates worldwide have significantly reduced sensitivities with many commercial reverse transcription-PCR tests.
Collapse
|
6
|
Pinsent A, Pepin KM, Zhu H, Guan Y, White MT, Riley S. The persistence of multiple strains of avian influenza in live bird markets. Proc Biol Sci 2017; 284:rspb.2017.0715. [PMID: 29212718 PMCID: PMC5740266 DOI: 10.1098/rspb.2017.0715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023] Open
Abstract
Multiple subtypes of avian influenza (AI) and novel reassortants are frequently isolated from live bird markets (LBMs). However, our understanding of the drivers of persistence of multiple AI subtypes is limited. We propose a stochastic model of AI transmission within an LBM that incorporates market size, turnover rate and the balance of direct versus environmental transmissibility. We investigate the relationship between these factors and the critical community size (CCS) for the persistence of single and multiple AI strains within an LBM. We fit different models of seeding from farms to two-strain surveillance data collected from Shantou, China. For a single strain and plausible estimates for continuous turnover rates and transmissibility, the CCS was approximately 11 800 birds, only a 4.2% increase in this estimate was needed to ensure persistence of the co-infecting strains (two strains in a single host). Precise values of CCS estimates were sensitive to changes in market turnover rate and duration of the latent period. Assuming a gradual daily sell rate of birds the estimated CCS was higher than when an instantaneous selling rate was assumed. We were able to reproduce prevalence dynamics similar to observations from a single market in China with infection seeded every 5-15 days, and a maximum non-seeding duration of 80 days. Our findings suggest that persistence of co-infections is more likely to be owing to sequential infection of single strains rather than ongoing transmission of both strains concurrently. In any given system for a fixed set of ecological and epidemiological conditions, there is an LBM size below which the risk of sustained co-circulation is low and which may suggest a clear policy opportunity to reduce the frequency of influenza co-infection in poultry.
Collapse
Affiliation(s)
- Amy Pinsent
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Kim M Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Fort Collins, CO, USA
| | - Huachen Zhu
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Yi Guan
- Joint Influenza Research Centre (SUMC/HKU), Shantou University Medical College, Shantou, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases/Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Michael T White
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Steven Riley
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
7
|
Fitness cost of reassortment in human influenza. PLoS Pathog 2017; 13:e1006685. [PMID: 29112968 PMCID: PMC5675378 DOI: 10.1371/journal.ppat.1006685] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
Reassortment, which is the exchange of genome sequence between viruses co-infecting a host cell, plays an important role in the evolution of segmented viruses. In the human influenza virus, reassortment happens most frequently between co-existing variants within the same lineage. This process breaks genetic linkage and fitness correlations between viral genome segments, but the resulting net effect on viral fitness has remained unclear. In this paper, we determine rate and average selective effect of reassortment processes in the human influenza lineage A/H3N2. For the surface proteins hemagglutinin and neuraminidase, reassortant variants with a mean distance of at least 3 nucleotides to their parent strains get established at a rate of about 10−2 in units of the neutral point mutation rate. Our inference is based on a new method to map reassortment events from joint genealogies of multiple genome segments, which is tested by extensive simulations. We show that intra-lineage reassortment processes are, on average, under substantial negative selection that increases in strength with increasing sequence distance between the parent strains. The deleterious effects of reassortment manifest themselves in two ways: there are fewer reassortment events than expected from a null model of neutral reassortment, and reassortant strains have fewer descendants than their non-reassortant counterparts. Our results suggest that influenza evolves under ubiquitous epistasis across proteins, which produces fitness barriers against reassortment even between co-circulating strains within one lineage. The genome of the human influenza virus consists of 8 disjoint RNA polymer segments. These segments can undergo reassortment: when two viruses co-infect a host cell, they can produce viral offspring with a new combination of segments. In this paper, we show that reassortment within a given influenza lineage induces a fitness cost that increases in strength with increasing genetic distance of the parent viruses. Our finding suggests that evolution continuously produces viral proteins whose fitness depends on each other; reassortment reduces fitness by breaking up successful combinations of proteins. Thus, selection across proteins constrains viral evolution within a given lineage, and it may be an important factor in defining a viral species.
Collapse
|
8
|
Shim JM, Kim J, Tenson T, Min JY, Kainov DE. Influenza Virus Infection, Interferon Response, Viral Counter-Response, and Apoptosis. Viruses 2017; 9:E223. [PMID: 28805681 PMCID: PMC5580480 DOI: 10.3390/v9080223] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/27/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics, which remain serious threats to public health because of the shortage of effective means of control. To combat the surge of viral outbreaks, new treatments are urgently needed. Developing new virus control modalities requires better understanding of virus-host interactions. Here, we describe how IAV infection triggers cellular apoptosis and how this process can be exploited towards the development of new therapeutics, which might be more effective than the currently available anti-influenza drugs.
Collapse
Affiliation(s)
| | - Jinhee Kim
- Institut Pasteur Korea, Gyeonggi-do 13488, Korea.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
| | - Ji-Young Min
- Institut Pasteur Korea, Gyeonggi-do 13488, Korea.
| | - Denis E Kainov
- Institut Pasteur Korea, Gyeonggi-do 13488, Korea.
- Institute of Technology, University of Tartu, Tartu 50090, Estonia.
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7028, Norway.
| |
Collapse
|
9
|
First isolation and characterization of pteropine orthoreoviruses in fruit bats in the Philippines. Arch Virol 2017; 162:1529-1539. [PMID: 28190201 DOI: 10.1007/s00705-017-3251-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Pteropine orthoreovirus (PRV) causes respiratory tract illness (RTI) in humans. PRVs were isolated from throat swabs collected from 9 of 91 wild bats captured on the Mindanao Islands, The Philippines, in 2013. The nucleic acid sequence of the whole genome of each of these isolates was determined. Phylogenetic analysis based on predicted amino acid sequences indicated that the isolated PRVs were novel strains in which re-assortment events had occurred in the viral genome. Serum specimens collected from 76 of 84 bats were positive for PRV-neutralizing antibodies suggesting a high prevalence of PRV in wild bats in the Philippines. The bat-borne PRVs isolated in the Philippines were characterized in comparison to an Indonesian PRV isolate, Miyazaki-Bali/2007 strain, recovered from a human patient, revealing that the Philippine bat-borne PRVs had similar characteristics in terms of antigenicity to those of the Miyazaki-Bali/2007 strain, but with a slight difference (e.g., growth capacity in vitro). The impact of the Philippine bat-borne PRVs should be studied in human RTI cases in the Philippines.
Collapse
|