1
|
Girlich D, Mihaila L, Cattoir V, Laurent F, Begasse C, David F, Metro CA, Dortet L. Evaluation of CHROMagar™ LIN-R for the Screening of Linezolid Resistant Staphylococci from Positive Blood Cultures and Nasal Swab Screening Samples. Antibiotics (Basel) 2022; 11:antibiotics11030313. [PMID: 35326776 PMCID: PMC8944678 DOI: 10.3390/antibiotics11030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
The increasing number of nosocomial pathogens with resistances towards last resort antibiotics, like linezolid for gram positive bacteria, leads to a pressing need for screening and, consequently, suitable screening media. Some national guidelines on infection prevention (e.g., in Germany) have already recommended screening for linezolid-resistant bacteria, despite an accurate screening medium that was not available yet. In this study, we analyzed the performance and reliability of the first commercial chromogenic medium, CHOMagar™ LIN-R, for screening of linezolid-resistant gram-positive isolates. Thirty-four pure bacterial cultures, 18 positive blood cultures, and 358 nasal swab screening samples were tested. This medium efficiently detected linezolid-resistant S. epidermidis isolates from pure bacterial cultures and from positive blood cultures with a high sensitivity (100%) and specificity (100%). Among the 358 nasal swab screening samples prospectively tested, 10.9% were cultured with linezolid-resistant isolates (mostly S. epidermidis). Of note, slight growth was observed for 7.5% samples with linezolid-susceptible isolates of S. epidermidis (n = 1), S. aureus (n = 1), Enterococcus faecalis (n = 4), Lactobacillus spp. (n = 3), gram negatives (n = 18). Moreover, few Candida spp. also cultured on this medium (1.4%).
Collapse
Affiliation(s)
- Delphine Girlich
- INSERM UMR1184-Team RESIST, Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France;
| | - Liliana Mihaila
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (L.M.); (C.B.); (F.D.); (C.-A.M.)
| | - Vincent Cattoir
- Department of Clinical Microbiology and National Reference Center for Enterococci, University Hospital of Rennes, 35033 Rennes, France;
| | - Frédéric Laurent
- National Reference Center for Staphylococci, Hospices Civils de Lyon, 69002 Lyon, France;
| | - Christine Begasse
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (L.M.); (C.B.); (F.D.); (C.-A.M.)
| | - Florence David
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (L.M.); (C.B.); (F.D.); (C.-A.M.)
| | - Carole-Ann Metro
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (L.M.); (C.B.); (F.D.); (C.-A.M.)
| | - Laurent Dortet
- INSERM UMR1184-Team RESIST, Faculty of Medicine, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France;
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France; (L.M.); (C.B.); (F.D.); (C.-A.M.)
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
- Correspondence: ; Tel.: +33-(0)-1-45216332
| |
Collapse
|
2
|
Timmermans M, Bogaerts B, Vanneste K, De Keersmaecker SCJ, Roosens NHC, Kowalewicz C, Simon G, Argudín MA, Deplano A, Hallin M, Wattiau P, Fretin D, Denis O, Boland C. Large diversity of linezolid-resistant isolates discovered in food-producing animals through linezolid selective monitoring in Belgium in 2019. J Antimicrob Chemother 2021; 77:49-57. [PMID: 34673924 PMCID: PMC8730767 DOI: 10.1093/jac/dkab376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
Background Linezolid is a critically important antibiotic used to treat human infections caused by MRSA and VRE. While linezolid is not licensed for food-producing animals, linezolid-resistant (LR) isolates have been reported in European countries, including Belgium. Objectives To: (i) assess LR occurrence in staphylococci and enterococci isolated from different Belgian food-producing animals in 2019 through selective monitoring; and (ii) investigate the genomes and relatedness of these isolates. Methods Faecal samples (n = 1325) and nasal swab samples (n = 148) were analysed with a protocol designed to select LR bacteria, including a 44–48 h incubation period. The presence of LR chromosomal mutations, transferable LR genes and their genetic organizations and other resistance genes, as well as LR isolate relatedness (from this study and the NCBI database) were assessed through WGS. Results The LR rate differed widely between animal host species, with the highest rates occurring in nasal samples from pigs and sows (25.7% and 20.5%, respectively) and faecal samples from veal calves (16.4%). WGS results showed that LR determinants are present in a large diversity of isolates circulating in the agricultural sector, with some isolates closely related to human isolates, posing a human health risk. Conclusions LR dedicated monitoring with WGS analysis could help to better understand the spread of LR. Cross-selection of LR transferable genes through other antibiotic use should be considered in future action plans aimed at combatting antimicrobial resistance and in future objectives for the rational use of antibiotics in a One Health perspective.
Collapse
Affiliation(s)
- Michaël Timmermans
- Veterinary Bacteriology, Sciensano, Ixelles, Belgium.,Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Ixelles, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Ixelles, Belgium
| | | | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Ixelles, Belgium
| | | | | | - Maria A Argudín
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Ariane Deplano
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Marie Hallin
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium.,Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | | | - David Fretin
- Veterinary Bacteriology, Sciensano, Ixelles, Belgium
| | - Olivier Denis
- Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Clinical Microbiology, National Reference Center for Monitoring Antimicrobial Resistance in Gram-Negative Bacteria, CHU UCL Namur, Yvoir, Belgium
| | - Cécile Boland
- Veterinary Bacteriology, Sciensano, Ixelles, Belgium
| |
Collapse
|
3
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Layer F, Weber RE, Fleige C, Strommenger B, Cuny C, Werner G. Excellent performance of CHROMagar TM LIN-R to selectively screen for linezolid-resistant enterococci and staphylococci. Diagn Microbiol Infect Dis 2020; 99:115301. [PMID: 33444893 DOI: 10.1016/j.diagmicrobio.2020.115301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
The increasing number of nosocomial pathogens with resistances against last resort antibiotics like linezolid leads to a pressing need for the reliable detection of these drug-resistant bacteria. National guidelines on infection prevention, e.g., in Germany, have already recommend screening for linezolid-resistant bacteria, although a corresponding screening agar medium has not been provided. In this study we analyzed the performance and reliability of a commercial, chromogenic linezolid screening agar. The medium was capable to predict more than a hundred linezolid-resistant isolates of E. faecium, E. faecalis, S. aureus, S. epidermidis, and S. hominis with excellent sensitivity and specificity. All isolates were collected at the National Reference Centre between 2010 and 2020.
Collapse
Affiliation(s)
- Franziska Layer
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Robert E Weber
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Carola Fleige
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Birgit Strommenger
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Christiane Cuny
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany
| | - Guido Werner
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division Nosocomial Pathogens and Antibiotic Resistances, National Reference Centre for Staphylococci and Enterococci, Wernigerode, Germany.
| |
Collapse
|
5
|
Werner G, Neumann B, Weber RE, Kresken M, Wendt C, Bender JK. Thirty years of VRE in Germany - "expect the unexpected": The view from the National Reference Centre for Staphylococci and Enterococci. Drug Resist Updat 2020; 53:100732. [PMID: 33189998 DOI: 10.1016/j.drup.2020.100732] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Enterococci are commensals of the intestinal tract of many animals and humans. Of the various known and still unnamed new enterococcal species, only isolates of Enterococcus faecium and Enterococcus faecalis have received increased medical and public health attention. According to textbook knowledge, the majority of infections are caused by E. faecalis. In recent decades, the number of enterococcal infections has increased, with the increase being exclusively associated with a rising number of nosocomial E. faecium infections. This increase has been accompanied by the dissemination of certain hospital-acquired strain variants and an alarming progress in the development of antibiotic resistance namely vancomycin resistance. With this review we focus on a description of the specific situation of vancomycin resistance among clinical E. faecium isolates in Germany over the past 30 years. The present review describes three VRE episodes in Germany, each of which is framed by the beginning and end of the respective decade. The first episode is specified by the first appearance of VRE in 1990 and a country-wide spread of specific vanA-type VRE strains (ST117/CT24) until the late 1990s. The second decade was initially marked by regional clusters and VRE outbreaks in hospitals in South-Western Germany in 2004 and 2005, mainly caused by vanA-type VRE of ST203. Against the background of a certain "basic level" of VRE prevalence throughout Germany, an early shift from the vanA genotype to the vanB genotype in clinical isolates already occurred at the end of the 2000s without much notice. With the beginning of the third decade in 2010, VRE rates in Germany have permanently increased, first in some federal states and soon after country-wide. Besides an increase in VRE prevalence, this decade was marked by a sharp increase in vanB-type resistance and a dominance of a few, novel strain variants like ST192 and later on ST117 (CT71, CT469) and ST80 (CT1065). The largest VRE outbreak, which involved about 2,900 patients and lasted over three years, was caused by a novel and until that time, unknown strain type of ST80/CT1013 (vanB). Across all periods, VRE outbreaks were mainly oligoclonal and strain types varied over space (hospital wards) and time. The spread of VRE strains obviously respects political borders; for instance, both vancomycin-variable enterococci which were highly prevalent in Denmark and ST796 VRE which successfully disseminated in Australia and Switzerland, were still completely absent among German hospital patients, until to date.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany.
| | - Bernd Neumann
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | - Robert E Weber
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | | | | | - Jennifer K Bender
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| |
Collapse
|