1
|
Liu G, Qin L, Li Y, Zhao S, Shugay M, Yan Y, Ye Y, Chen Y, Huang C, Bayaer N, Adah D, Zhang H, Su Z, Chen X. Subsequent malaria enhances virus-specific T cell immunity in SIV-infected Chinese rhesus macaques. Cell Commun Signal 2022; 20:101. [PMID: 35778766 PMCID: PMC9248186 DOI: 10.1186/s12964-022-00910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Coinfection with HIV and Plasmodium parasites is fairly common, but the sequence of infection with these two pathogens and their impact on disease progression are poorly understood. Methods A Chinese rhesus macaque HIV and Plasmodium coinfection model was established to compare the impact of pre-existing and subsequent malaria on the progression of SIV infection. Results We found that a pre-existing malaria caused animals to produce a greater number of CD4+CCR5+ T cells for SIV replication, resulting in higher viral loads. Conversely, subsequent malaria induced a substantially larger proportion of CD4+CD28highCD95high central memory T cells and a stronger SIV-specific T cell response, maintained the repertoire diversity of SIV-specific T cell receptors, and generated new SIV-specific T cell clonotypes to trace SIV antigenic variation, resulting in improved survival of SIV-infected animals. Conclusion The complex outcomes of this study may have important implications for research on human HIV and malaria coinfection. The infection order of the two pathogens (HIV and malaria parasites) should be emphasized. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00910-7.
Collapse
Affiliation(s)
- Guangjie Liu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,The Fist Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Li Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Lamvac Biotech Co., Ltd, Guangzhou, China
| | - Youjia Li
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,The Fist Affiliated Hospital of Shenzhen University, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Lamvac Biotech Co., Ltd, Guangzhou, China
| | - Mikhail Shugay
- Genomics of Adaptive Immunity Laboratory, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Yongxiang Yan
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yijian Ye
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Chen
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cuizhu Huang
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nashun Bayaer
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dickson Adah
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhong Su
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,CAS Lamvac Biotech Co., Ltd, Guangzhou, China.
| |
Collapse
|
2
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|