1
|
Haacke EM, Xu Q, Kokeny P, Gharabaghi S, Chen Y, Wu B, Liu Y, He N, Yan F. Strategically Acquired Gradient Echo (STAGE) Imaging, part IV: Constrained Reconstruction of White Noise (CROWN) Processing as a Means to Improve Signal-to-Noise in STAGE Imaging at 3 Tesla. Magn Reson Imaging 2024; 107:55-68. [PMID: 38181834 DOI: 10.1016/j.mri.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Increasing the signal-to-noise ratio (SNR) has always been of critical importance for magnetic resonance imaging. Although increasing field strength provides a linear increase in SNR, it is more and more costly as field strength increases. Therefore, there is a major effort today to use signal processing methods to improve SNR since it is more efficient and economical. There are a variety of methods to improve SNR such as averaging the data at the expense of imaging time, or collecting the data with a lower resolution, all of these methods, including imaging processing methods, usually come at the expense of loss of image detail or image blurring. Therefore, we developed a new mathematical approach called CROWN (Constrained Reconstruction of White Noise) to enhance SNR without loss of structural detail and without affecting scanning time. In this study, we introduced and tested the concept behind CROWN specifically for STAGE (strategically acquired gradient echo) imaging. The concept itself is presented first, followed by simulations to demonstrate its theoretical effectiveness. Then the SNR improvement on proton spin density (PSD) and R2⁎ maps was investigated using brain STAGE data acquired from 10 healthy controls (HCs) and 10 patients with Parkinson's disease (PD). For the PSD and R2* maps, the SNR and CNR between white matter and gray matter were improved by a factor of 1.87 ± 0.50 and 1.72 ± 0.88, respectively. The white matter hyperintensity lesions in PD patients were more clearly defined after CROWN processing. Using these improved maps, simulated images for any repeat time, echo time or flip angle can be created with improved SNR. The potential applications of this technology are to trade off the increased SNR for higher resolution images and/or faster imaging.
Collapse
Affiliation(s)
- E Mark Haacke
- SpinTech MRI, Bingham Farms, MI 48025, United States of America; Wayne State University, Department of Neurology, Detroit, MI 48201, United States of America; Wayne State University, Department of Radiology, Detroit, MI 48201, United States of America; Zhuyan Limited, Shanghai, China.
| | - Qiuyun Xu
- SpinTech MRI, Bingham Farms, MI 48025, United States of America
| | - Paul Kokeny
- SpinTech MRI, Bingham Farms, MI 48025, United States of America
| | - Sara Gharabaghi
- SpinTech MRI, Bingham Farms, MI 48025, United States of America
| | - Yongsheng Chen
- Wayne State University, Department of Neurology, Detroit, MI 48201, United States of America
| | - Bo Wu
- Zhuyan Limited, Shanghai, China
| | - Yu Liu
- Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Department of Radiology, Shanghai, China
| | - Naying He
- Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Department of Radiology, Shanghai, China
| | - Fuhua Yan
- Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Department of Radiology, Shanghai, China
| |
Collapse
|
2
|
Kumar V, Srivastava S. Performance analysis of reshaped Gabor filter for removing the Rician distributed noise in brain MR images. Proc Inst Mech Eng H 2022; 236:1216-1231. [DOI: 10.1177/09544119221105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic Resonance Imaging (MRI) is an essential clinical tool for detecting the abnormalities such as tumors and clots in the human brain. The brain MR images are contaminated by artifacts and noise that follow Rician distribution during the acquisition process. It causes the loss of fine details information, distortion, and a blurred vision of the image. A reshaped Gabor filter-based denoising technique is proposed to overcome these issues. To develop the reshaped Gabor filter, the range of reshaping parameters of the filter is initially obtained by a random search method. Further, to evaluate the better performance of the proposed filter, a manual search is used to find the optimal parametric values and tested on T1, T2, and PD weighted MR data sets one by one. Also, the proposed technique is compared with the existing state of the art filtering methods such as Wiener, Median, Partial differential equation (PDE), Anisotropic diffusion filter (ADF), Non-local means filter (NLM), Modified complex diffusion filter (MCD), Multichannel residual learning of CNN (MRL), Maximum a posteriori (MAP), Adaptive non-local means algorithm (ADNLM), and Advance NLM filtering with non-sub sampled (AVNLMNS) on the basic reference and no reference parameter. The parameters such as mean square error (MSE), peak signal to noise ratio (PSNR), structural similarity index metric (SSIM), perception-based image quality evaluator (PIQE), and blind/referenceless image spatial quality evaluator (BRISQE) are evaluated on T1, T2, and PD weighted MR images with different noise variances such as 1%, 3%, 5%, 7%, and 9%. The proposed method may be used as a better denoising scheme for Rician distributed noise, edge preservation, fine details restoration, and enhancement of abnormalities.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of ECE, National Institute of Technology, Patna, Bihar, India
| | - Subodh Srivastava
- Department of ECE, National Institute of Technology, Patna, Bihar, India
| |
Collapse
|
3
|
Image Denoising Using Non-Local Means (NLM) Approach in Magnetic Resonance (MR) Imaging: A Systematic Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The non-local means (NLM) noise reduction algorithm is well known as an excellent technique for removing noise from a magnetic resonance (MR) image to improve the diagnostic accuracy. In this study, we undertook a systematic review to determine the effectiveness of the NLM noise reduction algorithm in MR imaging. A systematic literature search was conducted of three databases of publications dating from January 2000 to March 2020; of the 82 publications reviewed, 25 were included in this study. The subjects were categorized into four major frameworks and analyzed for each research result. Research in NLM noise reduction for MR images has been increasing worldwide; however, it was found to have slightly decreased since 2016. It was found that the NLM technique was most frequently used on brain images taken using the general MR imaging technique; these were most frequently performed during simultaneous real and simulated experimental studies. In particular, comparison parameters were frequently used to evaluate the effectiveness of the algorithm on MR images. The ultimate goal is to provide an accurate method for the diagnosis of disease, and our conclusion is that the NLM noise reduction algorithm is a promising method of achieving this goal.
Collapse
|