1
|
Hepatitis A: Viral Structure, Classification, Life Cycle, Clinical Symptoms, Diagnosis Error, and Vaccination. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:4263309. [PMID: 36644336 PMCID: PMC9833905 DOI: 10.1155/2023/4263309] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
Hepatitis A virus (HAV) is one of the well-known viruses that cause hepatitis all around the globe. Although this illness has decreased in developed countries due to extensive immunization, numerous developing and under-developed countries are struggling with this virus. HAV infection can be spread by oral-fecal contact, and there are frequent epidemics through nutrition. Improvements in socioeconomic and sanitary circumstances have caused a shift in the disease's prevalence worldwide. Younger children are usually asymptomatic, but as they become older, the infection symptoms begin to appear. Symptoms range from slight inflammation and jaundice to acute liver failure in older individuals. While an acute infection may be self-limiting, unrecognized persistent infections, and the misapplication of therapeutic methods based on clinical guidelines are linked to a higher incidence of cirrhosis, hepatocellular carcinoma, and mortality. Fortunately, most patients recover within two months of infection, though 10-15% of patients will relapse within the first six months. A virus seldom leads to persistent infection or liver damage. The mainstay of therapy is based on supportive care. All children from 12-23 months, as well as some susceptible populations, should receive routine vaccinations, according to the Centers for Disease Control and Prevention and the American Academy of Pediatrics. Laboratory diagnosis of HAV is based on antigen detection, checking liver enzyme levels, and antibody screening. Furthermore, polymerase chain reaction (PCR) technology has identified HAV in suspected nutrition sources; therefore, this technique is used for preventative measures and food-related laws.
Collapse
|
3
|
Genotyping and Molecular Diagnosis of Hepatitis A Virus in Human Clinical Samples Using Multiplex PCR-Based Next-Generation Sequencing. Microorganisms 2022; 10:microorganisms10010100. [PMID: 35056549 PMCID: PMC8779169 DOI: 10.3390/microorganisms10010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Hepatitis A virus (HAV) is a serious threat to public health worldwide. We used multiplex polymerase chain reaction (PCR)-based next-generation sequencing (NGS) to derive information on viral genetic diversity and conduct precise phylogenetic analysis. Four HAV genome sequences were obtained using multiplex PCR-based NGS. HAV whole-genome sequence of one sample was obtained by conventional Sanger sequencing. The HAV strains demonstrated a geographic cluster with sub-genotype IA strains in the Republic of Korea. The phylogenetic pattern of HAV viral protein (VP) 3 region showed no phylogenetic conflict between the whole-genome and partial-genome sequences. The VP3 region in serum and stool samples showed sensitive detection of HAV with differences of quantification that did not exceed <10 copies/μL than the consensus VP4 region using quantitative PCR (qPCR). In conclusion, multiplex PCR-based NGS was implemented to define HAV genotypes using nearly whole-genome sequences obtained directly from hepatitis A patients. The VP3 region might be a potential candidate for tracking the genotypic origin of emerging HAV outbreaks. VP3-specific qPCR was developed for the molecular diagnosis of HAV infection. This study may be useful to predict for the disease management and subsequent development of hepatitis A infection at high risk of severe illness.
Collapse
|
4
|
Bilgin Z, Turan N, Cizmecigil UY, Altan E, Esatgil MU, Yilmaz A, Aydin O, Kocazeybek B, Richt JA, Yilmaz H. Investigation of Vector-Borne Viruses in Ticks, Mosquitos, and Ruminants in the Thrace District of Turkey. Vector Borne Zoonotic Dis 2020; 20:670-679. [PMID: 32397953 DOI: 10.1089/vbz.2019.2532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a considerable increase in vector-borne zoonotic diseases around the world, including Turkey, such as Crimean-Congo hemorrhagic fever (CCHF), tick borne encephalitis (TBE), Rift Valley fever (RVF), and West Nile fever (WNF), causing disease and death in humans and animals and significant economical losses. Hence, the aim of this study was to investigate the presence of CCHF virus (CCHFV) and TBE virus (TBEV) in ticks and RVF virus (RVFV) and WNF virus (WNV) in mosquitos, as well as in sheep and cattle, in the Thrace district of the Marmara region, which borders Bulgaria and Greece. Buffy-coat samples from 86 cattle and 81 sheep, as well as 563 ticks and 7390 mosquitos, were collected and examined by quantitative real-time RT-PCR for the presence of CCHFV, TBEV, RVFV, and WNV. All buffy-coat samples from cattle and sheep were negative for these viruses. Similarly, all tick samples were negative for CCHFV-RNA and TBEV-RNA. Among 245 pools representing 7390 mosquitos, only 1 pool sample was found to be positive for WNV-RNA and was confirmed by sequencing. Phylogenetic analysis revealed that it was WNV lineage-2. No RVFV-RNA was detected in the 245 mosquito pools. In conclusion, results of this study indicate that CCHFV, TBEV, and RVFV are not present in livestock and respective vectors in the Thrace district of Marmara region of Turkey, whereas WNV-RNA was found in mosquitos from this region.
Collapse
Affiliation(s)
- Zahide Bilgin
- Department of Parasitology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Utku Y Cizmecigil
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eda Altan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meltem Ulutas Esatgil
- Department of Parasitology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bekir Kocazeybek
- Department of Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Juergen A Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
5
|
Kaddoura M, Allaham R, Abubakar A, Ezzeddine A, Barakat A, Mala P, Zaraket H. Hepatitis A Virus Genotype IB Outbreak among Internally Displaced Persons, Syria. Emerg Infect Dis 2020; 26:369-371. [PMID: 31829918 PMCID: PMC6986849 DOI: 10.3201/eid2602.190652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In 2018, a hepatitis A virus outbreak was identified among internally displaced persons in Syria. Sequence analysis based on the viral protein 1/2A junction revealed that the causative virus belonged to genotype IB. A high displacement rate, deteriorated sanitary and health conditions, and poor water quality likely contributed to this outbreak.
Collapse
|
6
|
Yilmaz H, Barut K, Karakullukcu A, Kasapcopur O, Kocazeybek B, Altan E, Cizmecigil UY, Yilmaz A, Bilgin Z, Ulutas Esatgil M, Klaus C, Richt JA, Turan N. Serological Evidence of Tick-Borne Encephalitis and West Nile Virus Infections Among Children with Arthritis in Turkey. Vector Borne Zoonotic Dis 2019; 19:446-449. [PMID: 30688547 DOI: 10.1089/vbz.2018.2349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) are mainly transmitted by arthropod vectors to vertebrate hosts including humans, resulting in fever and neurological signs. The aim of this study was to investigate the presence of antibodies to TBEV and WNV, and TBEV-RNA and WNV-RNA in Turkish children with fever and/or arthritis. For this purpose, 110 sera and buffy-coat samples were collected; sera were analyzed by indirect enzyme-linked immunosorbent assay for the presence of IgM and IgG antibodies to TBEV and WNV, and buffy-coat-derived white blood cells were analyzed by quantitative real-time RT-PCR for TBEV-RNA and WNV-RNA. IgM antibodies to TBEV were detected in five children between the ages of 3 and 7 years; no IgG antibodies to TBEV were detected. IgG antibodies to WNV were detected in two children and IgM antibodies to WNV were detected in six children, between the ages of 3 and 7 years. One of the children had IgM antibodies to WNV and to TBEV. Children who had antibodies to TBEV and WNV had fever and/or arthritis but no obvious neurological signs. Molecular diagnostic approaches revealed that neither TBEV-RNA nor WNV-RNA was present in any of the buffy-coat samples, not even in children with IgM-specific antibodies. Our serological results indicate that children in Turkey are exposed to TBEV and WNV.
Collapse
Affiliation(s)
- Huseyin Yilmaz
- 1 Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Kenan Barut
- 2 Department of Child Health and Diseases, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Asiye Karakullukcu
- 3 Department of Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozgur Kasapcopur
- 2 Department of Child Health and Diseases, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bekir Kocazeybek
- 3 Department of Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Eda Altan
- 1 Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Utku Y Cizmecigil
- 1 Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Aysun Yilmaz
- 1 Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Zahide Bilgin
- 4 Department of Parasitology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Meltem Ulutas Esatgil
- 4 Department of Parasitology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| | - Christine Klaus
- 5 Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Juergen A Richt
- 6 Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Nuri Turan
- 1 Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Avcilar, Istanbul, Turkey
| |
Collapse
|