1
|
Zhang Z, Hu M, Xu X, Lv C, Shi C. Dynamic antimicrobial resistance and phylogenomic structure of Salmonella Typhimurium from 2007 to 2019 in Shanghai, China. Microbiol Spectr 2024; 12:e0026224. [PMID: 38904374 PMCID: PMC11302141 DOI: 10.1128/spectrum.00262-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/11/2024] [Indexed: 06/22/2024] Open
Abstract
Salmonella enterica serovar Typhimurium is an important foodborne pathogen associated with human salmonellosis worldwide. A retrospective screening was performed to elucidate the prevalence, antimicrobial resistance, and phylogenomic characterization of this pathogen in Shanghai, China. S. Typhimurium isolates were selected from 2,211 serotyped Salmonella isolates collected during 2007-2019. Two hundred and seventy-seven S. Typhimurium isolates were detected in 15 of 16 districts in Shanghai. It was noted that 214 (77.3%) isolates were multi-drug resistant and 32 (11.6%) isolates were resistant to ciprofloxacin and 5 (1.8%) isolates were further resistant to ceftriaxone. Poisson generalized linear mixed model results showed that the multi-drug resistance (MDR) in 2017 and 2018 was significantly higher than that in 2010 (P<0.05), highlighting an increase in the risk of MDR. Phylogenetic results showed that a global data set of 401 sequenced S. Typhimurium isolates was classified into four clones (ST36, ST313, ST19, and ST34), which appeared in international clonal dissemination. The ST34 isolates from China fell into two clades, ST34C1 and ST34C2, the latter of which might originate from Shanghai, and then expanded nationally, accompanied by extended-spectrum β-lactamase gene blaCTX-M-14 and a mutation in quinolone resistance-determining region of the gyrA 87 site. Furthermore, blaCTX-M-14 linking to ISEcp1 upstream and ΔIS903B downstream was found in IncI (Gamma)-like plasmids, and the plasmid conjugation contributed to its horizontal transmission. To our knowledge, it is the first report of the epidemiological and phylogenetic characterization for S. Typhimurium including the emerged clade ST34C2 in Shanghai, warranting the necessity of surveillance for this high-risk pathogen. IMPORTANCE Our study uncovered a widespread distribution of Salmonella enterica serovar Typhimurium isolates in Shanghai accompanied by the increase in antimicrobial resistance (AMR) especially MDR during a 10-year period, which filled in the gap about a long period of continuous monitoring of AMR in this pathogen in Shanghai. Meanwhile, we identified a new clade ST34C2 of S. Typhimurium with the acquisition of IncI (Gamma)-like plasmids mediated by extended-spectrum β-lactamase gene blaCTX-M-14 as well as gyrA 87 mutation, which had not been reported before. It was noted that IncI (Gamma)-like plasmids were reported in S. Typhimurium for the first time and conjugation could accelerate the spread of antimicrobial resistance gene blaCTX-M-14. These findings on the epidemic, antimicrobial resistance, and phylogenomic characterization for S. Typhimurium provide valuable insights into its potential risk to public health and also the basis for AMR prevention and control strategies in Shanghai in the future.
Collapse
Affiliation(s)
- Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Mengjun Hu
- Department of Food Science & Technology, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xuebin Xu
- Laboratory of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Chao Lv
- Department of Animal Health and Food Safety, School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunlei Shi
- Department of Food Science & Technology, School of Agriculture and Biology, State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Imran H, Saleem F, Gull S, Khan Z. Uncovering the growing burden of enteric fever: A molecular analysis of Salmonella Typhi antimicrobial resistance. Microb Pathog 2024; 191:106676. [PMID: 38710290 DOI: 10.1016/j.micpath.2024.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Enteric fever, a persistent public health challenge in developing regions, is exacerbated by suboptimal socioeconomic conditions, contaminated water and food sources, and insufficient sanitation. This study delves into the antimicrobial susceptibility of Salmonella Typhi, uncovering the genetic underpinnings of its resistance. Analyzing 897 suspected cases, we identified a significant prevalence of typhoid fever, predominantly in males (58.3 %) and younger demographics. Alarmingly, our data reveals an escalation in resistance to both primary and secondary antibiotics, with cases of multi-drug resistant (MDR) and extensively drug-resistant (XDR) S. Typhi reaching 14.7 % and 43.4 %, respectively, in 2021. The Multiple Antibiotic Resistance (MAR) index exceeded 0.2 in over half of the isolates, signaling widespread antibiotic misuse. The study discerned 47 unique antibiotic resistance patterns and pinpointed carbapenem and macrolide antibiotics as the remaining effective treatments against XDR strains, underlining the critical need to preserve these drugs for severe cases. Molecular examinations identified blaTEM, blaSHV, and blaCTX-M genes in ceftriaxone-resistant strains, while qnrS was specific to ciprofloxacin-resistant variants. Notably, all examined strains exhibited a singular mutation in the gyrA gene, maintaining wild-type gyrB and parC genes. The erm(B) gene emerged as the primary determinant of azithromycin resistance. Furthermore, a distressing increase in resistance genes was observed over three years, with erm(B), blaTEM and qnrS showing significant upward trends. These findings are a clarion call for robust antimicrobial stewardship programs to curtail inappropriate antibiotic use and forestall the burgeoning threat of antibiotic resistance in S. Typhi.
Collapse
Affiliation(s)
- Hassan Imran
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Fiza Saleem
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Sidra Gull
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Zaman Khan
- University Institute of Medical Laboratory Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan; Department of Microbiology, Faculty of Science, Emerson University Multan, Pakistan.
| |
Collapse
|
3
|
Nambiar RB, Elbediwi M, Ed-Dra A, Wu B, Yue M. Epidemiology and antimicrobial resistance of Salmonella serovars Typhimurium and 4,[5],12:i- recovered from hospitalized patients in China. Microbiol Res 2024; 282:127631. [PMID: 38330818 DOI: 10.1016/j.micres.2024.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Global emergence of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is a continuing challenge for modern healthcare. However, the knowledge, regarding the epidemiology of salmonellosis caused by the monophasic variant S. 4,[5],12:i:- in hospitalized patients, is limited in China. To bridge this gap, we carried out a retrospective study to determine the antimicrobial resistance, trends, and risk factors of S. Typhimurium and S. 4,[5],12:i:- (n = 329) recovered from patients in Zhejiang province between 2011 and 2019. The results showed that 90.57% (298/329) of the isolates were MDR; among them, 48.94% (161/329) and 12.46% (41/329) were phenotypically resistant to cephalosporins and fluoroquinolones, respectively, which are the drugs of choice used to treat salmonellosis in clinics. Additionally, we observed a higher incidence of infections among the young population (<5 years old). Notably, the higher prevalence of ST34 (sequence type 34) isolates, especially after 2014, with MDR (57.05%, 170/298) phenotype, and incidence of ST34 isolates co-harbouring mcr-1 (mobile colistin resistance gene) and blaCTX-M-14 (β-lactamase gene) suggest an association between STs and drug resistance. Together, the increasing prevalence of MDR ST34 calls for enhanced monitoring strategies to mitigate the spread and dissemination of MDR clones of S. Typhimurium and S. 4,[5],12:i-. Our study provides improved knowledge about non-typhoid Salmonella (NTS) infections, which could help in the effective recommendation of antimicrobials in hospitalized patients.
Collapse
Affiliation(s)
- Reshma B Nambiar
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, BP: 591, Beni Mellal, Morocco
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Han M, Chae M, Lee S, No K, Han S. Strain typing and antimicrobial susceptibility of Salmonella enterica Albany isolates from duck farms in South Korea. Heliyon 2024; 10:e27402. [PMID: 38486745 PMCID: PMC10937681 DOI: 10.1016/j.heliyon.2024.e27402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Salmonella enterica is distributed worldwide and is a common cause of bacterial food poisoning in humans and a serious public health problem. Although duck meat consumption has recently increased in Korea, studies on the epidemiological relationship between S. enterica contamination in duck farms are scarce. Salmonella enterica serovar Albany isolates recovered from duck farms were analyzed using two typing methods - IR Biotyper® (IRBT) and multilocus variable-number tandem repeat analysis (MLVA). The clustering results were compared with the epidemiological survey findings and the antimicrobial resistance profiles. From April 2019 to October 2020, 20 individual feces per farm from 5-6-week-old ducks were collected repeatedly from 105 duck farms. Salmonella spp. isolated from duck feces were identified using PCR and multilocus sequence typing to investigate the prevalence and distribution of the Salmonella serovars. The prevalence of S. enterica was 19%, and S. enterica Albany was the predominantly recovered isolate. The S. enterica Albany isolates underwent antimicrobial susceptibility testing to determine the minimum inhibitory concentration. MLVA and IRBT methods established relatedness and diversity among the S. enterica Albany isolates. Multidrug-resistant S. enterica Albany was distributed in all the farms. Antimicrobial resistance profiles reflected the duck farm characteristics and isolates recovered from the same farm showed an identical profile. Isolates repeatedly recovered from the same farm also showed identical IRBT clusters and MLVA groups. These findings suggest that the isolates remained on the duck farm and re-infected new duck flocks. Thus, proper cleaning and disinfection is required before the farms are repopulated.
Collapse
Affiliation(s)
- Mina Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Munhui Chae
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Sangkab Lee
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Kyongok No
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| | - Seongtae Han
- Institute of Chungbuk Provincial Veterinary Service and Research, Cheongju, South Korea
| |
Collapse
|
5
|
Xu B, Hou Z, Liu L, Wei J. Genomic and proteomic analysis of Salmonella Enteritidis isolated from a patient with foodborne diarrhea. World J Microbiol Biotechnol 2023; 40:48. [PMID: 38114804 DOI: 10.1007/s11274-023-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Salmonella is a major cause of foodborne diseases and clinical infections worldwide. This study aimed to investigate the drug resistance, genomic characteristics, and protein expression of foodborne Salmonella in Shanxi Province. We isolated a strain of Salmonella Enteritidis from patient feces and designated it 31A. The drug resistance of 31A against 14 antibiotics was determined using an antimicrobial susceptibility test. Whole-genome sequencing and quantitative proteomic analysis were performed on the 31A strain. Functional annotation of drug resistance genes/proteins and virulence genes/proteins was conducted using various databases, such as VFDB, ARDB, CAZY, COG, KOG, CARD, GO, and KEGG. The focus of this study was understanding the mechanisms related to food poisoning, and the genetic evolution of 31A was analyzed through comparative genomics. The 31A strain belonged to ST11 Salmonella Enteritidis and showed resistance to β-lactam and quinolone antibiotics. The genome of 31A had 70 drug resistance genes, 321 virulence genes, 12 SPIs, and 3 plasmid replicons. Functional annotation of these drug resistance and virulence genes revealed that drug resistance genes were mainly involved in defense mechanisms to confer resistance to antibiotics, while virulence genes were mainly associated with cellular motility. There were extensive interactions among the virulence genes, which included SPI-1, SPI-2, flagella, fimbriae, capsules and so on. The 31A strain had a close relationship with ASM2413794v1 and ASM130523v1, which were also ST11 Salmonella Enteritidis strains from Asia and originated from clinical patients, animals, and food. These results suggested minimal genomic differences among strains from different sources and the potential for interhost transmission. Differential analysis of the virulence and drug resistance-related proteins revealed their involvement in pathways related to human diseases, indicating that these proteins mediated bacterial invasion and infection. The integration of genomic and proteomic information led to the discovery that Salmonella can survive in a strong acid environment through various acid resistance mechanisms after entering the intestine with food and then invade intestinal epithelial cells to exert its effects. In this study, we comprehensively analyzed the drug resistance and virulence characteristics of Salmonella Enteritidis 31A using a combination of genomic and proteomic approaches, focusing on the pathogenic mechanism of Salmonella Enteritidis in food poisoning. We found significant fluctuations in various virulence factors during the survival, invasion, and infection of Salmonella Enteritidis, which collectively contributed to its pathogenicity. These results provide important information for the source tracing, prevention, and treatment of clinical infections caused by Salmonella Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China.
| | - Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
| |
Collapse
|
6
|
Xu B, Hou Z, Liu L, Yan R, Zhang J, Wei J, Du M, Xuan Y, Fan L, Li Z. The Resistance and Virulence Characteristics of Salmonella Enteritidis Strain Isolated from Patients with Food Poisoning Based on the Whole-Genome Sequencing and Quantitative Proteomic Analysis. Infect Drug Resist 2023; 16:6567-6586. [PMID: 37823028 PMCID: PMC10564084 DOI: 10.2147/idr.s411125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Objective This paper explores the drug resistance, genome and proteome expression characteristics of Salmonella from a food poisoning event. Methods A multidrug-resistant Salmonella Enteritidis strain, labeled as 27A, was isolated and identified from a food poisoning patient. Antimicrobial susceptibility testing determined the resistance of 27A strain to 14 antibiotics. Then, WGS analysis and comparative genomics analysis were performed on 27A, and the functional annotation of resistance genes, virulence genes were performed based on VFDB, ARDB, COG, CARD, GO, KEGG, and CAZY databases. Meanwhile, based on iTRAQ technology, quantitative proteomic analysis was conducted on 27A to analyze the functions and interactions of differentially expressed proteins related to bacterial resistance and pathogenicity. Results Strain 27A belonged to ST11 S. Enteritidis and was resistant to levofloxacin, ciprofloxacin, ampicillin, piperacillin, and ampicillin/sulbactam. There were 33 drug resistance genes, 384 virulence genes and 2 plasmid replicon, IncFIB(S) and IncFII(S), annotated by WGS. Proteomic analysis revealed significant changes in virulence and drug proteins, which were mainly involved in bacterial pathogenicity and metabolic processes. PPI prediction showed the relationship between virulence proteins and T3SS proteins, and PagN cooperated with proteins related to T3SS to jointly mediate the invasion of 27A strain on the human body. Phylogenetic analysis indicated that S. Enteritidis has potential transmission in humans, food, and animals. Conclusion This study comprehensively analyzed the drug resistance and virulence phenotypes of S. Enteritidis 27A using genomic and proteomic approaches. These helps reveal the drug resistance and virulence mechanisms of S. Enteritidis, and provides important information for the source tracing and the prevention of related diseases, which lays a foundation for research on food safety, public health monitoring, and the drug resistance and pathogenicity of S. Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Zhuru Hou
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Rongrong Yan
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jinjing Zhang
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Miao Du
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Lei Fan
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Zhuoxi Li
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| |
Collapse
|
7
|
Buddhasiri S, Sukjoi C, Tantibhadrasapa A, Mongkolkarvin P, Boonpan P, Pattanadecha T, Onton N, Laisiriroengrai T, Coratat S, Khantawa B, Tepaamorndech S, Duangsonk K, Thiennimitr P. Clinical Characteristics, Antimicrobial Resistance, Virulence Genes and Multi-Locus Sequence Typing of Non-Typhoidal Salmonella Serovar Typhimurium and Enteritidis Strains Isolated from Patients in Chiang Mai, Thailand. Microorganisms 2023; 11:2425. [PMID: 37894083 PMCID: PMC10609586 DOI: 10.3390/microorganisms11102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Non-typhoidal salmonellosis (NTS) caused by ingesting Salmonella enterica contaminated food or drink remains a major bacterial foodborne disease. Clinical outcomes of NTS range from self-limited gastroenteritis to life-threatening invasive NTS (iNTS). In this study, we isolated Salmonella spp. from the stool and blood of patients hospitalized at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, between 2016-2021 (a total of 395 cases). Then, serovar Typhimurium and Enteritidis were identified and further characterized by multiplex PCR, and multi-locus sequence typing. Our data show that multidrug resistance (MDR) sequence type 34 (ST34) and ST11 are the predominant sequence types for serovars Typhimurium and Enteritidis, respectively. Most S. Typhimurium ST34 lacks spvB, and most S. Enteritidis ST11 harbor sseI, sodCI, rpoS and spvB genes. NTS can be found in a wide range of ages, and anemia could be a significant factor for S. Typhimurium infection (86.3%). Both S. Typhimurium (6.7%) and S. Enteritidis (25.0%) can cause iNTS in immunocompromised patients. S. Typhimurium conferred MDR phenotype higher than S. Enteritidis with multiple antibiotic resistance indexes of 0.22 and 0.04, respectively. Here, we characterized the important S. Typhimurium, S. Enteritidis, and human clinical factors of NTS within the region.
Collapse
Affiliation(s)
- Songphon Buddhasiri
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Panupon Mongkolkarvin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattarapon Boonpan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanakorn Pattanadecha
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattamon Onton
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Touch Laisiriroengrai
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sunatcha Coratat
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Banyong Khantawa
- Diagnostic Laboratory, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surapun Tepaamorndech
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kwanjit Duangsonk
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50100, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
8
|
Gao Y, Chen K, Lin R, Xu X, Xu F, Lin Q, Hu Y, Zhang H, Zhang J, Liao M, Qu X. High Levels of Antibiotic Resistance in MDR-Strong Biofilm-Forming Salmonella Typhimurium ST34 in Southern China. Microorganisms 2023; 11:2005. [PMID: 37630565 PMCID: PMC10458675 DOI: 10.3390/microorganisms11082005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium (S. typhimurium) is an important zoonotic pathogen with important public health significance. To understand S. typhimurium's epidemiological characteristics in China, multi-locus sequence typing, biofilm-forming ability, antimicrobial susceptibility testing, and resistant genes of isolates from different regions and sources (human, food) were investigated. Among them, ST34 accounted for 82.4% (243/295), with ST19 ranking second (15.9%; 47/295). ST34 exhibited higher resistance levels than ST19 (p < 0.05). All colistin, carbapenem, and ciprofloxacin-resistant strains were ST34, as were most cephalosporin-resistant strains (88.9%; 32/36). Overall, 91.4% (222/243) ST34 isolates were shown to have multidrug resistance (MDR), while 53.2% (25/47) ST19 isolates were (p < 0.05). Notably, 97.8% (45/46) of the MDR-ACSSuT (resistance to Ampicillin, Chloramphenicol, Streptomycin, Sulfamethoxazole, and Tetracycline) isolates were ST34, among which 69.6% (32/46) of ST34 isolates were of human origin, while 30.4% (14/46) were derived from food (p < 0.05). Moreover, 88.48% (215/243) ST34 showed moderate to strong biofilm-forming ability compared with 10.9% (5/46) ST19 isolates (p < 0.01). This study revealed the emergence of high-level antibiotic resistance S. typhimurium ST34 with strong biofilm-forming ability, posing concerns for public health safety.
Collapse
Affiliation(s)
- Yuan Gao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kaifeng Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Runshan Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai 200015, China
| | - Fengxiang Xu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaping Hu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hongxia Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Department of Microbiology, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai 200015, China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; (Y.G.)
- Key Laboratory of Zoonoses, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province (YDWS202204), Guangzhou 510642, China
| |
Collapse
|
9
|
Ownagh A, Etemadi N, Khademi P, Tajik H. Identification of Salmonella carriers by amplification of FimA, Stn and InvA genes and bacterial culture methods in fecal samples of buffalo. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:21-28. [PMID: 36816862 PMCID: PMC9906613 DOI: 10.30466/vrf.2022.544308.3312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 08/29/2022] [Indexed: 02/24/2023]
Abstract
Salmonellosis is one of the most important bacterial diseases in human and animals. Rapid diagnosis and sub sequence accurate treatment of Salmonella carriers help reduce the salmonellosis in human and livestock animals. In this study, 420 fecal samples were taken during year 2019 from buffalo in the Urmia, Khoy and Piranshahr regions in west Azerbaijan province, Iran. Samplings were carried out in different seasons. Presence of Salmonella invasion genes (FimA, Stn and InvA) were evaluated by polymerase chain reaction. The bacterial culture and biochemical tests were performed on feces samples for isolation of bacterium Salmonella; however, all samples were negative in culture method. PCR findings showed that, 50 (11.90%) fecal samples were positive to the genes. The analysis of results showed that frequency of salmonellosis outbreak in different parts of west Azerbaijan province followed a similar pattern and the incidence of salmonellosis according to forecast in the warm seasons (spring and summer) was more than in cold seasons (autumn and winter). The prevalence of Salmonella in buffalo's feces based on warm and cold seasons were 32 (64.00%) and 18 (36.00%), respectively. The results showed significant difference between cold and warm season in the prevalence of salmonellosis. Therefore, the application of molecular technics is essential for the prevention and treatment of salmonellosis. The results also showed that specificity of PCR method was better than culture method for detection of Salmonella in feces sample.
Collapse
Affiliation(s)
- Abdulghaffar Ownagh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; ,Correspondence Abdulghaffar Ownagh. DVM, DVSc, Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran . E-mail:
| | - Navid Etemadi
- DVM Graduate, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Peyman Khademi
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Hossein Tajik
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| |
Collapse
|
10
|
Hu J, Li J, Liu C, Zhang Y, Xie H, Li C, Shen H, Cao X. Molecular characteristics of global β-lactamase-producing Enterobacter cloacae by genomic analysis. BMC Microbiol 2022; 22:255. [PMID: 36266616 DOI: 10.1186/s12866-022-02667-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To analyze the characteristics of global β-lactamase-producing Enterobacter cloacae including the distribution of β-lactamase, sequence types (STs) as well as plasmid replicons. METHODS All the genomes of the E. cloacae were downloaded from GenBank. The distribution of β-lactamase encoding genes were investigated by genome annotation after the genome quality was checked. The STs of these strains were analyzed by multi-locus sequence typing (MLST). The distribution of plasmid replicons was further explored by submitting these genomes to the genome epidemiology center. The isolation information of these strains was extracted by Per program from GenBank. RESULTS A total of 272 out of 276 strains were found to carry β-lactamase encoding genes. Among them, 23 varieties of β-lactamase were identified, blaCMH (n = 130, 47.8%) and blaACT (n = 126, 46.3%) were the most predominant ones, 9 genotypes of carbapenem-hydrolyzing β-lactamase (CHβLs) were identified with blaVIM (n = 29, 10.7%) and blaKPC (n = 24, 8.9%) being the most dominant ones. In addition, 115 distinct STs for the 272 ß-lactamase-carrying E. cloacae and 48 different STs for 106 CHβLs-producing E. cloacae were detected. ST873 (n = 27, 9.9%) was the most common ST. Furthermore, 25 different plasmid replicons were identified, IncHI2 (n = 65, 23.9%), IncHI2A (n = 64, 23.5%) and IncFII (n = 62, 22.8%) were the most common ones. Notably, the distribution of plasmid replicons IncHI2 and IncHI2A among CHβLs-producing strains were significantly higher than theat among non-CHβLs-producing strains (p < 0.05). CONCLUSION Almost all the E. cloacae contained β-lactamase encoding gene. Among the global E. cloacae, blaCMH and blaACT were main blaAmpC genes. BlaTEM and blaCTX-M were the predominant ESBLs. BlaKPC, blaVIM and blaNDM were the major CHβLs. Additionally, diversely distinct STs and different replicons were identified.
Collapse
Affiliation(s)
- Jincao Hu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Yan Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China
| | - Chuchu Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China.
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road 321, GulouJiangsu Province, Nanjing, People's Republic of China.
| |
Collapse
|
11
|
Song W, Shan Q, Qiu Y, Lin X, Zhu C, Zhuo Z, Wang C, Tong J, Li R, Wan C, Zhu Y, Chen M, Xu Y, Lin D, Wu S, Jia C, Gao H, Yang J, Zhao S, Zeng M. Clinical profiles and antimicrobial resistance patterns of invasive Salmonella infections in children in China. Eur J Clin Microbiol Infect Dis 2022; 41:1215-1225. [PMID: 36040531 PMCID: PMC9489584 DOI: 10.1007/s10096-022-04476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022]
Abstract
Invasive Salmonella infections result in a significant burden of disease including morbidity, mortality, and financial cost in many countries. Besides typhoid fever, the clinical impact of non-typhoid Salmonella infections is increasingly recognized with the improvement of laboratory detection capacity and techniques. A retrospective multicenter study was conducted to analyze the clinical profiles and antimicrobial resistance patterns of invasive Salmonella infections in hospitalized children in China during 2016-2018. A total of 130 children with invasive Salmonella infections were included with the median age of 12 months (range: 1-144 months). Seventy-nine percent of cases occurred between May and October. Pneumonia was the most common comorbidity in 33 (25.4%) patients. Meningitis and septic arthritis caused by nontyphoidal Salmonella (NTS) infections occurred in 12 (9.2%) patients and 5 (3.8%) patients. Patients < 12 months (OR: 16.04) and with septic shock (OR: 23.4), vomit (OR: 13.33), convulsion (OR: 15.86), C-reactive protein (CRP) ≥ 40 g/L (OR: 5.56), and a higher level of procalcitonin (PCT) (OR: 1.05) on admission were statistically associated to an increased risk of developing meningitis. Compared to 114 patients with NTS infections, 16 patients with typhoid fever presented with higher levels of CRP and PCT (P < 0.05). The rates of resistance to ampicillin, sulfamethoxazole/trimethoprim, ciprofloxacin, and ceftriaxone among Salmonella Typhi and NTS isolates were 50% vs 57.3%, 9.1% vs 24.8%, 0% vs 11.2%, and 0% vs 9.9%, respectively. NTS has been the major cause of invasive Salmonella infections in Chinese children and can result in severe diseases. Antimicrobial resistance among NTS was more common.
Collapse
Affiliation(s)
- Wen Song
- Department of Infectious Diseases, Hangzhou Children's Hospital, 195 Wenhui Road, Hangzhou, 310014, China
- Department of Hospital Infection Management, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, 310006, China
| | - Qingwen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yue Qiu
- Department of Infectious Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xianyao Lin
- Department of Infectious Diseases, Hangzhou Children's Hospital, 195 Wenhui Road, Hangzhou, 310014, China
| | - Chunhui Zhu
- Department of Infectious Diseases, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Zhiqiang Zhuo
- Department of Infectious Diseases, Xiamen Children's Hospital, Xiamen, China
| | - Caihong Wang
- Department of Infectious Diseases, Xiamen Children's Hospital, Xiamen, China
| | - Jianning Tong
- Department of Pediatric, Gastroenterology and Infectious Diseases, Qingdao Women and Children's Hospital, Qingdao, China
| | - Rui Li
- Department of Pediatric, Gastroenterology and Infectious Diseases, Qingdao Women and Children's Hospital, Qingdao, China
| | - Chaomin Wan
- Department of Pediatrics, Sichuan University West China Second Hospital (West China Women's and Children's Hospital), Chengdu, China
| | - Yu Zhu
- Department of Pediatrics, Sichuan University West China Second Hospital (West China Women's and Children's Hospital), Chengdu, China
| | - Minxia Chen
- Department of Infectious Diseases, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yi Xu
- Department of Infectious Diseases, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Daojiong Lin
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Haikou, China
| | - Shouye Wu
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Haikou, China
| | - Chunmei Jia
- Department of Pharmacy, The Forth Hospital of Baotou, Baotou, China
| | - Huiling Gao
- Department of Pharmacy, The Forth Hospital of Baotou, Baotou, China
| | - Junwen Yang
- Department of Microbiology Laboratory, Children's Hospital Affiliated to Zhengzhou University (Henan Children's Hospital), Zhengzhou, China
| | - Shiyong Zhao
- Department of Infectious Diseases, Hangzhou Children's Hospital, 195 Wenhui Road, Hangzhou, 310014, China.
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
12
|
Li Y, Ed-Dra A, Tang B, Kang X, Müller A, Kehrenberg C, Jia C, Pan H, Yang H, Yue M. Higher tolerance of predominant Salmonella serovars circulating in the antibiotic-free feed farms to environmental stresses. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129476. [PMID: 35809365 DOI: 10.1016/j.jhazmat.2022.129476] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
To counteract the dramatic increase in antibiotic-resistant bacterial pathogens, many countries, including China, have banned the use of antibiotic-supplemented feed for farming animals. However, the exact consequences of this policy have not been systematically evaluated. Therefore, Salmonella isolates from farms that ceased using antibiotics 1-5 years ago were compared with isolates from farms that continue to use antimicrobials as growth promotors. Here, we used whole-genome sequencing combined with in-depth phenotypic assays to investigate the ecology, epidemiology, and persistence of multi-drug resistant (MDR) Salmonella from animal farms during the withdrawal of antibiotic growth promotors. Our results showed that the prevalence of Salmonella was significantly lower in antibiotic-free feed (AFF) farms compared to conventional-feed (CF) farms, even though all isolates obtained from AFF farms were MDR (>5 classes) and belonged to well-recognized predominant serovars. The additional phylogenomic analysis combined with principal component analysis showed high similarity between the predominant serovars in AFF and CF farms. This result raised questions regarding the environmental persistence capabilities of MDR strain despite AFF policy. To address this question, a representative panel of 20 isolates was subjected to disadvantageous environmental stress assays. These results showed that the predominant serovars in AFF and CF farms were more tolerant to stress conditions than other serovars. Collectively, our findings suggest that AFF helps eliminate only specific MDR serovars, and future guiding policies would benefit by identifying predominant Salmonella clones in problematic farms to determine the use of AFF and additional targeted interventions.
Collapse
Affiliation(s)
- Yan Li
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, China.
| | | | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiamei Kang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China.
| | - Anja Müller
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany.
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany.
| | - Chenghao Jia
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Hang Pan
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Mo H, Lin X, Liu M, Liang H. Emergence of bla OXA-1- and mph(A)-Producing Vibrio furnissii Isolated from Hospital Sewage. Infect Drug Resist 2022; 15:3173-3177. [PMID: 35754787 PMCID: PMC9215840 DOI: 10.2147/idr.s363019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/04/2022] [Indexed: 11/23/2022] Open
Abstract
Cephalosporins and azithromycin are clinical antibiotics used to treat infections. Co-resistance to cephalosporins and azithromycin has been observed in some Enterobacterales, but it has only rarely been reported in Vibrio species. In this study, we isolated a cephalosporin- and azithromycin-resistant V. furnissii strain, VFN3, from hospital sewage. Whole-genome sequencing results showed that the strain VFN3 possesses an IncA/C2 plasmid, pVFN3-blaOXA-193K. This conjugative plasmid carries several clinically relevant drug resistance genes, including mph(A) and bla OXA-1. We also found that in the strain VFN3, mph(A) and bla OXA-1 are surrounded by insertion sequences and class I integrons, respectively. These data suggest that mobile elements mediate the transfer of mph(A) and bla OXA-1. This is the first reported Vibrio species that possesses an mph(A)- and bla OXA-1-bearing conjugative plasmid. The emergence of this conjugative multi-drug-resistance plasmid is of great concern to public health.
Collapse
Affiliation(s)
- Haishan Mo
- Department of General Surgery, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, People's Republic of China
| | - Xu Lin
- Department of General Surgery, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, People's Republic of China
| | - Ming Liu
- College of Oceanography, Hohai University, Nanjing, People's Republic of China
| | - Hui Liang
- Department of General Surgery, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, People's Republic of China
| |
Collapse
|
14
|
Abdalhamed AM, Ghazy AA, Ibrahim ES, Arafa AA, Zeedan GSG. Therapeutic effect of biosynthetic gold nanoparticles on multidrug-resistant Escherichia coli and Salmonella species isolated from ruminants. Vet World 2021; 14:3200-3210. [PMID: 35153413 PMCID: PMC8829404 DOI: 10.14202/vetworld.2021.3200-3210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Background and Aim: Multidrug-resistant (MDR) pathogenic microorganisms have become a global problem in ruminants as a result of the intensive use of antibiotics, causing the development of resistance among gut microbiota. The antibiotic-resistant microorganisms can be transferred from diseased animals to humans. This study aimed to determine the prevalence of MDR Escherichia coli and Salmonella spp. isolated from cattle, buffaloes, sheep, and goats suffering from respiratory signs, diarrhea, and mastitis and to screen the antibiotic sensitivity of selected isolated bacteria. It also detected antibiotic-resistance genes by polymerase chain reaction (PCR), produced green gold nanoparticles (AuNPs) using plant extracts (Artemisia herba-alba and Morus alba), and evaluated the antimicrobial activities of these biosynthesized nanoparticles on selected pathogens (E. coli and Salmonella spp.). Materials and Methods: MDR E. coli and Salmonella spp. were investigated using fecal samples (n=408), nasal swabs (n=358), and milk samples (n=227) of cattle, buffaloes, sheep, and goats with or without clinical signs, including respiratory manifestations, pneumonia, diarrhea, and mastitis, from different governorates in Egypt. E. coli and Salmonella spp. were isolated and identified on selective media, which were confirmed by biochemical reactions and PCR. Antimicrobial susceptibility testing against 10 commonly used antibiotics was performed using the Kirby-Bauer disk diffusion method. Antibiotic resistance genes blaTEM, blaSHV, blaOXA, and blaCTX−M were detected by PCR. The antibacterial effect of the biosynthesized AuNPs was evaluated by MIC and well diffusion assay. The biosynthesized AuNPs were also characterized by ultraviolet-visible spectrophotometry and transmission electron microscopy (TEM). Results: Among all fecal samples, the prevalence of E. coli was 18.4% (183/993) and that of Salmonella spp. was 16.7% (66/408), as determined by cultural and molecular tests. All isolates of E. coli and Salmonella spp. were 100% resistant to ampicillin (AM) and amoxicillin and highly resistant to cefoxitin and AM-sulbactam. The total rate of resistance genes in E. coli was 61.2% (112/183), while that in Salmonella was 63.6% (42/66) for pathogens isolated from ruminants with respiratory manifestations, pneumonia, diarrhea, and mastitis. Among the resistance genes, blaTEM had the highest prevalence rate in E. coli (25.9%, 21/81) while blaSHV had the lowest (9.8%, 8/81) in fecal swabs. AuNPs were successfully synthesized using aqueous leaf extract of A. herba-alba and M. alba as bioreducing agents. TEM analysis showed particle size of 10-42 nm for A. herba-alba and M. alba AuNPs. The biosynthesized AuNPs showed antibacterial activity against MDR E. coli and Salmonella spp. Conclusion: Rapid and accurate diagnostic methods are the cornerstone for effective treatment to reduce the risk of antimicrobial-resistant pathogenic microorganisms. This is particularly important for overcoming the increasing rate of MDR in ruminants with respiratory manifestations, pneumonia, diarrhea, and mastitis. This can be complemented by the development of AuNPs synthesized in an environmentally friendly manner AuNPs using natural plant extracts for the treatment of antibiotic-resistant microorganisms.
Collapse
Affiliation(s)
- Abeer M. Abdalhamed
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| | - Alaa A. Ghazy
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| | - Eman S. Ibrahim
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Amany A. Arafa
- Department of Microbiology and Immunology, National Research Centre, Dokki, Egypt
| | - Gamil S. G. Zeedan
- Department of Parasitology and Animal Diseases, National Research Centre, Dokki, Egypt
| |
Collapse
|
15
|
Ruiz J, Flores-Paredes W, Luque N, Albornoz R, Rojas N, Espinoza M, Pons MJ. Retrospective analysis of the emergence of antibiotic-resistant Salmonella enterica infections in a level IV hospital from Lima, Peru. Trop Doct 2021; 52:68-73. [PMID: 34918604 DOI: 10.1177/00494755211060990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study retrospectively analysed the emergence of multidrug-resistant Salmonella enterica in a level IV hospital in Lima, Peru. A total of 64 S. enterica from January 2009 to June 2010 (Period 1, 24 isolates) and January 2012 to December 2014 (Period 2, 40 isolates) were included. Some 25 were from non-hospitalized and 39 from hospitalized patients. Antimicrobial susceptibility to 15 antimicrobial agents was established by automated methods. Most of the isolates were from blood (46.9%), urine (21.9%) and faeces (14.1%). There was a reduction in blood isolates in Period 2, while all the faecal isolates were from this period. In Period 1, only 3/24 (12.5%) isolates showed antibiotic resistance, whereas 25/39 isolates (64.1%) from Period 2 were antibiotic-resistant, with multidrug-resistant and extensively drug-resistant rates of 17.9% and 20.5%, respectively. Multidrug-resistant/extensively drug-resistant Salmonella isolates were introduced in the hospital in 2013, with Salmonella recovered from faeces from non-hospitalized patients suggested an increase in community-acquired multidrug-resistant/extensively drug-resistant Salmonella infections.
Collapse
Affiliation(s)
- Joaquim Ruiz
- Laboratorio de Genética Molecular y Bioquímica, 187071Universidad Científica del Sur, Lima, Peru
| | | | - Nestor Luque
- Escuela de Medicina Humana, Facultad de Ciencias de la Salud, 33218Universidad Peruana Union (UPeU), Lima, Peru
| | - Roger Albornoz
- Escuela de Medicina Humana, Facultad de Ciencias de la Salud, 33218Universidad Peruana Union (UPeU), Lima, Peru
| | | | | | - Maria J Pons
- Laboratorio de Genética Molecular y Bioquímica, 187071Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
16
|
Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021; 22:10878. [PMID: 34639223 PMCID: PMC8509486 DOI: 10.3390/ijms221910878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.
Collapse
Affiliation(s)
- Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa;
| | | |
Collapse
|
17
|
Zhang K, Ge H, He J, Hu M, Xu Z, Jiao X, Chen X. Salmonella Typhimurium ST34 Isolate Was More Resistant than the ST19 Isolate in China, 2007 - 2019. Foodborne Pathog Dis 2021; 19:62-69. [PMID: 34520252 DOI: 10.1089/fpd.2021.0047] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To disclose the antimicrobial susceptibility and wide adaptability of commonly occurring genotypes of Salmonella enterica serovar Typhimurium, the antimicrobial resistance and multilocus sequence typing (MLST) profiles of 196 Salmonella Typhimurium isolates (136 from food-producing animals, 19 from environments, 15 from markets, and 26 from humans) in China between 2007 and 2019 were analyzed. Tests of susceptibility to 19 antimicrobial agents using the broth microdilution method showed that 84.7% of the isolates were resistant to at least one antimicrobial. Antimicrobial susceptibility analysis demonstrated that 66.8% of the isolates were multidrug-resistant (MDR) strains, with resistance to three or more antimicrobials. The highest antidrug resistance was to ampicillin, amoxicillin/clavulanic acid, and tetracycline. Three MLST types were detected, and sequence type (ST) 19 was the most common ST. However, ST34 was associated with a higher MDR rate and more complex MDR patterns, than ST19 and ST99, although the exact mechanism has not been reported. Our study highlights the variation of drug resistance and STs from different sources and the association between STs and drug resistance, providing useful information for epidemiological research and developing a public health strategy.
Collapse
Affiliation(s)
- Kai Zhang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Haojie Ge
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jingjing He
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Maozhi Hu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality of Ministry of Agriculture and Rural Affairs, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Lee S, Park N, Yun S, Hur E, Song J, Lee H, Kim Y, Ryu S. Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019. Gut Pathog 2021; 13:35. [PMID: 34074336 PMCID: PMC8167944 DOI: 10.1186/s13099-021-00431-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Non-typhoidal salmonellosis remains a pressing public health problem worldwide. Quinolones, particularly fluoroquinolones, are widely used to treat various infections, including non-typhoidal salmonellosis, which can be a serious illness. The emergence of fluoroquinolone-resistant Salmonella has resulted in treatment failure and high mortality rates. In this study, we estimated the presence of plasmid-mediated quinolone resistance (PMQR) genes in Salmonella enterica isolated from human salmonellosis patients in South Korea from 2016 to 2019. We evaluated the association of these genes with fluoroquinolone susceptibility. Antimicrobial susceptibility tests for Salmonella isolates were performed using the Vitek II system, and the minimum inhibitory concentrations (MIC) of ciprofloxacin and levofloxacin were determined using the E-test method. Plasmid-mediated quinolone resistance (PMQR) genes were detected by PCR amplification and quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes were analyzed following Sanger sequencing of the PCR products. Thirty-four Salmonella strains with reduced susceptibility to fluoroquinolones (ciprofloxacin MIC ≥ 0.125 µg/mL and levofloxacin MIC ≥ 0.25 µg/mL) were selected from 208 human clinical Salmonella isolates. Among them, 22 Salmonella strains harbored one PMQR gene (qnrA, qnrB, or qnrS), and three Salmonella strains carried two PMQR genes (qnrS and aac(6′)-Ib-cr or qnrA and qnrB). qnrS was the most common PMQR gene. Serotyping revealed that Salmonella 4,[5]12:i:- (32.4%, 11/34) and Salmonella Typhimurium (29.4%, 10/34) were the two most predominant serovars, and Multi-locus sequence typing (MLST) showed that ST19 and ST34 were the most frequent sequence types. In conclusion, qnr gene-positive Salmonella 4,[5],12:i:- and Salmonella Typhimurium were the main serovars responsible for reduced susceptibility to fluoroquinolones. Therefore, our findings suggest that PMQR-positive Salmonella strains, which can be isolated from various samples including human, food, and the environment, should be carefully monitored.
Collapse
Affiliation(s)
- Sohyun Lee
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Nanjoo Park
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea.,Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea
| | - Sujung Yun
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Eunseon Hur
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Jiwon Song
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Hanna Lee
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Yongsug Kim
- Gyeonggi-do Research Institute of Health & Environment, Suwon, 16381, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
19
|
Wu S, Yang Y, Wang T, Sun J, Zhang Y, Ji J, Sun X. Effects of acid, alkaline, cold, and heat environmental stresses on the antibiotic resistance of the Salmonella enterica serovar Typhimurium. Food Res Int 2021; 144:110359. [PMID: 34053552 DOI: 10.1016/j.foodres.2021.110359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Antibiotic resistance in Salmonella enterica serovar Typhimurium (S. ser. Typhimurium) has become a critical safety hazard in food. Sublethal environmental stresses can influence resistance in Salmonella during food processing. This study simulated environmental stresses in food processing. The antibiotic resistance of three strains of S. ser. Typhimurium (the ATCC 14028 strain and two wild-type isolates from chicken and pork product processing) was evaluated under different pH levels (5.0, 5.5, 6.0, 8.0, and 9.0). Also, dynamic changes in resistance with treatment duration under cold (4 °C, -20 °C) and heat (55 °C) treatment were studied. The results showed that acid and alkaline stresses reduced the resistance of S. ser. Typhimurium to eight antibiotics; meanwhile, the resistance of meropenem (MERO) increased. The minimal inhibitory concentration (MIC) of MERO was increased 16- to 64-fold. With acid or alkaline stress, the extracellular ATP content increased, and the scanning electron microscopy (SEM) result clearly revealed the appearance of wrinkles and holes on the outer membrane of Salmonella. These observations imply changes in membrane permeability, which may decrease the antibiotic resistance of Salmonella. Cold or heat stress increased the resistance of S. ser. Typhimurium to tetracycline, cefotaxime, ceftazidime, nalidixic acid, azithromycin, and ampicillin; the MIC increased 2- to 4-fold. The antibiotic resistance only changed when cold and heat stresses occurred over a certain period of time and remained unchanged when the stress persisted. This study reports on the ability of S. ser. Typhimurium to develop antibiotic resistance after environmental stresses. It can provide valuable information for meat processing to improve interventions and risk management.
Collapse
Affiliation(s)
- Shang Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Tingwei Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
20
|
Li L, Olsen RH, Song A, Xiao J, Wang C, Meng H, Shi L. First Report of a Foodborne Salmonella enterica Serovar Gloucester (4:i:l,w) ST34 Strain Harboring bla CTX-M- 55 and qnrS Genes Located in IS 26-Mediated Composite Transposon. Front Microbiol 2021; 12:646101. [PMID: 33959109 PMCID: PMC8093823 DOI: 10.3389/fmicb.2021.646101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/16/2021] [Indexed: 01/20/2023] Open
Abstract
Extended-spectrum β-lactamases (ESBLs) production and (fluoro)quinolone (FQ) resistance among Salmonella pose a public health threat. The objective of this study was the phenotypic and genotypic characterization of an ESBL-producing and nalidixic acid-resistant Salmonella enterica serovar Gloucester isolate (serotype 4:i:l,w) of sequence type 34 (ST34) from ready-to-eat (RTE) meat products in China. Whole-genome short and long read sequencing (HiSeq and MinION) results showed that it contained blaCTX–M–55, qnrS1, and tetB genes, with blaCTX–M–55 and qnrS1 located in chromosomal IS26-mediated composite transposon (IS26–qnrS1–IS3–Tn3–orf–blaCTX–M–55–ISEcp1–IS26). The same genetic structure was found in the chromosome of S. enterica subsp. enterica serovar Typhimurium strain and in several plasmids of Escherichia coli, indicating that the IS26-mediated composite transposon in the chromosome of S. Gloucester may originate from plasmids of E. coli and possess the ability to disseminate to Salmonella and other bacterial species. Besides, the structural unit qnrS1–IS3–Tn3–orf–blaCTX–M–55 was also observed to be linked with ISKpn19 in both the chromosomes and plasmids of various bacteria species, highlighting the contribution of the insertion sequences (IS26 and ISKpn19) to the co-dissemination of blaCTX–M–55 and qnrS1. To our knowledge, this is the first description of chromosomal blaCTX–M–55 and qnrS in S. Gloucester from RTE meat products. Our work expands the host range and provides additional evidence of the co-transfer of blaCTX–M–55 and qnrS1 among different species of Salmonella through the food chain.
Collapse
Affiliation(s)
- Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anhua Song
- Guangzhou Food Inspection Institute, Guangzhou, China
| | - Jian Xiao
- Guangzhou Food Inspection Institute, Guangzhou, China
| | - Chong Wang
- Shandong New Hope Liuhe Group Ltd., Qingdao, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Cao C, Niu Q, Chen J, Xu X, Sheng H, Cui S, Liu B, Yang B. Epidemiology and Characterization of CTX-M-55-Type Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serovar Enteritidis Isolated from Patients in Shanghai, China. Microorganisms 2021; 9:microorganisms9020260. [PMID: 33513880 PMCID: PMC7912593 DOI: 10.3390/microorganisms9020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of extended-spectrum β-lactamase-producing Salmonella enterica serovar Enteritidis (ESBL-SE) in humans and foods has gained global attention. In particular, CTX-M-type ESBL-SE are increasingly being detected from various sample types. The aim of this study was to comprehensively analyze the epidemiology and characteristics of blaCTX-M-55-carrying ESBL-SE isolates of clinical origin in Shanghai, China. A total of 292 S. Enteritidis isolates were recovered from the feces and blood of outpatients and inpatients between 2006 and 2014. Overall, there was a high frequency of cefotaxime-resistant isolates (97.3%), which was significantly higher (p < 0.01) than that of isolates resistant to the other tested antibiotics. All S. Enteritidis isolates exhibited resistance to ≥1 antibiotic, and 98.0% were multidrug resistant. A total of 233 isolates were identified as ESBL-SE, 166 of which were CTX-M type. Six subtypes of CTX-M-encoding genes were detected, among which blaCTX-M-55 (91.6%, 152/166) was the most prevalent genotype. There was high genetic similarity among blaCTX-M-55-positive ESBL-SE. The blaCTX-M-55 gene in the ESBL-SE donor strains could be easily transferred into Enterobacteriaceae recipient strains. This study highlights that CTX-M-55 should be considered an important surveillance target in Shanghai, China. Cephalosporins, especially cefotaxime, must be used with caution in empirical treatment for Salmonella infections.
Collapse
Affiliation(s)
- Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (C.C.); (Q.N.); (H.S.); (B.L.)
| | - Qinya Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (C.C.); (Q.N.); (H.S.); (B.L.)
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China;
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control & Prevention, Shanghai 200336, China;
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (C.C.); (Q.N.); (H.S.); (B.L.)
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China;
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (C.C.); (Q.N.); (H.S.); (B.L.)
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (C.C.); (Q.N.); (H.S.); (B.L.)
- Correspondence: ; Tel./Fax: +86-29-87092486
| |
Collapse
|
22
|
Abstract
The incidence of ciprofloxacin resistance in Salmonella has increased dramatically in the past decade. To track the evolutionary trend of ciprofloxacin resistance-encoding genetic elements during this period, we surveyed the prevalence of Salmonella in food products in Shenzhen, China, during the period of 2012 to 2017 and performed whole-genome sequencing and genetic analysis of 566 ciprofloxacin-resistant clinical Salmonella strains collected during this survey. We observed that target gene mutations have become much less common, with single gyrA mutation currently detectable in Salmonella enterica serovar Typhimurium only. Multiple plasmid-mediated quinolone resistance (PMQR) genes located in the chromosome and plasmids are now frequently detectable in ciprofloxacin-resistant Salmonella strains of various serotypes. Among them, the qnrS1 gene was often harbored by multiple plasmids, with p10k-like plasmids being the most dominant. Importantly, p10k-like plasmids initially were not conjugative but became transmissible with the help of a helper plasmid. Ciprofloxacin resistance due to combined effect of carriage of the qnrS1 gene and other resistance mechanisms is common. In S Typhimurium, carriage of qnrS1 is often associated with a single gyrA mutation; in other serotypes, combination of qnrS1 and other PMQR genes located in the chromosomal fragment or plasmid is observed. Another major mechanism of ciprofloxacin resistance, mainly observable in S Derby, involves a chromosomal fragment harboring the qnrS2-aac(6')lb-cr-oqxAB elements. Intriguingly, this chromosomal fragment, flanked by IS26, could form a circular intermediate and became transferrable. To conclude, the increase in the incidence of various PMQR mobile genetic elements and their interactions with other resistance mechanism contribute to a sharp increase in the prevalence of ciprofloxacin-resistant clinical Salmonella strains in recent years.IMPORTANCE Resistance of nontyphoidal Salmonella to fluoroquinolones such as ciprofloxacin is known to be mediated by target mutations. This study surveyed the prevalence of Salmonella strains recovered from 2,989 food products in Shenzhen, China, during the period 2012 to 2017 and characterized the genetic features of several PMQR gene-bearing plasmids and ciprofloxacin resistance-encoding DNA fragments. The emergence of such genetic elements has caused a shift in the genetic location of ciprofloxacin resistance determinants from the chromosomal mutations to various mobile genetic elements. The distribution of these PMQR plasmids showed that they exhibited high serotype specificity, except for the p10k-like plasmids, which can be widely detected and efficiently transmitted among Salmonella strains of various serotypes by fusing to a new conjugative helper plasmid. The sharp increase in the prevalence of ciprofloxacin resistance in recent years may cause a predisposition to the emergence of multidrug-resistant Salmonella strains and pose huge challenges to public health and infection control efforts.
Collapse
|