1
|
Teng F, Zhu Q, Zhou XL, Shi YB, Sun H. Preoperative predictive model for the probability of lymph node metastasis in gastric cancer: a retrospective study. Front Oncol 2024; 14:1473423. [PMID: 39399177 PMCID: PMC11466724 DOI: 10.3389/fonc.2024.1473423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Background Effectively diagnosing lymph node (LN) metastasis (LNM) is crucial in determining the condition of patients with gastric cancer (GC). The present study was devised to develop and validate a preoperative predictive model (PPM) capable of assessing the LNM status of individuals with GC. Methods A retrospective analysis of consecutive GC patients from two centers was conducted over the period from January 2021 to December 2023. These patients were utilized to construct a 289-patient training cohort for identifying LNM-related risk factors and developing a PPM, as well as a 90-patient testing cohort used for PPM validation. Results Of the GC patients included in the training cohort, 67 (23.2%) and 222 (76.8%) were respectively LNM negative and positive. Risk factors independently related to LNM status included cT3 invasion (P = 0.001), CT-reported LN (+) (P = 0.044), and CA199 value (P = 0.030). LNM risk scores were established with the following formula: score = -2.382 + 0.694×CT-reported LN status (+: 1; -: 0)+2.497×invasion depth (cT1: 0; cT2: 1; cT3: 2)+0.032×CA199 value. The area under the curve (AUC) values for PPM and CT-reported LN status were 0.753 and 0.609, respectively, with a significant difference between them (P < 0.001). When clinical data from the testing cohort was included in the PPM, the AUC values for the PPM and CT-reported LN status were 0.756 and 0.568 (P < 0.001). Conclusions The established PPM may be an effective technique for predicting the LNM status of patients preoperatively. This model can better diagnose LNM than CT-reported LN status alone, this model is better able to diagnose LNM.
Collapse
Affiliation(s)
- Fei Teng
- Department of Interventional Radiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Qian Zhu
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, China
| | - Xi-Lang Zhou
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, China
| | - Yi-Bing Shi
- Department of Radiology, Xuzhou Central Hospital, Xuzhou, China
| | - Han Sun
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
2
|
Ding XM, Zhou HY, Wang YS, Cao JM, Ou J, Zhang XM, Chen TW. CT radiomics based on the peritumoral adipose region of gastric adenocarcinoma for preoperative prediction of lymph node metastasis. Eur J Radiol 2024; 175:111479. [PMID: 38663124 DOI: 10.1016/j.ejrad.2024.111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/21/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE To construct and validate CT radiomics model based on the peritumoral adipose region of gastric adenocarcinoma to preoperatively predict lymph node metastasis (LNM). METHODS AND METHODS 293 consecutive gastric adenocarcinoma patients receiving radical gastrectomy with lymph node dissection in two medical institutions were stratified into a development set (from Institution A, n = 237), and an external validation set (from Institution B, n = 56). Volume of interest of peritumoral adipose region was segmented on preoperative portal-phase CT images. The least absolute shrinkage and selection operator method and stepwise logistic regression were used to select features and build radiomics models. Manual classification was performed according to routine CT characteristics. A classifier incorporating the radiomics score and CT characteristics was developed for predicting LNM. Area under the receiver operating characteristic curve (AUC) was used to show discrimination between tumors with and without LNM, and the calibration curves and Brier score were used to evaluate the predictive accuracy. Violin plots were used to show the distribution of radiomics score. RESULTS AUC values of radiomics model to predict LNM were 0.938, 0.905, and 0.872 in the training, internal test, and external validation sets, respectively, higher than that of manual classification (0.674, all P values < 0.01). The radiomics score of the positive LNM group were higher than that of the negative group in all sets (both P-values < 0.001). The classifier showed no improved predictive power compared with the radiomics signature alone with AUC values of 0.916 and 0.872 in the development and external validation sets, respectively. Multivariate analysis showed that radiomics score was an independent predictor. CONCLUSIONS Radiomics model based on peritumoral adipose region could be a useful approach for preoperative LNM prediction in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Xue-Mei Ding
- The First Clinical College of Jinan University, Guangzhou 510630, China; Department of Radiology, The Second Clinical Medical School of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, China
| | - Hai-Ying Zhou
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Yue-Su Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Jin-Ming Cao
- Department of Radiology, The Second Clinical Medical School of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, China
| | - Jing Ou
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Xiao-Ming Zhang
- The First Clinical College of Jinan University, Guangzhou 510630, China; Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Tian-Wu Chen
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
3
|
You Y, Wang Y, Yu X, Gao F, Li M, Li Y, Wang X, Jia L, Shi G, Yang L. Prediction of lymph node metastasis in advanced gastric adenocarcinoma based on dual-energy CT radiomics: focus on the features of lymph nodes with a short axis diameter ≥6 mm. Front Oncol 2024; 14:1369051. [PMID: 38496754 PMCID: PMC10940341 DOI: 10.3389/fonc.2024.1369051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Objective To explore the value of the features of lymph nodes (LNs) with a short-axis diameter ≥6 mm in predicting lymph node metastasis (LNM) in advanced gastric adenocarcinoma (GAC) based on dual-energy CT (DECT) radiomics. Materials and methods Data of patients with GAC who underwent radical gastrectomy and LN dissection were retrospectively analyzed. To ensure the correspondence between imaging and pathology, metastatic LNs were only selected from patients with pN3, nonmetastatic LNs were selected from patients with pN0, and the short-axis diameters of the enrolled LNs were all ≥6 mm. The traditional features of LNs were recorded, including short-axis diameter, long-axis diameter, long-to-short-axis ratio, position, shape, density, edge, and the degree of enhancement; univariate and multivariate logistic regression analyses were used to establish a clinical model. Radiomics features at the maximum level of LNs were extracted in venous phase equivalent 120 kV linear fusion images and iodine maps. Intraclass correlation coefficients and the Boruta algorithm were used to screen significant features, and random forest was used to build a radiomics model. To construct a combined model, we included the traditional features with statistical significance in univariate analysis and radiomics scores (Rad-score) in multivariate logistic regression analysis. Receiver operating curve (ROC) curves and the DeLong test were used to evaluate and compare the diagnostic performance of the models. Decision curve analysis (DCA) was used to evaluate the clinical benefits of the models. Results This study included 114 metastatic LNs from 36 pN3 cases and 65 nonmetastatic LNs from 28 pN0 cases. The samples were divided into a training set (n=125) and a validation set (n=54) at a ratio of 7:3. Long-axis diameter and LN shape were independent predictors of LNM and were used to establish the clinical model; 27 screened radiomics features were used to build the radiomics model. LN shape and Rad-score were independent predictors of LNM and were used to construct the combined model. Both the radiomics model (area under the curve [AUC] of 0.986 and 0.984) and the combined model (AUC of 0.970 and 0.977) outperformed the clinical model (AUC of 0.772 and 0.820) in predicting LNM in both the training and validation sets. DCA showed superior clinical benefits from radiomics and combined models. Conclusion The models based on DECT LN radiomics features or combined traditional features have high diagnostic performance in determining the nature of each LN with a short-axis diameter of ≥6 mm in advanced GAC.
Collapse
Affiliation(s)
- Yang You
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Wang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xianbo Yu
- CT Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Fengxiao Gao
- Department of Computed Tomography and Magnetic Resonance, Xing Tai People’s Hospital, Xingtai, China
| | - Min Li
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Li
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangming Wang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Litao Jia
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gaofeng Shi
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Yang
- Department of Computed Tomography and Magnetic Resonance, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
HajiEsmailPoor Z, Tabnak P, Baradaran B, Pashazadeh F, Aghebati-Maleki L. Diagnostic performance of CT scan-based radiomics for prediction of lymph node metastasis in gastric cancer: a systematic review and meta-analysis. Front Oncol 2023; 13:1185663. [PMID: 37936604 PMCID: PMC10627242 DOI: 10.3389/fonc.2023.1185663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/30/2023] [Indexed: 11/09/2023] Open
Abstract
Objective The purpose of this study was to evaluate the diagnostic performance of computed tomography (CT) scan-based radiomics in prediction of lymph node metastasis (LNM) in gastric cancer (GC) patients. Methods PubMed, Embase, Web of Science, and Cochrane Library databases were searched for original studies published until 10 November 2022, and the studies satisfying the inclusion criteria were included. Characteristics of included studies and radiomics approach and data for constructing 2 × 2 tables were extracted. The radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) were utilized for the quality assessment of included studies. Overall sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were calculated to assess diagnostic accuracy. The subgroup analysis and Spearman's correlation coefficient was done for exploration of heterogeneity sources. Results Fifteen studies with 7,010 GC patients were included. We conducted analyses on both radiomics signature and combined (based on signature and clinical features) models. The pooled sensitivity, specificity, DOR, and AUC of radiomics models compared to combined models were 0.75 (95% CI, 0.67-0.82) versus 0.81 (95% CI, 0.75-0.86), 0.80 (95% CI, 0.73-0.86) versus 0.85 (95% CI, 0.79-0.89), 13 (95% CI, 7-23) versus 23 (95% CI, 13-42), and 0.85 (95% CI, 0.81-0.86) versus 0.90 (95% CI, 0.87-0.92), respectively. The meta-analysis indicated a significant heterogeneity among studies. The subgroup analysis revealed that arterial phase CT scan, tumoral and nodal regions of interest (ROIs), automatic segmentation, and two-dimensional (2D) ROI could improve diagnostic accuracy compared to venous phase CT scan, tumoral-only ROI, manual segmentation, and 3D ROI, respectively. Overall, the quality of studies was quite acceptable based on both QUADAS-2 and RQS tools. Conclusion CT scan-based radiomics approach has a promising potential for the prediction of LNM in GC patients preoperatively as a non-invasive diagnostic tool. Methodological heterogeneity is the main limitation of the included studies. Systematic review registration https://www.crd.york.ac.uk/Prospero/display_record.php?RecordID=287676, identifier CRD42022287676.
Collapse
Affiliation(s)
| | - Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-based Medicine, Iranian Evidence-Based Medicine (EBM) Centre: A Joanna Briggs Institute (JBI) Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Miccichè F, Rizzo G, Casà C, Leone M, Quero G, Boldrini L, Bulajic M, Corsi DC, Tondolo V. Role of radiomics in predicting lymph node metastasis in gastric cancer: a systematic review. Front Med (Lausanne) 2023; 10:1189740. [PMID: 37663653 PMCID: PMC10469447 DOI: 10.3389/fmed.2023.1189740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Gastric cancer (GC) is an aggressive and clinically heterogeneous tumor, and better risk stratification of lymph node metastasis (LNM) could lead to personalized treatments. The role of radiomics in the prediction of nodal involvement in GC has not yet been systematically assessed. This study aims to assess the role of radiomics in the prediction of LNM in GC. Methods A PubMed/MEDLINE systematic review was conducted to assess the role of radiomics in LNM. The inclusion criteria were as follows: i. original articles, ii. articles on radiomics, and iii. articles on LNM prediction in GC. All articles were selected and analyzed by a multidisciplinary board of two radiation oncologists and one surgeon, under the supervision of one radiation oncologist, one surgeon, and one medical oncologist. Results A total of 171 studies were obtained using the search strategy mentioned on PubMed. After the complete selection process, a total of 20 papers were considered eligible for the analysis of the results. Radiomics methods were applied in GC to assess the LNM risk. The number of patients, imaging modalities, type of predictive models, number of radiomics features, TRIPOD classification, and performances of the models were reported. Conclusions Radiomics seems to be a promising approach for evaluating the risk of LNM in GC. Further and larger studies are required to evaluate the clinical impact of the inclusion of radiomics in a comprehensive decision support system (DSS) for GC.
Collapse
Affiliation(s)
- Francesco Miccichè
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Gianluca Rizzo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Calogero Casà
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Mariavittoria Leone
- U.O.C. di Radioterapia Oncologica, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | - Giuseppe Quero
- U.O.C. di Chirurgia Digestiva, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- U.O.C. di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Milutin Bulajic
- U.O.C. di Endoscopia Digestiva, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| | | | - Vincenzo Tondolo
- U.O.C. di Chirurgia Digestiva e del Colon-Retto, Fatebenefratelli Isola Tiberina-Gemelli Isola, Rome, Italy
| |
Collapse
|
6
|
Du G, Zeng Y, Chen D, Zhan W, Zhan Y. Application of radiomics in precision prediction of diagnosis and treatment of gastric cancer. Jpn J Radiol 2023; 41:245-257. [PMID: 36260211 DOI: 10.1007/s11604-022-01352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
Abstract
Gastric cancer is one of the most common malignant tumors. Although some progress has been made in chemotherapy and surgery, it is still one of the highest mortalities in the world. Therefore, early detection, diagnosis and treatment are very important to improve the prognosis of patients. In recent years, with the proposal of the concept of radiomics, it has been gradually applied to histopathological grading, differential diagnosis, therapeutic efficacy and prognosis evaluation of gastric cancer, whose advantage is to comprehensively quantify the tumor phenotype using a large number of quantitative image features, so as to predict and diagnose the lesion area of gastric cancer early. The purpose of this review is to evaluate the research status and progress of radiomics in gastric cancer, and reviewed the workflow and clinical application of radiomics. The 27 original studies on the application of radiomics in gastric cancer were included from web of science database search results from 2017 to 2021, the number of patients included ranged from 30 to 1680, and the models used were based on the combination of radiomics signature and clinical factors. Most of these studies showed positive results, the median radiomics quality score (RQS) for all studies was 36.1%, and the development prospect and challenges of radiomics development were prospected. In general, radiomics has great potential in improving the early prediction and diagnosis of gastric cancer, and provides an unprecedented opportunity for clinical practice to improve the decision support of gastric cancer treatment at a low cost.
Collapse
Affiliation(s)
- Getao Du
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Dan Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
7
|
Zhang S, Mu W, Dong D, Wei J, Fang M, Shao L, Zhou Y, He B, Zhang S, Liu Z, Liu J, Tian J. The Applications of Artificial Intelligence in Digestive System Neoplasms: A Review. HEALTH DATA SCIENCE 2023; 3:0005. [PMID: 38487199 PMCID: PMC10877701 DOI: 10.34133/hds.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 03/17/2024]
Abstract
Importance Digestive system neoplasms (DSNs) are the leading cause of cancer-related mortality with a 5-year survival rate of less than 20%. Subjective evaluation of medical images including endoscopic images, whole slide images, computed tomography images, and magnetic resonance images plays a vital role in the clinical practice of DSNs, but with limited performance and increased workload of radiologists or pathologists. The application of artificial intelligence (AI) in medical image analysis holds promise to augment the visual interpretation of medical images, which could not only automate the complicated evaluation process but also convert medical images into quantitative imaging features that associated with tumor heterogeneity. Highlights We briefly introduce the methodology of AI for medical image analysis and then review its clinical applications including clinical auxiliary diagnosis, assessment of treatment response, and prognosis prediction on 4 typical DSNs including esophageal cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma. Conclusion AI technology has great potential in supporting the clinical diagnosis and treatment decision-making of DSNs. Several technical issues should be overcome before its application into clinical practice of DSNs.
Collapse
Affiliation(s)
- Shuaitong Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Wei Mu
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jingwei Wei
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mengjie Fang
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Lizhi Shao
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yu Zhou
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bingxi He
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
| | - Song Zhang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jianhua Liu
- Department of Oncology, Guangdong Provincial People's Hospital/Second Clinical Medical College of Southern Medical University/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Mao Q, Zhou MT, Zhao ZP, Liu N, Yang L, Zhang XM. Role of radiomics in the diagnosis and treatment of gastrointestinal cancer. World J Gastroenterol 2022; 28:6002-6016. [PMID: 36405385 PMCID: PMC9669820 DOI: 10.3748/wjg.v28.i42.6002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer (GIC) has high morbidity and mortality as one of the main causes of cancer death. Preoperative risk stratification is critical to guide patient management, but traditional imaging studies have difficulty predicting its biological behavior. The emerging field of radiomics allows the conversion of potential pathophysiological information in existing medical images that cannot be visually recognized into high-dimensional quantitative image features. Tumor lesion characterization, therapeutic response evaluation, and survival prediction can be achieved by analyzing the relationships between these features and clinical and genetic data. In recent years, the clinical application of radiomics to GIC has increased dramatically. In this editorial, we describe the latest progress in the application of radiomics to GIC and discuss the value of its potential clinical applications, as well as its limitations and future directions.
Collapse
Affiliation(s)
- Qi Mao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Mao-Ting Zhou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Zhang-Ping Zhao
- Department of Radiology, Panzhihua Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Ning Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
9
|
Song S, Jiang H, Li H, Fu W, Yin Y, Liu L. Application of contrast-enhanced ultrasound combined with multislice spiral CT in the diagnosis of gastric cancer. Minerva Gastroenterol (Torino) 2022; 68:356-358. [PMID: 34694092 DOI: 10.23736/s2724-5985.21.03026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuang Song
- Department of Ultrasound, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Hua Jiang
- Department of Radiology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Hongyi Li
- MRI, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Wanxing Fu
- School Work Office, Mudanjiang Medical University of Medical Imaging, Mudanjiang, China
| | - Yanwei Yin
- MRI, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Li Liu
- Department of Radiology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China -
| |
Collapse
|
10
|
Li Y, Xie F, Xiong Q, Lei H, Feng P. Machine learning for lymph node metastasis prediction of in patients with gastric cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:946038. [PMID: 36059703 PMCID: PMC9433672 DOI: 10.3389/fonc.2022.946038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/01/2022] [Indexed: 01/19/2023] Open
Abstract
Objective To evaluate the diagnostic performance of machine learning (ML) in predicting lymph node metastasis (LNM) in patients with gastric cancer (GC) and to identify predictors applicable to the models. Methods PubMed, EMBASE, Web of Science, and Cochrane Library were searched from inception to March 16, 2022. The pooled c-index and accuracy were used to assess the diagnostic accuracy. Subgroup analysis was performed based on ML types. Meta-analyses were performed using random-effect models. Risk of bias assessment was conducted using PROBAST tool. Results A total of 41 studies (56182 patients) were included, and 33 of the studies divided the participants into a training set and a test set, while the rest of the studies only had a training set. The c-index of ML for LNM prediction in training set and test set was 0.837 [95%CI (0.814, 0.859)] and 0.811 [95%CI (0.785-0.838)], respectively. The pooled accuracy was 0.781 [(95%CI (0.756-0.805)] in training set and 0.753 [95%CI (0.721-0.783)] in test set. Subgroup analysis for different ML algorithms and staging of GC showed no significant difference. In contrast, in the subgroup analysis for predictors, in the training set, the model that included radiomics had better accuracy than the model with only clinical predictors (F = 3.546, p = 0.037). Additionally, cancer size, depth of cancer invasion and histological differentiation were the three most commonly used features in models built for prediction. Conclusion ML has shown to be of excellent diagnostic performance in predicting the LNM of GC. One of the models covering radiomics and its ML algorithms showed good accuracy for the risk of LNM in GC. However, the results revealed some methodological limitations in the development process. Future studies should focus on refining and improving existing models to improve the accuracy of LNM prediction. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022320752
Collapse
|
11
|
Yang J, Wang L, Qin J, Du J, Ding M, Niu T, Li R. Multi-view learning for lymph node metastasis prediction using tumor and nodal radiomics in gastric cancer. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac515b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Purpose. This study aims to develop and validate a multi-view learning method by the combination of primary tumor radiomics and lymph node (LN) radiomics for the preoperative prediction of LN status in gastric cancer (GC). Methods. A total of 170 contrast-enhanced abdominal CT images from GC patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection approach including Pearson correlation analysis and supervised feature selection method based on test-time budget (FSBudget) was performed to remove redundance of tumor and LN radiomics features respectively. Two types of discriminative features were then learned by an unsupervised multi-view partial least squares (UMvPLS) for a latent common space on which a logistic regression classifier is trained. Five repeated random hold-out experiments were employed. Results. On 20-dimensional latent common space, area under receiver operating characteristic curve (AUC), precision, accuracy, recall and F1-score are 0.9531 ± 0.0183, 0.9260 ± 0.0184, 0.9136 ± 0.0174, 0.9468 ± 0.0106 and 0.9362 ± 0.0125 for the training cohort respectively, and 0.8984 ± 0.0536, 0.8671 ± 0.0489, 0.8500 ± 0.0599, 0.9118 ± 0.0550 and 0.8882 ± 0.0440 for the validation cohort respectively (reported as mean ± standard deviation). It shows a better discrimination capability than single-view methods, our previous method, and eight baseline methods. When the dimension was reduced to 2, the model not only has effective prediction performance, but also is convenient for data visualization. Conclusions. Our proposed method by integrating radiomics features of primary tumor and LN can be helpful in predicting lymph node metastasis in patients of GC. It shows multi-view learning has great potential for guiding the prognosis and treatment decision-making in GC.
Collapse
|