1
|
Abera D, Negash AA, Fentaw S, Mekonnen Y, Cataldo RJ, Wami AA, Mihret A, Abegaz WE. High prevalence of colonization with extended-spectrum β-lactamase-producing and multidrug-resistant Enterobacterales in the community in Addis Ababa Ethiopia: risk factors, carbapenem resistance, and molecular characterization. BMC Microbiol 2024; 24:402. [PMID: 39390409 PMCID: PMC11465526 DOI: 10.1186/s12866-024-03552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Globally, extended-spectrum beta-lactamase-producing and carbapenem-resistant Enterobacterales are major causes of hospital-acquired infections and there are increasing concerns about their role in community-acquired infections. OBJECTIVE We aimed to investigate the prevalence of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) and Carbapenemase-producing-Carbapenemresistant-Enterobacterales (CP-CRE) and associated factors in community settings in Gulele sub city, Addis Ababa, Ethiopia. METHODS A cross-sectional study was conducted among 261 healthy individuals. Stool samples were collected and processed using standard microbiological methods. Antimicrobial susceptibility and phenotypic ESBL and carbapenemase tests were performed. Antibiotic resistance genes were detected by Polymerase Chain Reaction (PCR). RESULTS The colonization rate of ESBL-PE and CP-CRE were 31.4% (82/261, 95% CI: 25.91-37.48) and 0.8% (2/261, 95% CI: 0.13-3.1), respectively by phenotypic method. Molecular detection of genes for ESBL-PE was 27.9% (73/261, 95% CI:22.7-33.9), and for CP-CRE was 0.8% (2/261, 95% CI: 0.13-3.1). The most prevalent genes were blaTEM [76.7% (56/73)] and blaCTX-M [45.2% (33/73)]. Previous antibiotic use (AOR:2.04, 95%CI: 1.35-4.41, P:0.041) and age between 42 and 53 years old (AOR:3.00, 95%CI:1.12-7.48, P:0.019) were significantly associated with ESBL-PE colonization. CONCLUSION Intestinal colonization by ESBL-PE harboring the associated antibiotic resistance genes was substantially high but with low CP-CRE. Continued surveillance of community-level carriage of antimicrobial resistance Enterobacterales is warranted.
Collapse
Affiliation(s)
- Dessie Abera
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Abel Abera Negash
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Surafel Fentaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Mekonnen
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
2
|
Montazeri EA, Saki M, Savari M, Meghdadi H, Akrami S. Association between the presence of CRISPR-Cas system genes and antibiotic resistance in Klebsiella pneumoniae isolated from patients admitted in Ahvaz teaching hospitals. BMC Infect Dis 2024; 24:1117. [PMID: 39375619 PMCID: PMC11460096 DOI: 10.1186/s12879-024-10018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND This study aims to investigate the frequency of cas1 and cas3 and CRISPR1,2,3 genes in Klebsiella pneumoniae isolates, as well as their connection with antibiotic resistance. MATERIALS AND METHODS 106 K. pneumoniae isolates were identified by biochemical assays and PCR. The susceptibility to antibiotics was determined by Kirby-Bauer disk diffusion method. Screening of ESBLs was undertaken by using double disk diffusion and standard disk diffusion methods. The E-test and mCIM techniques was used to confirm the disc diffusion-based carbapenem resistance profiles. CRISPR-Cas system genes were identified using PCR. RESULTS ESBL production was found in 19% of isolates. Carbapenemase production was found in 46% of the isolates. Furthermore, the bacteria were classified as multidrug (76%), extensively drug-resistant (4%), or pan-drug-resistant (2%). When CRISPR/Cas systems were present, antibiotic resistance was lower; conversely, when they were absent, resistance was higher. CONCLUSIONS If the CRISPR/Cas modules aren't present, the bacteria can still acquire foreign DNA, including antibiotic resistance genes. K. pneumoniae isolates with a CRISPR-Cas system were less likely to carry antibiotic-resistance genes than those lacking this defense system.
Collapse
Affiliation(s)
- Effat Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Saki
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Savari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Meghdadi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sousan Akrami
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chelaru EC, Muntean AA, Hogea MO, Muntean MM, Popa MI, Popa GL. The Importance of Carbapenemase-Producing Enterobacterales in African Countries: Evolution and Current Burden. Antibiotics (Basel) 2024; 13:295. [PMID: 38666971 PMCID: PMC11047529 DOI: 10.3390/antibiotics13040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a worldwide healthcare problem. Multidrug-resistant organisms (MDROs) can spread quickly owing to their resistance mechanisms. Although colonized individuals are crucial for MDRO dissemination, colonizing microbes can lead to symptomatic infections in carriers. Carbapenemase-producing Enterobacterales (CPE) are among the most important MDROs involved in colonizations and infections with severe outcomes. This review aimed to track down the first reports of CPE in Africa, describe their dissemination throughout African countries and summarize the current status of CRE and CPE data, highlighting current knowledge and limitations of reported data. Two database queries were undertaken using Medical Subject Headings (MeSH), employing relevant keywords to identify articles that had as their topics beta-lactamases, carbapenemases and carbapenem resistance pertaining to Africa or African regions and countries. The first information on CPE could be traced back to the mid-2000s, but data for many African countries were established after 2015-2018. Information is presented chronologically for each country. Although no clear conclusions could be drawn for some countries, it was observed that CPE infections and colonizations are present in most African countries and that carbapenem-resistance levels are rising. The most common CPE involved are Klebsiella pneumoniae and Escherichia coli, and the most prevalent carbapenemases are NDM-type and OXA-48-type enzymes. Prophylactic measures, such as screening, are required to combat this phenomenon.
Collapse
Affiliation(s)
- Edgar-Costin Chelaru
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Andrei-Alexandru Muntean
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
- Department of Microbiology, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Mihai-Octav Hogea
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Mădălina-Maria Muntean
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
| | - Mircea-Ioan Popa
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.-C.C.); (A.-A.M.); (M.-O.H.); (M.-M.M.)
- Department of Microbiology, Cantacuzino National Military Medical Institute for Research and Development, 050096 Bucharest, Romania
| | - Gabriela-Loredana Popa
- Department of Microbiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Parasitic Disease Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
4
|
Gashaw M, Gudina EK, Ali S, Gabriele L, Seeholzer T, Alemu B, Froeschl G, Kroidl A, Wieser A. Molecular characterization of carbapenem-resistance in Gram-negative isolates obtained from clinical samples at Jimma Medical Center, Ethiopia. Front Microbiol 2024; 15:1336387. [PMID: 38328425 PMCID: PMC10848150 DOI: 10.3389/fmicb.2024.1336387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background In resource-constrained settings, limited antibiotic options make treating carbapenem-resistant bacterial infections difficult for healthcare providers. This study aimed to assess carbapenemase expression in Gram-negative bacteria isolated from clinical samples in Jimma, Ethiopia. Methods A cross-sectional study was conducted to assess carbapenemase expression in Gram-negative bacteria isolated from patients attending Jimma Medical Center. Totally, 846 Gram-negative bacteria were isolated and identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Phenotypic antibiotic resistance patterns were determined using the Kirby-Bauer disk diffusion method and Etest strips. Extended-spectrum β-lactamase phenotype was determined using MAST disks, and carbapenemases were characterized using multiplex polymerase chain reactions (PCR). Results Among the isolates, 19% (157/846) showed phenotypic resistance to carbapenem antibiotics. PCR analysis revealed that at least one carbapenemase gene was detected in 69% (107/155) of these strains. The most frequently detected acquired genes were blaNDM in 35% (37/107), blaVIM in 24% (26/107), and blaKPC42 in 13% (14/107) of the isolates. Coexistence of two or more acquired genes was observed in 31% (33/107) of the isolates. The most common coexisting acquired genes were blaNDM + blaOXA-23, detected in 24% (8/33) of these isolates. No carbapenemase-encoding genes could be detected in 31% (48/155) of carbapenem-resistant isolates, with P. aeruginosa accounting for 85% (41/48) thereof. Conclusion This study revealed high and incremental rates of carbapenem-resistant bacteria in clinical samples with various carbapenemase-encoding genes. This imposes a severe challenge to effective patient care in the context of already limited treatment options against Gram-negative bacterial infections in resource-constrained settings.
Collapse
Affiliation(s)
- Mulatu Gashaw
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- CIHLMU Center for International Health, Ludwig Maximilians Universität München, Munich, Germany
| | | | - Solomon Ali
- Saint Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Liegl Gabriele
- Max von Pettenkofer-Institute (Medical Microbiology), Ludwig Maximilian University of Munich, Munich, Germany
| | - Thomas Seeholzer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Bikila Alemu
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Guenter Froeschl
- CIHLMU Center for International Health, Ludwig Maximilians Universität München, Munich, Germany
- Division of Infectious Disease and Tropical Medicine, University Hospital (LMU), Munich, Germany
| | - Arne Kroidl
- CIHLMU Center for International Health, Ludwig Maximilians Universität München, Munich, Germany
- Division of Infectious Disease and Tropical Medicine, University Hospital (LMU), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Andreas Wieser
- Max von Pettenkofer-Institute (Medical Microbiology), Ludwig Maximilian University of Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
- Division of Infectious Disease and Tropical Medicine, University Hospital (LMU), Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
5
|
Zenebe T, Eguale T, Desalegn Z, Beshah D, Gebre-Selassie S, Mihret A, Abebe T. Distribution of ß-Lactamase Genes Among Multidrug-Resistant and Extended-Spectrum ß-Lactamase-Producing Diarrheagenic Escherichia coli from Under-Five Children in Ethiopia. Infect Drug Resist 2023; 16:7041-7054. [PMID: 37954506 PMCID: PMC10637226 DOI: 10.2147/idr.s432743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose Escherichia coli strains that produce extended-spectrum ß-lactamase (ESBL) and carbapenemase are among the major threats to global health. The objective of the present study was to determine the distribution of ß-lactamase genes among multidrug-resistant (MDR) and ESBL-producing Diarrheagenic E. coli (DEC) pathotypes isolated from under-five children in Ethiopia. Patients and Methods A cross-sectional study was conducted in Addis Ababa and Debre Berhan, Ethiopia. It was a health-facility-based study and conducted between December 2020 and August 2021. A total of 476 under-five children participated in the study. DEC pathotypes were detected by conventional Polymerase Chain Reaction (PCR) assay. After evaluating the antimicrobial susceptibility profile of the DEC strains by disk diffusion method, confirmation test was done for ESBL and carbapenemase production. ß-lactamase encoding genes were identified from phenotypically ESBLs and carbapenemase positive DEC strains using PCR assay. Results In total, 183 DEC pathotypes were isolated from the 476 under-five children. Seventy-nine (43%, 79/183) MDR-DEC pathotypes were identified. MDR was common among enteroaggregative E. coli (EAEC) (58%, 44/76), followed by enterotoxigenic E. coli (ETEC) (44%, 17/39)) and enteroinvasive E. coli (EIEC) (30%, 7/23). Phenotypically, a total of 30 MDR-DEC pathotypes (16.4%, 30/183) were tested positive for ESBLs. Few ETEC (5.1%, 2/39) and EAEC (2.6%, 2/76) were carbapenemase producers. The predominant β-lactamase genes identified was blaTEM (80%, 24/30) followed by blaCTX-M (73%, 22/30), blaSHV (60%, 18/30), blaNDM (13%, 4/30), and blaOXA-48 (13%, 4/30). Majority of the ß-lactamase encoding genes were detected in EAEC (50%) and ETEC (20%). Co-existence of different β-lactamase genes was found in the present study. Conclusion The blaTEM, blaCTX-M, blaSHV, blaNDM, and blaOXA-48, that are associated with serious and urgent threats globally, were detected in diarrheagenic E. coli isolates from under-five children in Ethiopia. This study also revealed the coexistence of the β-lactamase genes.
Collapse
Affiliation(s)
- Tizazu Zenebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Debre Berhan University, Debre Berhan, Ethiopia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Ohio State University, Global One Health LLC, Addis Ababa, Ethiopia
| | - Zelalem Desalegn
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Beshah
- Department of Medical Laboratory, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Gebre-Selassie
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
- Bacterial and Viral Disease Research Directorate, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Mancuso G, De Gaetano S, Midiri A, Zummo S, Biondo C. The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: "Attack on Titan". Microorganisms 2023; 11:1912. [PMID: 37630472 PMCID: PMC10456941 DOI: 10.3390/microorganisms11081912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The global burden of bacterial resistance remains one of the most serious public health concerns. Infections caused by multidrug-resistant (MDR) bacteria in critically ill patients require immediate empirical treatment, which may not only be ineffective due to the resistance of MDR bacteria to multiple classes of antibiotics, but may also contribute to the selection and spread of antimicrobial resistance. Both the WHO and the ECDC consider carbapenem-resistant Enterobacteriaceae (CRE), carbapenem-resistant Pseudomonas aeruginosa (CRPA), and carbapenem-resistant Acinetobacter baumannii (CRAB) to be the highest priority. The ability to form biofilm and the acquisition of multiple drug resistance genes, in particular to carbapenems, have made these pathogens particularly difficult to treat. They are a growing cause of healthcare-associated infections and a significant threat to public health, associated with a high mortality rate. Moreover, co-colonization with these pathogens in critically ill patients was found to be a significant predictor for in-hospital mortality. Importantly, they have the potential to spread resistance using mobile genetic elements. Given the current situation, it is clear that finding new ways to combat antimicrobial resistance can no longer be delayed. The aim of this review was to evaluate the literature on how these pathogens contribute to the global burden of AMR. The review also highlights the importance of the rational use of antibiotics and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, the review discusses the advantages and limitations of alternative therapies for the treatment of infections caused by these "titans" of antibiotic resistance.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (S.D.G.); (A.M.); (S.Z.); (C.B.)
| | | | | | | | | |
Collapse
|