1
|
Porav-Hodade D, Gherasim R, Loghin A, Lazar B, Cotoi OS, Badea MA, Ilona MOK, Todea-Moga C, Vartolomei MD, Rares G, Crisan N, Feciche OB. Bladder Adenocarcinoma in a Constellation of Multiple Site Malignancies: An Unusual Case and Systematic Review. Diagnostics (Basel) 2024; 14:2510. [PMID: 39594177 PMCID: PMC11592427 DOI: 10.3390/diagnostics14222510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Multiple primary malignant tumors represent a small percentage of the total number of oncological cases and can involve either metachronous or synchronous development and represent challenges in diagnosis, staging, and treatment planning. Our purpose is to present a rare case of bladder adenocarcinoma in a female patient with multiple primary malignant tumors and to provide systematic review of the available literature. MATERIALS AND METHODS A 67-year-old female patient was admitted with altered general condition and anuria. The past medical history of the patient included malignant melanoma (2014), cervical cancer (2017), colon cancer (2021), obstructive anuria (2023), and liver metastasectomy (2023). Transurethral resection of bladder tumor was performed for bladder tumors. RESULTS Contrast CT highlighted multiple pulmonary metastases, a poly nodular liver conglomerate, retroperitoneal lymph node, II/III grade left ureterohydronephrosis, and no digestive tract tumor masses. The pathological result of the bladder resection showed an infiltrative adenocarcinoma. CONCLUSIONS The difference between primary bladder adenocarcinoma tumor and metastatic colorectal adenocarcinoma is the key for the future therapeutic strategy. Identification and assessment of risk factors such as viral infection, radiotherapy, chemotherapy, smoking, and genetics are pivotal in understanding and managing multiple primary malignant tumors. Personalized prevention strategies and screening programs may facilitate the early detection of these tumors, whether synchronous or metachronous. The use of multicancer early detection (MCED) blood tests for early diagnosis appears promising. However, additional research is needed to standardize these techniques for cancer detection.
Collapse
Affiliation(s)
- Daniel Porav-Hodade
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (D.P.-H.); (M.O.K.I.)
- Department of Urology, Clinical County Hospital Mures, 540136 Târgu Mures, Romania;
| | - Raul Gherasim
- Department of Urology, Clinical County Hospital Mures, 540136 Târgu Mures, Romania;
| | - Andrada Loghin
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.L.); (O.S.C.)
- Department of Pathophysiology, Clinical County Hospital Mures, 540136 Târgu Mures, Romania;
| | - Bianca Lazar
- Department of Pathophysiology, Clinical County Hospital Mures, 540136 Târgu Mures, Romania;
| | - Ovidiu Simion Cotoi
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (A.L.); (O.S.C.)
- Department of Pathophysiology, Clinical County Hospital Mures, 540136 Târgu Mures, Romania;
| | - Mihail-Alexandru Badea
- Department of Dermatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Department of Dermatology, Clinical County Hospital Mures, 540136 Târgu Mures, Romania
| | - Mártha Orsolya Katalin Ilona
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (D.P.-H.); (M.O.K.I.)
- Department of Urology, Clinical County Hospital Mures, 540136 Târgu Mures, Romania;
| | - Ciprian Todea-Moga
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania; (D.P.-H.); (M.O.K.I.)
- Department of Urology, Clinical County Hospital Mures, 540136 Târgu Mures, Romania;
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Georgescu Rares
- Department of General Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
- Department of General Surgery, Clinical County Hospital Mures, 540136 Târgu Mures, Romania
| | - Nicolae Crisan
- Department of Urology, Iului Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ovidiu Bogdan Feciche
- Department of Urology, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Department of Urology, Emergency County Hospital Oradea, 410169 Oradea, Romania
| |
Collapse
|
2
|
Letafati A, Bahari M, Salahi Ardekani O, Nayerain Jazi N, Nikzad A, norouzi F, Mahdavi B, Aboofazeli A, Mozhgani SH. HTLV-1 vaccination Landscape: Current developments and challenges. Vaccine X 2024; 19:100525. [PMID: 39105133 PMCID: PMC11298643 DOI: 10.1016/j.jvacx.2024.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/23/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that is distinguished for its correlation to myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATLL). As well, HTLV-1 has been documented to have links with other inflammatory diseases, such as uveitis and dermatitis. According to the World Health Organization (WHO), the global distribution of HTLV-1 infection is estimated to extend between 5 and 10 million individuals. Recent efforts in HTLV-1 vaccine development primarily involve selecting viral components, such as antigens, from structural and non-structural proteins. These components are chosen to trigger a vigorous immune response from cytotoxic T lymphocytes (CTLs), helper T lymphocytes (HTLs), and B cells. Investigation into developing a vaccine against HTLV-1 is ongoing, and current surveys have explored several approaches, including viral vector vaccines, DNA vaccines, protein and peptide vaccines, dendritic cell-based vaccines, mRNA vaccines, and other platforms. Despite these investigations have shown promising results, challenges like the necessity for long-term protective immunity, addressing viral diversity, and managing potential side effects remain. It is critical to keep track of the progress made in HTLV-1 vaccination research to comprehend the development status and its possible impacts. The evolving nature of vaccine development underscores the importance of staying informed about advancements as we strive to combat HTLV-1-associated diseases through effective vaccination strategies. In this review, our goal is to provide an overview of the current status of HTLV-1 vaccination efforts, emphasizing the progress, challenges, and potential future directions in this vital area of research.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mahshid Bahari
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Negar Nayerain Jazi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Abuzar Nikzad
- Dipartimento di Chimica Organica e Industriale Universita’ di Milano, Milan, Italy
| | - Farnaz norouzi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Bahar Mahdavi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Amir Aboofazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
3
|
Daian E Silva DSO, Cox LJ, Rocha AS, Lopes-Ribeiro Á, Souza JPC, Franco GM, Prado JLC, Pereira-Santos TA, Martins ML, Coelho-Dos-Reis JGA, Gomes-de-Pinho TM, Da Fonseca FG, Barbosa-Stancioli EF. Preclinical assessment of an anti-HTLV-1 heterologous DNA/MVA vaccine protocol expressing a multiepitope HBZ protein. Virol J 2023; 20:304. [PMID: 38115107 PMCID: PMC10731796 DOI: 10.1186/s12985-023-02264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Human T-lymphotropic virus 1 (HTLV-1) is associated with the development of several pathologies and chronic infection in humans. The inefficiency of the available treatments and the challenge in developing a protective vaccine highlight the need to produce effective immunotherapeutic tools. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ) plays an important role in the HTLV-1 persistence, conferring a survival advantage to infected cells by reducing the HTLV-1 proteins expression, allowing infected cells to evade immune surveillance, and enhancing cell proliferation leading to increased proviral load. METHODS We have generated a recombinant Modified Virus Vaccinia Ankara (MVA-HBZ) and a plasmid DNA (pcDNA3.1(+)-HBZ) expressing a multiepitope protein based on peptides of HBZ to study the immunogenic potential of this viral-derived protein in BALB/c mice model. Mice were immunized in a prime-boost heterologous protocol and their splenocytes (T CD4+ and T CD8+) were immunophenotyped by flow cytometry and the humoral response was evaluated by ELISA using HBZ protein produced in prokaryotic vector as antigen. RESULTS T CD4+ and T CD8+ lymphocytes cells stimulated by HBZ-peptides (HBZ42-50 and HBZ157-176) showed polyfunctional double positive responses for TNF-α/IFN-γ, and TNF-α/IL-2. Moreover, T CD8+ cells presented a tendency in the activation of effector memory cells producing granzyme B (CD44+High/CD62L-Low), and the activation of Cytotoxic T Lymphocytes (CTLs) and cytotoxic responses in immunized mice were inferred through the production of granzyme B by effector memory T cells and the expression of CD107a by CD8+ T cells. The overall data is consistent with a directive and effector recall response, which may be able to operate actively in the elimination of HTLV-1-infected cells and, consequently, in the reduction of the proviral load. Sera from immunized mice, differently from those of control animals, showed IgG-anti-HBZ production by ELISA. CONCLUSIONS Our results highlight the potential of the HBZ multiepitope protein expressed from plasmid DNA and a poxviral vector as candidates for therapeutic vaccine.
Collapse
Affiliation(s)
- D S O Daian E Silva
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - L J Cox
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - A S Rocha
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - Á Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - J P C Souza
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - G M Franco
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - J L C Prado
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - T A Pereira-Santos
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - M L Martins
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
- Gerência de Desenvolvimento Técnico Científico, Fundação Centro de Hematologia e Hemoterapia do Estado de Minas Gerais - Hemominas, Belo Horizonte, Brazil
| | - J G A Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - T M Gomes-de-Pinho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - F G Da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - E F Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil.
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Horai Y, Shimizu T, Umeda M, Nishihata SY, Nakamura H, Kawakami A. Current Views on Pathophysiology and Potential Therapeutic Targets in Sjögren's Syndrome: A Review from the Perspective of Viral Infections, Toll-like Receptors, and Long-Noncoding RNAs. J Clin Med 2023; 12:5873. [PMID: 37762814 PMCID: PMC10531551 DOI: 10.3390/jcm12185873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Sjögren's syndrome (SS) is a rheumatic disease characterized by sicca and extraglandular symptoms, such as interstitial lung disease and renal tubular acidosis. SS potentially affects the prognosis of patients, especially in cases of complicated extraglandular symptoms; however, only symptomatic therapies against xerophthalmia and xerostomia are currently included in the practice guidelines as recommended therapies for SS. Considering that SS is presumed to be a multifactorial entity caused by genetic and environmental factors, a multidisciplinary approach is necessary to clarify the whole picture of its pathogenesis and to develop disease-specific therapies for SS. This review discusses past achievements and future prospects for pursuing the pathophysiology and therapeutic targets for SS, especially from the perspectives of viral infections, toll-like receptors (TLRs), long-noncoding RNAs (lncRNAs), and related signals. Based on the emerging roles of viral infections, TLRs, long-noncoding RNAs and related signals, antiviral therapy, hydroxychloroquine, and vitamin D may lower the risk of or mitigate SS. Janus-kinase (JAK) inhibitors are also potential novel therapeutic options for several rheumatic diseases involving the JAK-signal transducer and activator of transcription pathways, which are yet to be ascertained in a randomized controlled study targeting SS.
Collapse
Affiliation(s)
- Yoshiro Horai
- Department of Rheumatology, Sasebo City General Hospital, Sasebo 857-8511, Japan
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| | - Toshimasa Shimizu
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
- Clinical Research Center, Nagasaki University Hospital, Nagasaki 852-8501, Japan
| | - Masataka Umeda
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| | - Shin-Ya Nishihata
- Department of Rheumatology, National Hospital Organization Ureshino Medical Center, Ureshino 843-0393, Japan;
| | - Hideki Nakamura
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (T.S.); (M.U.); (A.K.)
| |
Collapse
|