1
|
Xu Q, Mu X, He J, Liu H, Liu X, Wang Y, Hua X, Yu Y. Phenotypic and genotypic characterization of clinical carbapenem-resistant Acinetobacter species harboring the metallo-beta-lactamases IMP-8 or NDM-1 in China. Microbiol Spectr 2024:e0115824. [PMID: 39727411 DOI: 10.1128/spectrum.01158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Carbapenem-resistant Acinetobacter spp. pose a significant challenge in clinical settings due to limited treatment options for nosocomial infections. Carbapenem-hydrolyzing class D beta-lactamases are the primary cause for carbapenem resistance, while metallo-beta-lactamases (MBLs) New Delhi metallo beta-lactamase (NDM) and imipenemase (IMP) also contribute. This study investigated five MBL-producing Acinetobacter spp. strains isolated from a clinic in China in 2010. The blaIMP-8-carrying A1014 was the first identified CRAB among all known STPas150 isolates worldwide. Through whole-genome sequencing and the southern blot analysis, we determined that blaIMP-8 was located on a pR4WN-type plasmid and blaNDM-1 was located on four distinct pSU1904NDM-type plasmids. The blaIMP-8 gene was identified within a class 1 integron organized as a 5'-conserved segment (intI), variable region (blaIMP-8-aac(6')-Ib), and 3'-conserved segment (qacEΔ1/sul1). All available sequences of blaIMP variants in A. baumannii from the NCBI were investigated and classified into five types of class 1 integrons. All blaNDM-1 plasmids were transferable, and the blaNDM-1 genes were in a conservative region. Additionally, multiple resistance genes, including those conferring resistance to aminoglycosides, tetracyclines, and macrolides, were detected on plasmids from these strains. All strains were resistant to meropenem and imipenem, while they were all susceptible to tigecycline and intermediate to polymyxin. A207 and A1014 were susceptible to cefiderocol, and only blaIMP-8-carrying A1014 had low MIC value (4/2 µg/mL) toward cefoperazone/sulbactam. In conclusion, we characterized the phenotypic and genotypic features of one IMP-8-producing and four NDM-1-producing plasmids recovered from Acinetobacter spp. strains isolated in 2010, contributing to the understanding of the dissemination and evolution of these enzymes. IMPORTANCE Given the low prevalence of IMP among A. baumannii and the limited sequencing technology in earlier years, research on blaIMP in A. baumannii is scarce, and genetic information on blaNDM-1-producing Acinetobacter spp. strains isolated in earlier years is limited. This study revisited five MBL-carrying Acinetobacter spp. strains isolated in 2010, characterizing their phenotypic and genotypic features. This retrospective analysis serves as a form of "bacterial archaeology," providing evidence of the evolutionary changes in genetic elements conferring antibiotic resistance.
Collapse
Affiliation(s)
- Qingye Xu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xinli Mu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaochen Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanfei Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Ellward GL, Binda ME, Dzurny DI, Bucher MJ, Dees WR, Czyż DM. A Screen of Traditional Chinese Medicinal Plant Extracts Reveals 17 Species with Antimicrobial Properties. Antibiotics (Basel) 2024; 13:1220. [PMID: 39766610 PMCID: PMC11726858 DOI: 10.3390/antibiotics13121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025] Open
Abstract
Background/Objectives: Antimicrobial resistance (AMR) is a growing threat that undermines the effectiveness of global healthcare. The Centers for Disease Control and Prevention and the World Health Organization have identified numerous microbial organisms, particularly members of the ESKAPEE pathogens, as critical threats to global health and economic security. Many clinical isolates of these pathogens have become completely resistant to current antibiotics, making treatment nearly impossible. Herbal remedies, such as those found in Traditional Chinese Medicine (TCM), have been practiced for thousands of years and successfully used to treat a wide range of ailments, including infectious diseases. Surprisingly, despite this extensive knowledge of folk medicine, no plant-derived antibacterial drugs are currently approved for clinical use. As such, the objective of this study is to evaluate the antimicrobial properties of extracts derived from TCM plants. Methods: This study explores a comprehensive library comprising 664 extracts from 132 distinct TCM plant species for antimicrobial properties against gram-negative (Escherichia coli) and gram-positive (Micrococcus luteus) bacteria using liquid and solid in vitro assays. Results: Intriguingly, our results reveal 17 plant species with potent antimicrobial properties effective primarily against gram-positive organisms, including Streptococcus aureus and epidermidis. A literature search revealed that nearly 100 purified compounds from the identified TCM plants were previously isolated and confirmed for their antimicrobial properties, collectively inhibiting 45 different bacterial species. Conclusions: Our results indicate that phytobiotics from the identified plants could serve as potential candidates for novel antimicrobials.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel M. Czyż
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611, USA; (G.L.E.); (D.I.D.)
| |
Collapse
|
3
|
Beig M, Parvizi E, Navidifar T, Bostanghadiri N, Mofid M, Golab N, Sholeh M. Geographical mapping and temporal trends of Acinetobacter baumannii carbapenem resistance: A comprehensive meta-analysis. PLoS One 2024; 19:e0311124. [PMID: 39680587 DOI: 10.1371/journal.pone.0311124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Acinetobacter baumannii (CRAB) is of critical concern in healthcare settings, leading to limited treatment options. In this study, we conducted a comprehensive meta-analysis to assess the prevalence of CRAB by examining temporal, geographic, and bias-related variations. METHODS We systematically searched prominent databases, including Scopus, PubMed, Web of Science, and EMBASE. Quality assessment was performed using the JBI checklist. Subgroup analyses were performed based on the COVID-19 timeframes, years, countries, continents, and bias levels, antimicrobial susceptivity test method and guidelines. RESULTS Our comprehensive meta-analysis, which included 795 studies across 80 countries from 1995 to 2023, revealed a surge in carbapenem resistance among A. baumannii, imipenem (76.1%), meropenem (73.5%), doripenem (73.0%), ertapenem (83.7%), and carbapenems (74.3%). Temporally, 2020-2023 witnessed significant peaks, particularly in carbapenems (81.0%) and meropenem (80.7%), as confirmed by meta-regression, indicating a steady upward trend. CONCLUSION This meta-analysis revealed an alarmingly high resistance rate to CRAB as a global challenge, emphasizing the urgent need for tailored interventions. Transparency, standardized methodologies, and collaboration are crucial for the accurate assessment and maintenance of carbapenem efficacy.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Parvizi
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Fars, Iran
| | - Tahereh Navidifar
- Shoushtar Faculty of Medical Sciences, Department of Basic Sciences, Shoushtar, Iran
| | - Narjes Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mofid
- School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Narges Golab
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Rumi MA, Oh M, Davis BC, Brown CL, Juvekar A, Vikesland PJ, Pruden A, Zhang L. MetaCompare 2.0: differential ranking of ecological and human health resistome risks. FEMS Microbiol Ecol 2024; 100:fiae155. [PMID: 39521944 DOI: 10.1093/femsec/fiae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/27/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
While numerous environmental factors contribute to the spread of antibiotic resistance genes (ARGs), quantifying their relative contributions remains a fundamental challenge. Similarly, it is important to differentiate acute human health risks from environmental exposure, versus broader ecological risk of ARG evolution and spread across microbial taxa. Recent studies have proposed various methods for achieving such aims. Here, we introduce MetaCompare 2.0, which improves upon original MetaCompare pipeline by differentiating indicators of human health resistome risk (potential for human pathogens of acute resistance concern to acquire ARGs) from ecological resistome risk (overall mobility of ARGs and potential for pathogen acquisition). The updated pipeline's sensitivity was demonstrated by analyzing diverse publicly-available metagenomes from wastewater, surface water, soil, sediment, human gut, and synthetic microbial communities. MetaCompare 2.0 provided distinct rankings of the metagenomes according to both human health resistome risk and ecological resistome risk, with both scores trending higher when influenced by anthropogenic impact or other stress. We evaluated the robustness of the pipeline to sequence assembly methods, sequencing depth, contig count, and metagenomic library coverage bias. The risk scores were remarkably consistent despite variations in these technological aspects. We packaged the improved pipeline into a publicly-available web service (http://metacompare.cs.vt.edu/) that provides an easy-to-use interface for computing resistome risk scores and visualizing results.
Collapse
Affiliation(s)
- Monjura Afrin Rumi
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Min Oh
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA
- Microsoft Research, Redmond, 98052 WA, USA
| | - Benjamin C Davis
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH 45268, USA
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Connor L Brown
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Adheesh Juvekar
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Peter J Vikesland
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
5
|
Zhang Q. Bacteria carrying mobile colistin resistance genes and their control measures, an updated review. Arch Microbiol 2024; 206:462. [PMID: 39516398 DOI: 10.1007/s00203-024-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The plasmid encoded mobile colistin resistance (MCRs) enzyme poses a significant challenge to the clinical efficacy of colistin, which is frequently employed as a last resort antibiotic for treating infections caused by multidrug resistant bacteria. This transferase catalyzes the addition of positively charged phosphoethanolamine to lipid A of the outer membrane of gram-negative bacteria, thereby facilitating the acquired colistin resistance. This review aims to summarize and critically discuss recent advancements in the distribution and pathogenesis of mcr-positive bacteria, as well as the various control measures available for treating these infections. In addition, the ecology of mcr genes, colistin-resistance mechanism, co-existence with other antibiotic resistant genes, and their impact on clinical treatment are also analyzed to address the colistin resistance crisis. These insights provide a comprehensive perspective on MCRs and serve as a valuable reference for future therapeutic approaches to effectively combat mcr-positive bacterial infections.
Collapse
Affiliation(s)
- Qi Zhang
- Centre for Eye and Vision Research, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
6
|
Pal N, Sharma P, Kumawat M, Singh S, Verma V, Tiwari RR, Sarma DK, Nagpal R, Kumar M. Phage therapy: an alternative treatment modality for MDR bacterial infections. Infect Dis (Lond) 2024; 56:785-817. [PMID: 39017931 DOI: 10.1080/23744235.2024.2379492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The increasing global incidence of multidrug-resistant (MDR) bacterial infections threatens public health and compromises various aspects of modern medicine. Recognising the urgency of this issue, the World Health Organisation has prioritised the development of novel antimicrobials to combat ESKAPEE pathogens. Comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli, such pathogens represent a spectrum of high to critical drug resistance, accounting for a significant proportion of hospital-acquired infections worldwide. In response to the waning efficacy of antibiotics against these resilient pathogens, phage therapy (PT) has emerged as a promising therapeutic strategy. This review provides a comprehensive summary of clinical research on PT and explores the translational journey of phages from laboratory settings to clinical applications. It examines recent advancements in pre-clinical and clinical developments, highlighting the potential of phages and their proteins, alone or in combination with antibiotics. Furthermore, this review underlines the importance of establishing safe and approved routes of phage administration to patients. In conclusion, the evolving landscape of phage therapy offers a beacon of hope in the fight against MDR bacterial infections, emphasising the imperative for continued research, innovation and regulatory diligence to realise its full potential in clinical practice.
Collapse
Affiliation(s)
- Namrata Pal
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
- Department of Microbiology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Poonam Sharma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Manoj Kumawat
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Samradhi Singh
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rajnarayan R Tiwari
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, USA
| | - Manoj Kumar
- Department of Microbiology, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| |
Collapse
|
7
|
Kouraki A, Zheng AS, Miller S, Kelly A, Ashraf W, Bazzani D, Bonadiman A, Tonidandel G, Bolzan M, Vijay A, Nightingale J, Menni C, Ollivere BJ, Valdes AM. Metagenomic changes in response to antibiotic treatment in severe orthopedic trauma patients. iScience 2024; 27:110783. [PMID: 39286492 PMCID: PMC11403444 DOI: 10.1016/j.isci.2024.110783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
We investigated changes in microbiome composition and abundance of antimicrobial resistance (AMR) genes post-antibiotic treatment in severe trauma patients. Shotgun sequencing revealed beta diversity (Bray-Curtis) differences between 16 hospitalized multiple rib fractures patients and 10 age- and sex-matched controls (p = 0.043), and between antibiotic-treated and untreated patients (p = 0.015). Antibiotic-treated patients had lower alpha diversity (Shannon) at discharge (p = 0.003) and 12-week post-discharge (p = 0.007). At 12 weeks, they also exhibited a 5.50-fold (95% confidence interval [CI]: 2.86-8.15) increase in Escherichia coli (p = 0.0004) compared to controls. Differential analysis identified nine AMRs that increased in antibiotic-treated compared to untreated patients between hospital discharge and 6 and 12 weeks follow-up (false discovery rate [FDR] < 0.20). Two aminoglycoside genes and a beta-lactamase gene were directly related to antibiotics administered, while five were unrelated. In trauma patients, lower alpha diversity, higher abundance of pathobionts, and increases in AMRs persisted for 12 weeks post-discharge, suggesting prolonged microbiome disruption. Probiotic or symbiotic therapies may offer future treatment avenues.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Amy S Zheng
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Suzanne Miller
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Anthony Kelly
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Waheed Ashraf
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | | | | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Jessica Nightingale
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Cristina Menni
- Department of Twin Research, King's College London, London SE1 7EH, UK
| | - Benjamin J Ollivere
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Ana M Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
8
|
Boonyalai N, Peerapongpaisarn D, Thamnurak C, Oransathid W, Wongpatcharamongkol N, Oransathid W, Lurchachaiwong W, Griesenbeck JS, Waters NC, Demons ST, Ruamsap N, Vesely BA. Screening of the Pandemic Response Box library identified promising compound candidate drug combinations against extensively drug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:21709. [PMID: 39289446 PMCID: PMC11408719 DOI: 10.1038/s41598-024-72603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Infections caused by antimicrobial-resistant Acinetobacter baumannii pose a significant threat to human health, particularly in the context of hospital-acquired infections. As existing antibiotics lose efficacy against Acinetobacter isolates, there is an urgent need for the development of novel antimicrobial agents. In this study, we assessed 400 structurally diverse compounds from the Medicines for Malaria Pandemic Response Box for their activity against two clinical isolates of A. baumannii: A. baumannii 5075, known for its extensive drug resistance, and A. baumannii QS17-1084, obtained from an infected wound in a Thai patient. Among the compounds tested, seven from the Pathogen box exhibited inhibitory effects on the in vitro growth of A. baumannii isolates, with IC50s ≤ 48 µM for A. baumannii QS17-1084 and IC50s ≤ 17 µM for A. baumannii 5075. Notably, two of these compounds, MUT056399 and MMV1580854, shared chemical scaffolds resembling triclosan. Further investigations involving drug combinations identified five synergistic drug combinations, suggesting potential avenues for therapeutic development. The combination of MUT056399 and brilacidin against A. baumannii QS17-1084 and that of MUT056399 and eravacycline against A. baumannii 5075 showed bactericidal activity. These combinations significantly inhibited biofilm formation produced by both A. baumannii strains. Our findings highlight the drug combinations as promising candidates for further evaluation in murine wound infection models against multidrug-resistant A. baumannii. These compounds hold potential for addressing the critical need for effective antibiotics in the face of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Dutsadee Peerapongpaisarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wilawan Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nantanat Wongpatcharamongkol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wirote Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Woradee Lurchachaiwong
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Division of Global Health Protection, Thailand MoPH-US CDC Collaboration, Nonthaburi, Thailand
| | - John S Griesenbeck
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Samandra T Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| |
Collapse
|
9
|
Kelemen J, Sztermen M, Dakos EK, Budai J, Katona J, Szekeressy Z, Sipos L, Papp Z, Stercz B, Dunai ZA, Kocsis B, Juhasz J, Michelisz F, Daku Z, Domokos J, Szabo D, Eross L. Complex Infection-Control Measures with Disinfectant Switch Help the Successful Early Control of Carbapenem-Resistant Acinetobacter baumannii Outbreak in Intensive Care Unit. Antibiotics (Basel) 2024; 13:869. [PMID: 39335042 PMCID: PMC11428383 DOI: 10.3390/antibiotics13090869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
A carbapenem-resistant Acinetobacter baumannii (CRAB) outbreak in an intensive care unit (ICU) was contained by an improved infection-control measure that included a disinfectant policy. In our retrospective cohort study, we describe the epidemiological investigations and infection-control measures during this outbreak. Descriptive analysis was used to summarize patient demographics, neurological diseases, surgical treatment, underlying diseases, infection, and outcomes. In December 2023, two CARB-positive patients were observed in the ICU, and four more patients became CRAB-positive in January. During this outbreak, there was an overlap of hospitalization periods among the CRAB-positive patients, and CRAB was isolated from the environment; the isolated CRAB strain was identical. Infection-control measures, including hand hygiene, contact precautions and isolation, surveillance, decolonization, environmental cleaning, and disinfection, were reviewed and modified. The aim of this study was to examine the molecular background of the effectiveness of the disinfectant shift used during successful outbreak control. Experiments were carried out to study the phenotypic sensitivity and genetic background of different disinfectant agents. A thorough analysis of the detected CRAB strain included whole-genome sequencing (WGS), investigation of the qacE and qacEΔ1 genes' relative expression by qPCR after exposure to different disinfectant solutions, as well as an analysis of biofilm formation. WGS analysis of the CRAB strain identified that an ST2 high-risk clone was responsible for the outbreak, which produced OXA-83 and ADC-30 beta-lactamases; in addition, qacE and qacEΔ1 genes were also detected, which confer resistance to disinfectants containing quaternary ammonium compounds (QACs). A qPCR analysis demonstrated that after exposure to different disinfectants, the gene expression levels of qacE and qacEΔ1 increased and correlated with concentrations of QACs of disinfectants. During the outbreak, the standard-of-care QAC-based disinfectant was changed to a mainly alcohol-based agent in the ICU, which contributed to the successful control of this outbreak, and no additional patients were identified with CRAB. We conclude that continuous surveillance and hand hygiene training combined with fast identification and reaction to new cases, as well as an in-depth analysis of multidrug-resistant outbreak strains and investigation of their disinfectant tolerance/resistance during an outbreak, are essential to effectively control the spread of nosocomial pathogens. The smart policy of disinfectant agent selection played a crucial role in controlling the outbreak and ensuring patient safety in the ICU.
Collapse
Affiliation(s)
- Jozsef Kelemen
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| | - Marton Sztermen
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| | - Eva Krisztina Dakos
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| | - Jozsef Budai
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| | - Jozsef Katona
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| | - Zsuzsanna Szekeressy
- Gyula Nyírő National Institute of Psychiatry and Addiction, 1135 Budapest, Hungary
| | - Laszlo Sipos
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| | - Zoltan Papp
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| | - Balazs Stercz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary
| | | | - Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Janos Juhasz
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, 1083 Budapest, Hungary
| | - Fruzsina Michelisz
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| | - Zsuzsanna Daku
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary
| | - Dora Szabo
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
- Institute of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
- HUN-REN-SU Human Microbiota Research Group, 1052 Budapest, Hungary
| | - Lorand Eross
- Department of Neurosurgery and Neurointervention, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
10
|
Charest AM, Reed E, Bozorgzadeh S, Hernandez L, Getsey NV, Smith L, Galperina A, Beauregard HE, Charest HA, Mitchell M, Riley MA. Nisin Inhibition of Gram-Negative Bacteria. Microorganisms 2024; 12:1230. [PMID: 38930612 PMCID: PMC11205666 DOI: 10.3390/microorganisms12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aims: This study investigates the activity of the broad-spectrum bacteriocin nisin against a large panel of Gram-negative bacterial isolates, including relevant plant, animal, and human pathogens. The aim is to generate supportive evidence towards the use/inclusion of bacteriocin-based therapeutics and open avenues for their continued development. Methods and Results: Nisin inhibitory activity was screened against a panel of 575 strains of Gram-negative bacteria, encompassing 17 genera. Nisin inhibition was observed in 309 out of 575 strains, challenging the prevailing belief that nisin lacks effectiveness against Gram-negative bacteria. The genera Acinetobacter, Helicobacter, Erwinia, and Xanthomonas exhibited particularly high nisin sensitivity. Conclusions: The findings of this study highlight the promising potential of nisin as a therapeutic agent for several key Gram-negative plant, animal, and human pathogens. These results challenge the prevailing notion that nisin is less effective or ineffective against Gram-negative pathogens when compared to Gram-positive pathogens and support future pursuits of nisin as a complementary therapy to existing antibiotics. Significance and Impact of Study: This research supports further exploration of nisin as a promising therapeutic agent for numerous human, animal, and plant health applications, offering a complementary tool for infection control in the face of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Adam M. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Ethan Reed
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Samantha Bozorgzadeh
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Lorenzo Hernandez
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Natalie V. Getsey
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Liam Smith
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Anastasia Galperina
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hadley E. Beauregard
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Hailey A. Charest
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
| | - Mathew Mitchell
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| | - Margaret A. Riley
- Department of Biology, University of Massachusetts, Amherst, MA 01002, USA; (A.M.C.); (E.R.); (S.B.); (L.H.); (N.V.G.); (L.S.); (A.G.); (H.E.B.); (H.A.C.)
- Organicin Scientific, 240 Thatcher Road, Amherst, MA 01003, USA;
| |
Collapse
|
11
|
Terrazas-López M, González-Segura L, Díaz-Vilchis A, Aguirre-Mendez KA, Lobo-Galo N, Martínez-Martínez A, Díaz-Sánchez ÁG. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity. Int J Biol Macromol 2024; 270:132281. [PMID: 38740150 DOI: 10.1016/j.ijbiomac.2024.132281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
DapE is a Zn2+-metallohydrolase recognized as a drug target for bacterial control. It is a homodimer that requires the exchange of interface strands by an induced fit essential for catalysis. Identifying novel anti-DapE agents requires greater structural details. Most of the characterized DapEs are from the Gram-negative group. Here, two high-resolution DapE crystal structures from Enterococcus faecium are presented for the first time with novel aspects. A loosened enzyme intermediate between the open and closed conformations is observed. Substrates may bind to loose state, subsequently it closes, where hydrolysis occurs, and finally, the change to the open state leads to the release of the products. Mutation of His352 suggests a role, along with His194, in the oxyanion stabilization in the mono-metalated Zn2+ isoform, while in the di-metalated isoform, the metal center 2 complements it function. An aromatic-π box potentially involved in the interaction of DapE with other proteins, and a peptide flip could determine the specificity in the Gram-positive ArgE/DapE group. Finally, details of two extra-catalytic cavities whose geometry changes depending on the conformational state of the enzyme are presented. These cavities could be a target for developing non-competitive agents that trap the enzyme in an inactive state.
Collapse
Affiliation(s)
- Manuel Terrazas-López
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Lilian González-Segura
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Adelaida Díaz-Vilchis
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Kelly Annecy Aguirre-Mendez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Naún Lobo-Galo
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Alejandro Martínez-Martínez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Ángel G Díaz-Sánchez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico.
| |
Collapse
|
12
|
Horvath ERB, Stein MG, Mulvey MA, Hernandez EJ, Winter JM. Resistance Gene Association and Inference Network (ReGAIN): A Bioinformatics Pipeline for Assessing Probabilistic Co-Occurrence Between Resistance Genes in Bacterial Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582197. [PMID: 38464005 PMCID: PMC10925210 DOI: 10.1101/2024.02.26.582197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The rampant rise of multidrug resistant (MDR) bacterial pathogens poses a severe health threat, necessitating innovative tools to unravel the complex genetic underpinnings of antimicrobial resistance. Despite significant strides in developing genomic tools for detecting resistance genes, a gap remains in analyzing organism-specific patterns of resistance gene co-occurrence. Addressing this deficiency, we developed the Resistance Gene Association and Inference Network (ReGAIN), a novel web-based and command line genomic platform that uses Bayesian network structure learning to identify and map resistance gene networks in bacterial pathogens. ReGAIN not only detects resistance genes using well-established methods, but also elucidates their complex interplay, critical for understanding MDR phenotypes. Focusing on ESKAPE pathogens, ReGAIN yielded a queryable database for investigating resistance gene co-occurrence, enriching resistome analyses, and providing new insights into the dynamics of antimicrobial resistance. Furthermore, the versatility of ReGAIN extends beyond antibiotic resistance genes to include assessment of co-occurrence patterns among heavy metal resistance and virulence determinants, providing a comprehensive overview of key gene relationships impacting both disease progression and treatment outcomes.
Collapse
Affiliation(s)
- Elijah R Bring Horvath
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112, United States
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Mathew G Stein
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112, United States
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, United States
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, United States
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, United States
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Matthew A Mulvey
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, United States
- Henry Eyring Center for Cell & Genome Science, University of Utah, Salt Lake City, UT 84112, United States
| | - Edgar J Hernandez
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112, United States
| |
Collapse
|
13
|
Bhardwaj S, Roy KK. ClpP Peptidase as a Plausible Target for the Discovery of Novel Antibiotics. Curr Drug Targets 2024; 25:108-120. [PMID: 38151841 DOI: 10.2174/0113894501274958231220053714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Antimicrobial resistance (AMR) to currently available antibiotics/drugs is a global threat. It is desirable to develop new drugs that work through a novel target(s) to avoid drug resistance. This review discusses the potential of the caseinolytic protease P (ClpP) peptidase complex as a novel target for finding novel antibiotics, emphasising the ClpP's structure and function. ClpP contributes to the survival of bacteria via its ability to destroy misfolded or aggregated proteins. In consequence, its inhibition may lead to microbial death. Drugs inhibiting ClpP activity are currently being tested, but no drug against this target has been approved yet. It was demonstrated that Nblocked dipeptides are essential for activating ClpP's proteolytic activity. Hence, compounds mimicking these dipeptides could act as inhibitors of the formation of an active ClpP complex. Drugs, including Bortezomib, Cisplatin, Cefmetazole, and Ixazomib, inhibit ClpP activation. However, they were not approved as drugs against the target because of their high toxicity, likely due to the presence of strong electrophiles in their warheads. The modifications of these warheads could be a good strategy to reduce the toxicity of these molecules. For instance, a boronate warhead was replaced by a chloromethyl ketone, and this new molecule was shown to exhibit selectivity for prokaryotic ClpP. A better understanding of the structure and function of the ClpP complex would benefit the search for compounds mimicking N-blocked dipeptides that would inhibit ClpP complex activity and cause bacterial death.
Collapse
Affiliation(s)
- Smriti Bhardwaj
- School of Health Sciences and Technology, UPES, Dehradun - 248007, Uttarakhand, India
| | - Kuldeep K Roy
- School of Health Sciences and Technology, UPES, Dehradun - 248007, Uttarakhand, India
| |
Collapse
|
14
|
Canè C, Casciaro B, Di Somma A, Loffredo MR, Puglisi E, Battaglia G, Mellini M, Cappiello F, Rampioni G, Leoni L, Amoresano A, Duilio A, Mangoni ML. The antimicrobial peptide Esc(1-21)-1c increases susceptibility of Pseudomonas aeruginosa to conventional antibiotics by decreasing the expression of the MexAB-OprM efflux pump. Front Chem 2023; 11:1271153. [PMID: 37942400 PMCID: PMC10628714 DOI: 10.3389/fchem.2023.1271153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction: The increase in bacterial strains resistant to conventional antibiotics is an alarming problem for human health and could lead to pandemics in the future. Among bacterial pathogens responsible for a large variety of severe infections there is Pseudomonas aeruginosa. Therefore, there is an urgent need for new molecules with antimicrobial activity or that can act as adjuvants of antibiotics already in use. In this scenario, antimicrobial peptides (AMPs) hold great promise. Recently, we characterized a frog-skin AMP derived from esculentin-1a, namely Esc(1-21)-1c, endowed with antipseudomonal activity without being cytotoxic to human cells. Methods: The combinatorial effect of the peptide and antibiotics was investigated through the checkerboard assay, differential proteomic and transcriptional analysis. Results: Here, we found that Esc(1-21)-1c can synergistically inhibit the growth of P. aeruginosa cells with three different antibiotics, including tetracycline. We therefore investigated the underlying mechanism implemented by the peptide using a differential proteomic approach. The data revealed a significant decrease in the production of three proteins belonging to the MexAB-OprM efflux pump upon treatment with sub-inhibitory concentration of Esc(1-21)-1c. Down-regulation of these proteins was confirmed by transcriptional analysis and direct measurement of their relative levels in bacterial cells by tandem mass spectrometry analysis in multiple reaction monitoring scan mode. Conclusion: These evidences suggest that treatment with Esc(1-21)-1c in combination with antibiotics would increase the intracellular drug content making bacteria more susceptible to the antibiotic. Overall, these results highlight the importance of characterizing new molecules able to synergize with conventional antibiotics, paving the way for the development of alternative therapeutic strategies based on AMP/antibiotic formulations to counteract the emergence of resistant bacterial strains and increase the use of "old" antibiotics in medical practice.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Puglisi
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gennaro Battaglia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Marta Mellini
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University “Roma Tre”, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Guo W, Liu Y, Yao Z, Zhou H, Wang X, Huang Z, Zhang X, Wu Q, Zhou T. Bithionol Restores Sensitivity of Multidrug-Resistant Gram-Negative Bacteria to Colistin with Antimicrobial and Anti-biofilm Effects. ACS Infect Dis 2023; 9:1634-1646. [PMID: 37458689 DOI: 10.1021/acsinfecdis.3c00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Being among the few last-resort antibiotics, colistin (COL) has been used to treat severe infectious diseases, such as those caused by multidrug-resistant Gram-negative bacteria (MDR GNB). However, the appearance of colistin-resistant (COL-R) GNB has been frequently reported. Therefore, novel antimicrobial strategies need to be urgently sought to address this resistance challenge. In the present study, antimicrobial drug screening conducted revealed that bithionol (BT), approved by the Food and Drug Administration and used as an anthelminthic drug for paragonimiasis, exhibited a synergistic antibacterial effect with COL. Clinically isolated COL-R GNB were used as candidates to evaluate the synergistic antibacterial activity. The results revealed that BT could significantly reverse the sensitivity of COL-R GNB to COL. Furthermore, the combined application of BT and COL can reduce bacterial biofilm formation and have a scavenging effect on the mature biofilm in vitro. The damage caused to the bacterial cell membrane integrity by the BT/COL combination was observed under a fluorescence microscope. The fluorescence intensity of reactive oxygen species also increased in the experimental group. The BT/COL combination also exhibited a synergistic antibacterial effect in vivo. Importantly, BT was confirmed to be safe at the highest concentrations that exerted synergistic effects on all tested strains. In conclusion, our findings demonstrated that BT exerted synergistic antimicrobial and anti-biofilm effects when combined with COL against MDR organisms, especially COL-R GNB, in vitro and in vivo. The findings thus provide a reference for the clinical response to the serious challenge of MDR GNB and the exploitation of the potential antibacterial activities of existing clinical non-antibacterial drugs.
Collapse
Affiliation(s)
- Wenhui Guo
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhuocheng Yao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huijing Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiuxiu Wang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zeyu Huang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Wu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
16
|
Moore-Machacek A, Gloe A, O'Leary N, Reen FJ. Efflux, Signaling and Warfare in a Polymicrobial World. Antibiotics (Basel) 2023; 12:antibiotics12040731. [PMID: 37107093 PMCID: PMC10135244 DOI: 10.3390/antibiotics12040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The discovery void of antimicrobial development has occurred at a time when the world has seen a rapid emergence and spread of antimicrobial resistance, the 'perfect storm' as it has often been described. While the discovery and development of new antibiotics has continued in the research sphere, the pipeline to clinic has largely been fed by derivatives of existing classes of antibiotics, each prone to pre-existing resistance mechanisms. A novel approach to infection management has come from the ecological perspective whereby microbial networks and evolved communities already possess small molecular capabilities for pathogen control. The spatiotemporal nature of microbial interactions is such that mutualism and parasitism are often two ends of the same stick. Small molecule efflux inhibitors can directly target antibiotic efflux, a primary resistance mechanism adopted by many species of bacteria and fungi. However, a much broader anti-infective capability resides within the action of these inhibitors, borne from the role of efflux in key physiological and virulence processes, including biofilm formation, toxin efflux, and stress management. Understanding how these behaviors manifest within complex polymicrobial communities is key to unlocking the full potential of the advanced repertoires of efflux inhibitors.
Collapse
Affiliation(s)
| | - Antje Gloe
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Institute for Pharmaceutical Microbiology, University of Bonn, D-53113 Bonn, Germany
| | - Niall O'Leary
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|