1
|
Hu J, Qiu L, Wang H, Zhang J. Semi-supervised point consistency network for retinal artery/vein classification. Comput Biol Med 2024; 168:107633. [PMID: 37992471 DOI: 10.1016/j.compbiomed.2023.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Recent deep learning methods with convolutional neural networks (CNNs) have boosted advance prosperity of medical image analysis and expedited the automatic retinal artery/vein (A/V) classification. However, it is challenging for these CNN-based approaches in two aspects: (1) specific tubular structures and subtle variations in appearance, contrast, and geometry, which tend to be ignored in CNNs with network layer increasing; (2) limited well-labeled data for supervised segmentation of retinal vessels, which may hinder the effectiveness of deep learning methods. To address these issues, we propose a novel semi-supervised point consistency network (SPC-Net) for retinal A/V classification. SPC-Net consists of an A/V classification (AVC) module and a multi-class point consistency (MPC) module. The AVC module adopts an encoder-decoder segmentation network to generate the prediction probability map of A/V for supervised learning. The MPC module introduces point set representations to adaptively generate point set classification maps of the arteriovenous skeleton, which enjoys its prediction flexibility and consistency (i.e. point consistency) to effectively alleviate arteriovenous confusion. In addition, we propose a consistency regularization between the predicted A/V classification probability maps and point set representations maps for unlabeled data to explore the inherent segmentation perturbation of the point consistency, reducing the need for annotated data. We validate our method on two typical public datasets (DRIVE, HRF) and a private dataset (TR280) with different resolutions. Extensive qualitative and quantitative experimental results demonstrate the effectiveness of our proposed method for supervised and semi-supervised learning.
Collapse
Affiliation(s)
- Jingfei Hu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; Hefei Innovation Research Institute, Beihang University, Hefei, 230012, Anhui, China
| | - Linwei Qiu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; Hefei Innovation Research Institute, Beihang University, Hefei, 230012, Anhui, China
| | - Hua Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; Hefei Innovation Research Institute, Beihang University, Hefei, 230012, Anhui, China
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; Hefei Innovation Research Institute, Beihang University, Hefei, 230012, Anhui, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beihang University, Beijing, 100083, China.
| |
Collapse
|
2
|
Sun K, Chen Y, Chao Y, Geng J, Chen Y. A retinal vessel segmentation method based improved U-Net model. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Dubey S, Dixit M. Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:14471-14525. [PMID: 36185322 PMCID: PMC9510498 DOI: 10.1007/s11042-022-13841-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a long-term condition in which the pancreas quits producing insulin or the body's insulin isn't utilised properly. One of the signs of diabetes is Diabetic Retinopathy. Diabetic retinopathy is the most prevalent type of diabetes, if remains unaddressed, diabetic retinopathy can affect all diabetics and become very serious, raising the chances of blindness. It is a chronic systemic condition that affects up to 80% of patients for more than ten years. Many researchers believe that if diabetes individuals are diagnosed early enough, they can be rescued from the condition in 90% of cases. Diabetes damages the capillaries, which are microscopic blood vessels in the retina. On images, blood vessel damage is usually noticeable. Therefore, in this study, several traditional, as well as deep learning-based approaches, are reviewed for the classification and detection of this particular diabetic-based eye disease known as diabetic retinopathy, and also the advantage of one approach over the other is also described. Along with the approaches, the dataset and the evaluation metrics useful for DR detection and classification are also discussed. The main finding of this study is to aware researchers about the different challenges occurs while detecting diabetic retinopathy using computer vision, deep learning techniques. Therefore, a purpose of this review paper is to sum up all the major aspects while detecting DR like lesion identification, classification and segmentation, security attacks on the deep learning models, proper categorization of datasets and evaluation metrics. As deep learning models are quite expensive and more prone to security attacks thus, in future it is advisable to develop a refined, reliable and robust model which overcomes all these aspects which are commonly found while designing deep learning models.
Collapse
Affiliation(s)
- Shradha Dubey
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| | - Manish Dixit
- Madhav Institute of Technology & Science (Department of Computer Science and Engineering), Gwalior, M.P. India
| |
Collapse
|
4
|
State-of-the-art retinal vessel segmentation with minimalistic models. Sci Rep 2022; 12:6174. [PMID: 35418576 PMCID: PMC9007957 DOI: 10.1038/s41598-022-09675-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
The segmentation of retinal vasculature from eye fundus images is a fundamental task in retinal image analysis. Over recent years, increasingly complex approaches based on sophisticated Convolutional Neural Network architectures have been pushing performance on well-established benchmark datasets. In this paper, we take a step back and analyze the real need of such complexity. We first compile and review the performance of 20 different techniques on some popular databases, and we demonstrate that a minimalistic version of a standard U-Net with several orders of magnitude less parameters, carefully trained and rigorously evaluated, closely approximates the performance of current best techniques. We then show that a cascaded extension (W-Net) reaches outstanding performance on several popular datasets, still using orders of magnitude less learnable weights than any previously published work. Furthermore, we provide the most comprehensive cross-dataset performance analysis to date, involving up to 10 different databases. Our analysis demonstrates that the retinal vessel segmentation is far from solved when considering test images that differ substantially from the training data, and that this task represents an ideal scenario for the exploration of domain adaptation techniques. In this context, we experiment with a simple self-labeling strategy that enables moderate enhancement of cross-dataset performance, indicating that there is still much room for improvement in this area. Finally, we test our approach on Artery/Vein and vessel segmentation from OCTA imaging problems, where we again achieve results well-aligned with the state-of-the-art, at a fraction of the model complexity available in recent literature. Code to reproduce the results in this paper is released.
Collapse
|
5
|
Hatamizadeh A, Hosseini H, Patel N, Choi J, Pole CC, Hoeferlin CM, Schwartz SD, Terzopoulos D. RAVIR: A Dataset and Methodology for the Semantic Segmentation and Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance Imaging. IEEE J Biomed Health Inform 2022; 26:3272-3283. [PMID: 35349464 DOI: 10.1109/jbhi.2022.3163352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The retinal vasculature provides important clues in the diagnosis and monitoring of systemic diseases including hypertension and diabetes. The microvascular system is of primary involvement in such conditions, and the retina is the only anatomical site where the microvasculature can be directly observed. The objective assessment of retinal vessels has long been considered a surrogate biomarker for systemic vascular diseases, and with recent advancements in retinal imaging and computer vision technologies, this topic has become the subject of renewed attention. In this paper, we present a novel dataset, dubbed RAVIR, for the semantic segmentation of Retinal Arteries and Veins in Infrared Reflectance (IR) imaging. It enables the creation of deep learning-based models that distinguish extracted vessel type without extensive post-processing. We propose a novel deep learning-based methodology, denoted as SegRAVIR, for the semantic segmentation of retinal arteries and veins and the quantitative measurement of the widths of segmented vessels. Our extensive experiments validate the effectiveness of SegRAVIR and demonstrate its superior performance in comparison to state-of-the-art models. Additionally, we propose a knowledge distillation framework for the domain adaptation of RAVIR pretrained networks on color images. We demonstrate that our pretraining procedure yields new state-of-the-art benchmarks on the DRIVE, STARE, and CHASE\_DB1 datasets. Dataset link: https://ravirdataset.github.io/data.
Collapse
|
6
|
Xu X, Wang Y, Liang Y, Luo S, Wang J, Jiang W, Lai X. Retinal Vessel Automatic Segmentation Using SegNet. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3117455. [PMID: 35378728 PMCID: PMC8976667 DOI: 10.1155/2022/3117455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 12/22/2022]
Abstract
Extracting retinal vessels accurately is very important for diagnosing some diseases such as diabetes retinopathy, hypertension, and cardiovascular. Clinically, experienced ophthalmologists diagnose these diseases through segmenting retinal vessels manually and analysing its structural feature, such as tortuosity and diameter. However, manual segmentation of retinal vessels is a time-consuming and laborious task with strong subjectivity. The automatic segmentation technology of retinal vessels can not only reduce the burden of ophthalmologists but also effectively solve the problem that is a lack of experienced ophthalmologists in remote areas. Therefore, the automatic segmentation technology of retinal vessels is of great significance for clinical auxiliary diagnosis and treatment of ophthalmic diseases. A method using SegNet is proposed in this paper to improve the accuracy of the retinal vessel segmentation. The performance of the retinal vessel segmentation model with SegNet is evaluated on the three public datasets (DRIVE, STARE, and HRF) and achieved accuracy of 0.9518, 0.9683, and 0.9653, sensitivity of 0.7580, 0.7747, and 0.7070, specificity of 0.9804, 0.9910, and 0.9885, F 1 score of 0.7992, 0.8369, and 0.7918, MCC of 0.7749, 0.8227, and 0.7643, and AUC of 0.9750, 0.9893, and 0.9740, respectively. The experimental results showed that the method proposed in this research presented better results than many classical methods studied and may be expected to have clinical application prospects.
Collapse
Affiliation(s)
- Xiaomei Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yixin Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu Liang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Siyuan Luo
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jianqing Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weiwei Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaobo Lai
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
7
|
Arsalan M, Haider A, Choi J, Park KR. Diabetic and Hypertensive Retinopathy Screening in Fundus Images Using Artificially Intelligent Shallow Architectures. J Pers Med 2021; 12:jpm12010007. [PMID: 35055322 PMCID: PMC8777982 DOI: 10.3390/jpm12010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Retinal blood vessels are considered valuable biomarkers for the detection of diabetic retinopathy, hypertensive retinopathy, and other retinal disorders. Ophthalmologists analyze retinal vasculature by manual segmentation, which is a tedious task. Numerous studies have focused on automatic retinal vasculature segmentation using different methods for ophthalmic disease analysis. However, most of these methods are computationally expensive and lack robustness. This paper proposes two new shallow deep learning architectures: dual-stream fusion network (DSF-Net) and dual-stream aggregation network (DSA-Net) to accurately detect retinal vasculature. The proposed method uses semantic segmentation in raw color fundus images for the screening of diabetic and hypertensive retinopathies. The proposed method's performance is assessed using three publicly available fundus image datasets: Digital Retinal Images for Vessel Extraction (DRIVE), Structured Analysis of Retina (STARE), and Children Heart Health Study in England Database (CHASE-DB1). The experimental results revealed that the proposed method provided superior segmentation performance with accuracy (Acc), sensitivity (SE), specificity (SP), and area under the curve (AUC) of 96.93%, 82.68%, 98.30%, and 98.42% for DRIVE, 97.25%, 82.22%, 98.38%, and 98.15% for CHASE-DB1, and 97.00%, 86.07%, 98.00%, and 98.65% for STARE datasets, respectively. The experimental results also show that the proposed DSA-Net provides higher SE compared to the existing approaches. It means that the proposed method detected the minor vessels and provided the least false negatives, which is extremely important for diagnosis. The proposed method provides an automatic and accurate segmentation mask that can be used to highlight the vessel pixels. This detected vasculature can be utilized to compute the ratio between the vessel and the non-vessel pixels and distinguish between diabetic and hypertensive retinopathies, and morphology can be analyzed for related retinal disorders.
Collapse
|
8
|
A review of diabetic retinopathy: Datasets, approaches, evaluation metrics and future trends. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2021. [DOI: 10.1016/j.jksuci.2021.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|