1
|
Kinobe R, Wiyatno A, Artika IM, Safari D. Insight into the Enterovirus A71: A review. Rev Med Virol 2022; 32:e2361. [PMID: 35510476 DOI: 10.1002/rmv.2361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/08/2022]
Abstract
Enterovirus A71 is a major causative pathogen of hand, foot and mouth disease. It has become a global public health threat, and is especially important for infants and young children in the Asian-Pacific countries. The enterovirus A71 is a non-enveloped virus of the Picornaviridae family having a single-stranded positive-sense RNA genome of about 7.4 kb which encodes the structural and nonstructural proteins. Currently there are no US FDA-approved vaccines or antiviral therapy available against enterovirus A71 infection. Although enterovirus A71 vaccines have been licenced in China, clinically approved vaccines for widespread vaccination programs are lacking. Substantial progress has recently been achieved on understanding the structure and function of enterovirus A71 proteins together with information on the viral genetic diversity and geographic distribution. The present review is intended to provide an overview on our current understanding of the molecular biology and epidemiology of enterovirus A71 which will aid the development of vaccines, therapeutics and other control strategies so as to bolster the preparedness for future enterovirus A71 outbreaks.
Collapse
Affiliation(s)
- Robert Kinobe
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Ageng Wiyatno
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - I Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia.,Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
2
|
A novel subgenotype C6 Enterovirus A71 originating from the recombination between subgenotypes C4 and C2 strains in mainland China. Sci Rep 2022; 12:593. [PMID: 35022489 PMCID: PMC8755819 DOI: 10.1038/s41598-021-04604-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Recombination plays important roles in the genetic diversity and evolution of Enterovirus A71 (EV-A71). The phylogenetics of EV-A71 in mainland China found that one strain DL71 formed a new subgenotype C6 with unknown origin. This study investigated the detailed genetic characteristics of the new variant. DL71 formed a distinct cluster within genotype C based on the genome and individual genes (5′UTR, VP4, VP1, 2A, 2B, 2C, 3D, and 3′UTR). The average genetic distances of the genome and individual genes (VP3, 2A, 2B, 2C, 3A, 3C, and 3D) between DL71 and reference strains were greater than 0.1. Nine recombination events involving smaller fragments along DL71 genome were detected. The strains Fuyang-0805a (C4) and Tainan/5746/98 (C2) were identified as the parental strains of DL71. In the non-recombination regions, DL71 had higher identities with Fuyang-0805a than Tainan/5746/98, and located in the cluster with C4 strains. However, in the recombination regions, DL71 had higher identities with Tainan/5746/98 than Fuyang-0805a, and located in the cluster with C2 strains. Thus, DL71 was a novel multiple inter-subgenotype recombinant derived from the dominant subgenotype C4 and the sporadic subgenotype C2 strains. Monitoring the emergence of new variants by the whole-genome sequencing remains essential for preventing disease outbreaks and developing new vaccines.
Collapse
|
3
|
Huang K, Zhang Y, Han Z, Zhou X, Song Y, Wang D, Zhu S, Yan D, Xu W, Xu W. Global Spread of the B5 Subgenotype EV-A71 and the Phylogeographical Analysis of Chinese Migration Events. Front Cell Infect Microbiol 2020; 10:475. [PMID: 33102246 PMCID: PMC7546772 DOI: 10.3389/fcimb.2020.00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022] Open
Abstract
The subgenotype B5 of EV-A71 is a widely circulating subgenotype that frequently spreads across the globe. Several outbreaks have occurred in nations, such as Malaysia, Thailand, Vietnam, and Japan. Appearing first in Taiwan, China, the subgenotype has been frequently reported in mainland of China even though no outbreaks have been reported so far. The current study reconstructed the migration of the B5 subgenotype of EV-A71 in China via phylogeographical analysis. Furthermore, we investigated its population dynamics in order to draw more credible inferences. Following a dataset cleanup of B5 subgenotype of EV-A71, we detected earlier B5 subgenotypes of EV-A71 sequences that had been circulating in Malaysia and Singapore since the year 2000, which was before the 2003 outbreak that occurred in Sarawak. The Bayesian inference indicated that the most recent common ancestor of B5 subgenotype EV-A71 appeared in September, 1994 (1994.75). With respect to the overall prevalence, geographical reconstruction revealed that the B5 subgenotype EV-A71 originated singly from single-source cluster and subsequently developed several active lineages. Based on a large amount of data that was accumulated, we conclude that the appearance of the B5 subgenotype of EV-A71 in mainland of China was mainly due to multiple migrations from different origins.
Collapse
Affiliation(s)
- Keqiang Huang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaofang Zhou
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, National Health Commission Key Laboratory for Biosafety, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Kuo FL, Khanh TH, Chung WY, Hung NT, Luo ST, Chang WC, Nhan LNT, Thinh LQ, Lee MS. Seroprevalence of EV-A71 neutralizing antibodies following the 2011 epidemic in HCMC, Vietnam. PLoS Negl Trop Dis 2020; 14:e0008124. [PMID: 32126083 PMCID: PMC7077839 DOI: 10.1371/journal.pntd.0008124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/17/2020] [Accepted: 02/08/2020] [Indexed: 01/04/2023] Open
Abstract
Enterovirus-A71 (EV-A71) cyclically causes hand-foot-mouth disease (HFMD) epidemics in Asian children. An EV-A71 epidemic occurred in Southern Vietnam in 2011, but its scale is not clear. We collected residual sera from non-HFMD Vietnamese inpatients in 2012–2013 to determine seroprevalence of EV-A71 neutralizing antibodies, and measured cross-reactive neutralizing antibody titers against three EV-A71 genogroups. About 23.5% of 1-year-old children in Southern Vietnam has been infected by EV-A71, and the median age of infection was estimated to be 3 years. No significant antigenic variation could be detected among the three EV-A71 genogroups. The high seroprevalence of EV-A71 neutralizing antibody in children living in southern Vietnam indicates the necessity of introducing EV-A71 vaccines in southern Vietnam, particularly for children under 6 months of age. Moreover, it is critical to understand EV-A71 disease burden for formulating national vaccination policy. Enterovirus-A71 (EV-A71), a member of the enterovirus genus, is a virulent pathogen causing neurological complications. EV-A71 mainly spreads through oral-fecal or oral-oral transmission, as well as respiratory droplets. EV-A71 outbreaks have cyclically occurred throughout some Asian countries since 1997, with millions of people affected. The presence of serum neutralizing antibodies to EV-A71 can represent the prevalence of previous EV-A71 infections and seroprevalence studies are widely used to understand prevalence of infectious diseases. The results of our study demonstrate that about 50% of young children under 3 years of age were infected during the 2011 epidemic in southern Vietnam. The high seroprevalence of EV-A71 neutralizing antibody in children living in southern Vietnam indicates the necessity of introducing EV-A71 vaccines, particularly for children under 6 months of age. Moreover, it is critical to understand EV-A71 disease burden for formulating national vaccination policy in the future.
Collapse
Affiliation(s)
- Fang-Lin Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | | | - Wan-Yu Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | | | - Shu-Ting Luo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Chiung Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | | | - Le Quoc Thinh
- Children’s Hospital No. 1, Ho Chi Minh City, Vietnam
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- * E-mail: ,
| |
Collapse
|
5
|
Moghadam AG, Yousefi E, Ghatie MA, Moghadam AG, Pouladfar GR, Jamalidoust M. Investigating the etiologic agents of aseptic meningitis outbreak in Iranian children. J Family Med Prim Care 2020; 9:1573-1577. [PMID: 32509652 PMCID: PMC7266184 DOI: 10.4103/jfmpc.jfmpc_1003_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/25/2020] [Accepted: 02/07/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION This study aimed to determine the viral agent (s) and their genome burden associated with an aseptic meningitis outbreak that occurred in Yasuj, Iran. MATERIALS AND METHODS During April to August 2015, 104 CSF samples from 104 patients under 14 years old admitted to the hospital of Yasuj, Iran, with aseptic meningitis associated clinical signs were collected. 200 μl CSF specimens was prepared for DNA and RNA viral genome extraction each and then subjected to diagnostic Taq-man real time PCR assays for the present of Enteroviruses, HSV, VZV, mumps, measles and rubella in the samples. RESULTS The majority of them had experienced clinical meningitis sign. Primary laboratory differentiated tests were in favor of viral meningitis. Among a total of 104 patients diagnosed with clinically aseptic meningitis, enterovirus as the most significant viral agent was detected in 53 subjects. However, mumps, HSV and VZV, as the endemic causes of viral meningitis, were detected in 6, 6 and 2 of the affected patients. It was revealed that two HSV and one VZV affected patients were co-infected with enteroviruses. All affected children with relatively variable viral load recovered without any sequels. CONCLUSION The present study revealed enterovirus as the main predominant cause of pediatric aseptic meningitis that broke out in Yasuj-Iran. Also, the co-circulation of mumps, HSV and VZV, as the endemic cause during the same aseptic meningitis outbreak, was demonstrated in some cases.
Collapse
Affiliation(s)
| | - Eslam Yousefi
- Department of Pediatrics, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohamad Amin Ghatie
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Gholam Reza Pouladfar
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Nemazi Hospital, Shiraz, Iran
| | - Marzieh Jamalidoust
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Nemazi Hospital, Shiraz, Iran
| |
Collapse
|
6
|
Jiao MMA, Apostol LN, de Quiroz-Castro M, Jee Y, Roque V, Mapue M, Navarro FM, Tabada CF, Tandoc A. Non-polio enteroviruses among healthy children in the Philippines. BMC Public Health 2020; 20:167. [PMID: 32013921 PMCID: PMC6998086 DOI: 10.1186/s12889-020-8284-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/27/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Enteroviruses (EVs) are most commonly associated with either mild or asymptomatic infections, however, the presence of silent carriers in the community has been proven to play a crucial role in the spread of diseases such as hand, foot, and mouth disease (HFMD) that records high incidence in Asia Pacific region. In the Philippines, limited information is available on the etiology and prevalence of enterovirus outside the Acute Flaccid Paralysis (AFP) surveillance, thus, a study to determine the baseline prevalence of Non-Polio Enteroviruses (NPEVs) among healthy Filipino children was conducted. METHODS A descriptive, cross-sectional study was performed to determine the prevalence of NPEV among healthy children under 6 years old in the Philippines. Duplicate stool samples were collected from 360 healthy children residing in three major urban cities in the country. Virus isolation and polymerase chain reaction were performed to identify enteroviruses present in the samples. To determine if the results of the study are comparable to the AFP surveillance data, the results of the study were compared to the prevalence and isolation rate among AFP cases of the similar cases collected the same year. RESULTS Prevalence of enteroviruses among healthy children was found to be at 24.7%. Comparing the NPEV rates from the study and AFP surveillance of similar age and the same year of collection, there was no significant difference in NPEV case prevalence. The study identified a total of 19 different enterovirus serotypes with majority belonging to species Enterovirus B (EV-B). CONCLUSION The study was able to establish a baseline NPEV case prevalence of 24.7% among healthy children aged under 6 years old in three major urban sites in the Philippines. The high isolation of NPEV among healthy children signifies continuous fecal-oral transmission of enteroviruses in the community.
Collapse
Affiliation(s)
- Maria Melissa Ann Jiao
- National Polio Laboratory, Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | - Lea Necitas Apostol
- National Polio Laboratory, Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines
| | | | - Youngmee Jee
- Center for Infectious Disease Research, National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju, Chungcheongbuk-do, South Korea
| | - Vito Roque
- Department of Health-Epidemiology Bureau, Manila, Philippines
| | - Manuel Mapue
- Department of Health-Center for Health Development NCR, Mandaluyong City, Philippines
| | | | - Cleo Fe Tabada
- Department of Health-Center for Health Development Region XI, Davao City, Philippines
| | - Amado Tandoc
- National Polio Laboratory, Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines.
| |
Collapse
|
7
|
Liu H, Cong S, Xu D, Lin K, Huang X, Sun H, Yang Z, Ma S. Characterization of a novel echovirus 21 strain isolated from a healthy child in China in 2013. Arch Virol 2020; 165:757-760. [PMID: 31912293 DOI: 10.1007/s00705-019-04506-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022]
Abstract
Echovirus 21 (E21) belongs to the species Enterovirus B, whose members are frequently associated with acute flaccid paralysis. E21 strain 553/YN/CHN/2013 was isolated from a healthy child in Yunnan, China, in 2013. This is the first report of the complete genome sequence of E21 in China. This strain shared 81.7% nucleotide sequence identity and 96.8% amino acid sequence identity with the E21 prototype strain Farina. Although strain 553/YN/CHN/2013 belongs to the E21 serotype, the only similarity to the E21 strain was in the VP1 region, as other genomic regions, including VP2-VP4, were more similar to other EV-B members. Recombination analysis showed evidence of recombination events between E21 and other EV-B viruses. E21 strain 553/YN/CHN/2013 failed to infect suckling mice via intracerebral injection. Surveillance of E21 is very important to help forecast the potential of emerging E21 outbreaks and related diseases.
Collapse
Affiliation(s)
- Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Keqin Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Xiaoqin Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| |
Collapse
|
8
|
Puenpa J, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. The History of Enterovirus A71 Outbreaks and Molecular Epidemiology in the Asia-Pacific Region. J Biomed Sci 2019; 26:75. [PMID: 31627753 PMCID: PMC6798416 DOI: 10.1186/s12929-019-0573-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
Enterovirus A71 (EV-A71) is one of the common causative pathogens for hand foot and mouth disease (HFMD) affecting young children. HFMD outbreak can result in a substantial pediatric hospitalization and burden the healthcare services, especially in less-developed countries. Since the initial epidemic of predominantly EV-A71 in California in 1969, the high prevalence of HFMD in the Asia-pacific region and elsewhere around the world represents a significant morbidity in this age group. With the advent of rapid and accurate diagnostic tools, there has been a dramatic increase in the number of laboratory-confirmed EV-A71 infection over the past two decades. The population, cultural, and socioeconomic diversity among countries in the Asia-Pacific region all influence the transmission and morbidity associated with HFMD. This review summarizes the current state of epidemiology of EV-A71 in Asia-Pacific countries based on the most recent epidemiological data and available information on the prevalence and disease burden. This knowledge is important in guiding the prevention, control and future research on vaccine development of this highly contagious disease of significant socioeconomic implications in public health.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|