1
|
Zhang HW, Zhang HB, Liu XL, Deng HZ, Zhang YZ, Tang XM, Lin F, Huang B. Clinical Assessment of Magnetic Resonance Spectroscopy and Diffusion-Weighted Imaging in Diffuse Glioma: Insights Into Histological Grading and IDH Classification. Can Assoc Radiol J 2024; 75:868-877. [PMID: 38577746 DOI: 10.1177/08465371241238917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
PURPOSE To assess the diagnostic utility of clinical magnetic resonance spectroscopy (MRS) and diffusion-weighted imaging (DWI) in distinguishing between histological grading and isocitrate dehydrogenase (IDH) classification in adult diffuse gliomas. METHODS A retrospective analysis was conducted on 247 patients diagnosed with adult diffuse glioma. Experienced radiologists evaluated DWI and MRS images. The Kruskal-Wallis test examined differences in DWI and MRS-related parameters across histological grades, while the Mann-Whitney U test assessed molecular classification. Receiver Operating Characteristic (ROC) curves evaluated parameter effectiveness. Survival curves, stratified by histological grade and IDH classification, were constructed using the Kaplan-Meier test. RESULTS The cohort comprised 141 males and 106 females, with ages ranging from 19 to 85 years. The Kruskal-Wallis test revealed significant differences in ADC mean, Cho/NAA, and Cho/Cr concerning glioma histological grade (P < .01). Subsequent application of Dunn's test showed significant differences in ADC mean among each histological grade (P < .01). Notably, Cho/NAA exhibited a marked distinction between grade 2 and grade 3/4 gliomas (P < .01). The Mann-Whitney U test indicated that only ADC mean showed statistical significance for IDH molecular classification (P < .01). ROC curves were constructed to demonstrate the effectiveness of the specified parameters. Survival curves were also delineated to portray survival outcomes categorized by histological grade and IDH classification. Conclusions: Clinical MRS demonstrates efficacy in glioma histological grading but faces challenges in IDH classification. Clinical DWI's ADC mean parameter shows significant distinctions in both histological grade and IDH classification.
Collapse
Affiliation(s)
- Han-Wen Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hong-Bo Zhang
- Department of Radiology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hua-Zhen Deng
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu-Zhe Zhang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xu-Mei Tang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Lin
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zheng B, Zhao Z, Zheng P, Liu Q, Li S, Jiang X, Huang X, Ye Y, Wang H. The current state of MRI-based radiomics in pituitary adenoma: promising but challenging. Front Endocrinol (Lausanne) 2024; 15:1426781. [PMID: 39371931 PMCID: PMC11449739 DOI: 10.3389/fendo.2024.1426781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
In the clinical diagnosis and treatment of pituitary adenomas, MRI plays a crucial role. However, traditional manual interpretations are plagued by inter-observer variability and limitations in recognizing details. Radiomics, based on MRI, facilitates quantitative analysis by extracting high-throughput data from images. This approach elucidates correlations between imaging features and pituitary tumor characteristics, thereby establishing imaging biomarkers. Recent studies have demonstrated the extensive application of radiomics in differential diagnosis, subtype identification, consistency evaluation, invasiveness assessment, and treatment response in pituitary adenomas. This review succinctly presents the general workflow of radiomics, reviews pertinent literature with a summary table, and provides a comparative analysis with traditional methods. We further elucidate the connections between radiological features and biological findings in the field of pituitary adenoma. While promising, the clinical application of radiomics still has a considerable distance to traverse, considering the issues with reproducibility of imaging features and the significant heterogeneity in pituitary adenoma patients.
Collapse
Affiliation(s)
- Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Zheng
- Department of Neurosurgery, People’s Hospital of Biyang County, Zhumadian, China
| | - Qiang Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Huang YR, Fan HQ, Kuang YY, Wang P, Lu S. The Relationship Between the Molecular Phenotypes of Brain Gliomas and the Imaging Features and Sensitivity of Radiotherapy and Chemotherapy. Clin Oncol (R Coll Radiol) 2024; 36:541-551. [PMID: 38821723 DOI: 10.1016/j.clon.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/28/2024] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Gliomas are the most common primary malignant tumors of the brain, accounting for about 80% of all central nervous system malignancies. With the development of molecular biology, the molecular phenotypes of gliomas have been shown to be closely related to the process of diagnosis and treatment. The molecular phenotype of glioma also plays an important role in guiding treatment plans and evaluating treatment effects and prognosis. However, due to the heterogeneity of the tumors and the trauma associated with the surgical removal of tumor tissue, the application of molecular phenotyping in glioma is limited. With the development of imaging technology, functional magnetic resonance imaging (MRI) can provide structural and function information about tumors in a noninvasive and radiation-free manner. MRI is very important for the diagnosis of intracranial lesions. In recent years, with the development of the technology for tumor molecular diagnosis and imaging, the use of molecular phenotype information and imaging procedures to evaluate the treatment outcome of tumors has become a hot topic. By reviewing the related literature on glioma treatment and molecular typing that has been published in the past 20 years, and referring to the latest 2020 NCCN treatment guidelines, summarizing the imaging characteristic and sensitivity of radiotherapy and chemotherapy of different molecular phenotypes of glioma. In this article, we briefly review the imaging characteristics of different molecular phenotypes in gliomas and their relationship with radiosensitivity and chemosensitivity of gliomas.
Collapse
Affiliation(s)
- Y-R Huang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - H-Q Fan
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Y-Y Kuang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - P Wang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - S Lu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
4
|
Doniselli FM, Pascuzzo R, Mazzi F, Padelli F, Moscatelli M, Akinci D'Antonoli T, Cuocolo R, Aquino D, Cuccarini V, Sconfienza LM. Quality assessment of the MRI-radiomics studies for MGMT promoter methylation prediction in glioma: a systematic review and meta-analysis. Eur Radiol 2024; 34:5802-5815. [PMID: 38308012 PMCID: PMC11364578 DOI: 10.1007/s00330-024-10594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVES To evaluate the methodological quality and diagnostic accuracy of MRI-based radiomic studies predicting O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status in gliomas. METHODS PubMed Medline, EMBASE, and Web of Science were searched to identify MRI-based radiomic studies on MGMT methylation in gliomas published until December 31, 2022. Three raters evaluated the study methodological quality with Radiomics Quality Score (RQS, 16 components) and Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis Or Diagnosis (TRIPOD, 22 items) scales. Risk of bias and applicability concerns were assessed with QUADAS-2 tool. A meta-analysis was performed to estimate the pooled area under the curve (AUC) and to assess inter-study heterogeneity. RESULTS We included 26 studies, published from 2016. The median RQS total score was 8 out of 36 (22%, range 8-44%). Thirteen studies performed external validation. All studies reported AUC or accuracy, but only 4 (15%) performed calibration and decision curve analysis. No studies performed phantom analysis, cost-effectiveness analysis, and prospective validation. The overall TRIPOD adherence score was between 50% and 70% in 16 studies and below 50% in 10 studies. The pooled AUC was 0.78 (95% CI, 0.73-0.83, I2 = 94.1%) with a high inter-study heterogeneity. Studies with external validation and including only WHO-grade IV gliomas had significantly lower AUC values (0.65; 95% CI, 0.57-0.73, p < 0.01). CONCLUSIONS Study RQS and adherence to TRIPOD guidelines was generally low. Radiomic prediction of MGMT methylation status showed great heterogeneity of results and lower performances in grade IV gliomas, which hinders its current implementation in clinical practice. CLINICAL RELEVANCE STATEMENT MGMT promoter methylation status appears to be variably correlated with MRI radiomic features; radiomic models are not sufficiently robust to be integrated into clinical practice to accurately predict MGMT promoter methylation status in patients with glioma before surgery. KEY POINTS • Adherence to the indications of TRIPOD guidelines was generally low, as was RQS total score. • MGMT promoter methylation status prediction with MRI radiomic features provided heterogeneous diagnostic accuracy results across studies. • Studies that included grade IV glioma only and performed external validation had significantly lower diagnostic accuracy than others.
Collapse
Affiliation(s)
- Fabio M Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy.
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Francesco Padelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Rheinstrasse 26, 4410, Liestal, Switzerland
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Via Salvador Allende 43, Baronissi, 84081, Salerno, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria 11, 20133, Milan, Italy
| | - Luca Maria Sconfienza
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Luigi Mangiagalli 31, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| |
Collapse
|
5
|
Habibi MA, Dinpazhouh A, Aliasgary A, Mirjani MS, Mousavinasab M, Ahmadi MR, Minaee P, Eazi S, Shafizadeh M, Gurses ME, Lu VM, Berke CN, Ivan ME, Komotar RJ, Shah AH. Predicting telomerase reverse transcriptase promoter mutation in glioma: A systematic review and diagnostic meta-analysis on machine learning algorithms. Neuroradiol J 2024:19714009241269526. [PMID: 39103206 DOI: 10.1177/19714009241269526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Glioma is one of the most common primary brain tumors. The presence of the telomerase reverse transcriptase promoter (pTERT) mutation is associated with a better prognosis. This study aims to investigate the TERT mutation in patients with glioma using machine learning (ML) algorithms on radiographic imaging. METHOD This study was prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The electronic databases of PubMed, Embase, Scopus, and Web of Science were searched from inception to August 1, 2023. The statistical analysis was performed using the MIDAS package of STATA v.17. RESULTS A total of 22 studies involving 5371 patients were included for data extraction, with data synthesis based on 11 reports. The analysis revealed a pooled sensitivity of 0.86 (95% CI: 0.78-0.92) and a specificity of 0.80 (95% CI 0.72-0.86). The positive and negative likelihood ratios were 4.23 (95% CI: 2.99-5.99) and 0.18 (95% CI: 0.11-0.29), respectively. The pooled diagnostic score was 3.18 (95% CI: 2.45-3.91), with a diagnostic odds ratio 24.08 (95% CI: 11.63-49.87). The Summary Receiver Operating Characteristic (SROC) curve had an area under the curve (AUC) of 0.89 (95% CI: 0.86-0.91). CONCLUSION The study suggests that ML can predict TERT mutation status in glioma patients. ML models showed high sensitivity (0.86) and moderate specificity (0.80), aiding disease prognosis and treatment planning. However, further development and improvement of ML models are necessary for better performance metrics and increased reliability in clinical practice.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Ali Dinpazhouh
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Aliakbar Aliasgary
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Mohammad Sina Mirjani
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Mehdi Mousavinasab
- Student Research Committee, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammad Reza Ahmadi
- Student Research Committee, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Poriya Minaee
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - SeyedMohammad Eazi
- Student Research Committee, Faculty of Medicine, Qom University of Medical Science, Qom, Iran
| | - Milad Shafizadeh
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Victor M Lu
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Chandler N Berke
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Michael E Ivan
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ashish H Shah
- Department of Neurosurgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
6
|
Tang C, Chen L, Xu Y, Huang L, Zeng Z. Prediction of TERT mutation status in gliomas using conventional MRI radiogenomic features. Front Neurol 2024; 15:1439598. [PMID: 39131044 PMCID: PMC11310134 DOI: 10.3389/fneur.2024.1439598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Telomerase reverse transcriptase (TERT) promoter mutation status in gliomas is a key determinant of treatment strategy and prognosis. This study aimed to analyze the radiogenomic features and construct radiogenomic models utilizing medical imaging techniques to predict the TERT promoter mutation status in gliomas. Methods This was a retrospective study of 304 patients with gliomas. T1-weighted contrast-enhanced, apparent diffusion coefficient, and diffusion-weighted imaging MRI sequences were used for radiomic feature extraction. A total of 3,948 features were extracted from MRI images using the FAE software. These included 14 shape features, 18 histogram features, 24 gray level run length matrix, 14 gray level dependence matrix, 16 gray level run length matrix, 16 gray level size zone matrix (GLSZM), 5 neighboring gray tone difference matrix, and 744 wavelet transforms. The dataset was randomly divided into training and testing sets in a ratio of 7:3. Three feature selection methods and six classification algorithms were used to model the selected features. Predictive performance was evaluated using receiver operating characteristic curve analysis. Results Among the evaluated classification algorithms, the combination model of recursive feature elimination (RFE) with linear regression (LR) using six features showed the best diagnostic performance (area under the curve: 0.733, 0.562, and 0.633 in the training, validation, and testing sets, respectively). The next best-performing models were naive Bayes, linear discriminant analysis, autoencoder, and support vector machine. Regarding the three feature selection algorithms, RFE showed the most consistent performance, followed by relief and ANOVA. T1-enhanced entropy and GLSZM derived from T1-enhanced images were identified as the most critical radiomics features for distinguishing TERT promoter mutation status. Conclusion The LR and LRLasso models, mainly based on T1-enhanced entropy and GLSZM, showed good predictive ability for TERT promoter mutations in gliomas using radiomics models.
Collapse
Affiliation(s)
| | | | | | | | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Li L, Xiao F, Wang S, Kuang S, Li Z, Zhong Y, Xu D, Cai Y, Li S, Chen J, Liu Y, Li J, Li H, Xu H. Preoperative prediction of MGMT promoter methylation in glioblastoma based on multiregional and multi-sequence MRI radiomics analysis. Sci Rep 2024; 14:16031. [PMID: 38992201 PMCID: PMC11239670 DOI: 10.1038/s41598-024-66653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) has been demonstrated to be an important prognostic and predictive marker in glioblastoma (GBM). To establish a reliable radiomics model based on MRI data to predict the MGMT promoter methylation status of GBM. A total of 183 patients with glioblastoma were included in this retrospective study. The visually accessible Rembrandt images (VASARI) features were extracted for each patient, and a total of 14676 multi-region features were extracted from enhanced, necrotic, "non-enhanced, and edematous" areas on their multiparametric MRI. Twelve individual radiomics models were constructed based on the radiomics features from different subregions and different sequences. Four single-sequence models, three single-region models and the combined radiomics model combining all individual models were constructed. Finally, the predictive performance of adding clinical factors and VASARI characteristics was evaluated. The ComRad model combining all individual radiomics models exhibited the best performance in test set 1 and test set 2, with the area under the receiver operating characteristic curve (AUC) of 0.839 (0.709-0.963) and 0.739 (0.581-0.897), respectively. The results indicated that the radiomics model combining multi-region and multi-parametric MRI features has exhibited promising performance in predicting MGMT methylation status in GBM. The Modeling scheme that combining all individual radiomics models showed best performance among all constructed moels.
Collapse
Affiliation(s)
- Lanqing Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shouchao Wang
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shengyu Kuang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery&Brain Glioma Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Xu
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuxiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Chen
- Wuhan GE Healthcare, Wuhan, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junjie Li
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Lin D, Liu J, Ke C, Chen H, Li J, Xie Y, Ma J, Lv X, Feng Y. Radiomics Analysis of Quantitative Maps from Synthetic MRI for Predicting Grades and Molecular Subtypes of Diffuse Gliomas. Clin Neuroradiol 2024:10.1007/s00062-024-01421-3. [PMID: 38858272 DOI: 10.1007/s00062-024-01421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE To investigate the feasibility of using radiomics analysis of quantitative maps from synthetic MRI to preoperatively predict diffuse glioma grades, isocitrate dehydrogenase (IDH) subtypes, and 1p/19q codeletion status. METHODS Data from 124 patients with diffuse glioma were used for analysis (n = 87 for training, n = 37 for testing). Quantitative T1, T2, and proton density (PD) maps were obtained using synthetic MRI. Enhancing tumour (ET), non-enhancing tumour and necrosis (NET), and peritumoral edema (PE) regions were segmented followed by manual fine-tuning. Features were extracted using PyRadiomics and then selected using Levene/T, BorutaShap and maximum relevance minimum redundancy algorithms. A support vector machine was adopted for classification. Receiver operating characteristic curve analysis and integrated discrimination improvement analysis were implemented to compare the performance of different radiomics models. RESULTS Radiomics models constructed using features from multiple tumour subregions (ET + NET + PE) in the combined maps (T1 + T2 + PD) achieved the highest AUC in all three prediction tasks, among which the AUC for differentiating lower-grade and high-grade diffuse gliomas, predicting IDH mutation status and predicting 1p/19q codeletion status were 0.92, 0.95 and 0.86 respectively. Compared with those constructed on individual T1, T2, and PD maps, the discriminant ability of radiomics models constructed on the combined maps separately increased by 11, 17 and 10% in predicting glioma grades, 35, 52 and 19% in predicting IDH mutation status, and 16, 15 and 14% in predicting 1p/19q codeletion status (p < 0.05). CONCLUSION Radiomics analysis of quantitative maps from synthetic MRI provides a new quantitative imaging tool for the preoperative prediction of grades and molecular subtypes in diffuse gliomas.
Collapse
Affiliation(s)
- Danlin Lin
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiehong Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Chao Ke
- Department of Neurosurgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Haolin Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Li
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanyao Xie
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Guangzhou, China.
- Department of Radiology, The First People's Hospital of Shunde, Southern Medical University, Foshan, China.
| |
Collapse
|
9
|
Zheng F, Zhang L, Chen H, Zang Y, Chen X, Li Y. Radiomics for predicting MGMT status in cerebral glioblastoma: comparison of different MRI sequences. JOURNAL OF RADIATION RESEARCH 2024; 65:350-359. [PMID: 38650477 PMCID: PMC11115443 DOI: 10.1093/jrr/rrae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/12/2023] [Indexed: 04/25/2024]
Abstract
Using radiomics to predict O6-methylguanine-DNA methyltransferase promoter methylation status in patients with newly diagnosed glioblastoma and compare the performances of different MRI sequences. Preoperative MRI scans from 215 patients were included in this retrospective study. After image preprocessing and feature extraction, two kinds of machine-learning models were established and compared for their performances. One kind was established using all MRI sequences (T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient), and the other kind was based on single MRI sequence as listed above. For the machine-learning model based on all sequences, a total of seven radiomic features were selected with the Maximum Relevance and Minimum Redundancy algorithm. The predictive accuracy was 0.993 and 0.750 in the training and validation sets, respectively, and the area under curves were 1.000 and 0.754 in the two sets, respectively. For the machine-learning model based on single sequence, the numbers of selected features were 8, 10, 10, 13, 9, 7 and 6 for T1-weighted image, T2-weighted image, contrast enhancement, fluid-attenuated inversion recovery, DWI_b_high, DWI_b_low and apparent diffusion coefficient, respectively, with predictive accuracies of 0.797-1.000 and 0.583-0.694 in the training and validation sets, respectively, and the area under curves of 0.874-1.000 and 0.538-0.697 in the two sets, respectively. Specifically, T1-weighted image-based model performed best, while contrast enhancement-based model performed worst in the independent validation set. The machine-learning models based on seven different single MRI sequences performed differently in predicting O6-methylguanine-DNA methyltransferase status in glioblastoma, while the machine-learning model based on the combination of all sequences performed best.
Collapse
Affiliation(s)
- Fei Zheng
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
- Department of Radiology, Peking University People’s Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, P. R. China
| | - Lingling Zhang
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Hongyan Chen
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Yuying Zang
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Xuzhu Chen
- Department of Radiology, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| | - Yiming Li
- Department of Neurosurgery, Capital Medical University, Beijing Tiantan Hospital, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, P. R. China
| |
Collapse
|
10
|
Ma A, Yan X, Qu Y, Wen H, Zou X, Liu X, Lu M, Mo J, Wen Z. Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas. BMC Med Imaging 2024; 24:85. [PMID: 38600452 PMCID: PMC11005152 DOI: 10.1186/s12880-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND 1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI. METHODS This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and decision curve analysis. P < 0.05 was statistically significant. RESULTS The radiomics model and the combined model both exhibited excellent performance on both the training and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predictive performance from three neuroradiologists. In the training set, both the radiomic and combined models performed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly from experienced neuroradiologist. CONCLUSIONS Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 1p/19q co-deletion prediction of LGG.
Collapse
Affiliation(s)
- Andong Ma
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xinran Yan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Yaoming Qu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Haitao Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xia Zou
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xinzi Liu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Mingjun Lu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Jianhua Mo
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
11
|
Wen X, Wang C, Pan Z, Jin Y, Wang H, Zhou J, Sun C, Ye G, Chen M. Integrated analysis reveals the potential of cluster of differentiation 86 as a key biomarker in high-grade glioma. Aging (Albany NY) 2023; 15:15402-15418. [PMID: 38154107 PMCID: PMC10781505 DOI: 10.18632/aging.205359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
This study aimed to evaluate the potential of cluster of differentiation 86 (CD86) as a biomarker in high-grade glioma (HGG). The TCGA and TCIA databases were used to obtain the CD86 expression value, clinical data, and MRI images of HGG patients. Prognostic values were assessed by the Kaplan-Meier method, Receiver operating characteristic curve (ROC), Cox regression, logistic regression, and nomogram analyses. CD86-associated pathways were also explored. We found that CD86 was significantly upregulated in HGG compared with the normal group. Survival analysis showed a significant association between CD86 high expression and shorter overall survival time. Its independent prognostic value was also confirmed. These results suggested the possibility of CD86 as a biomarker in HGG. We also innovatively established 2 radiomics models with Support Vector Machine (SVM) and Logistic regression (LR) algorithms to predict the CD86 expression. The 2 models containing 5 optimal features by SVM and LR methods showed similar favorable performance in predicting CD86 expression in the training set, and their performance were also confirmed in validation set. These results indicated the successful construction of a radiomics model for non-invasively predicting biomarker in HGG. Finally, pathway analysis indicated that CD86 might be involved in the natural killer cell-mediated cytotoxicity in HGG progression.
Collapse
Affiliation(s)
- Xuebin Wen
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Chaochao Wang
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Zhihao Pan
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Yao Jin
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Hongcai Wang
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Jiang Zhou
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Chengfeng Sun
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Gengfan Ye
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Maosong Chen
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| |
Collapse
|
12
|
Wang P, Xie S, Wu Q, Weng L, Hao Z, Yuan P, Zhang C, Gao W, Wang S, Zhang H, Song Y, He J, Gao Y. Model incorporating multiple diffusion MRI features: development and validation of a radiomics-based model to predict adult-type diffuse gliomas grade. Eur Radiol 2023; 33:8809-8820. [PMID: 37439936 PMCID: PMC10667393 DOI: 10.1007/s00330-023-09861-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/06/2023] [Accepted: 05/14/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVES To develop and validate a radiomics-based model (ADGGIP) for predicting adult-type diffuse gliomas (ADG) grade by combining multiple diffusion modalities and clinical and imaging morphologic features. METHODS In this prospective study, we recruited 103 participants diagnosed with ADG and collected their preoperative conventional MRI and multiple diffusion imaging (diffusion tensor imaging, diffusion kurtosis imaging, neurite orientation dispersion and density imaging, and mean apparent propagator diffusion-MRI) data in our hospital, as well as clinical information. Radiomic features of the diffusion images and clinical information and morphological data from the radiological reports were extracted, and multiple pipelines were used to construct the optimal model. Model validation was performed through a time-independent validation cohort. ROC curves were used to evaluate model performance. The clinical benefit was determined by decision curve analysis. RESULTS From June 2018 to May 2021, 72 participants were recruited for the training cohort. Between June 2021 and February 2022, 31 participants were enrolled in the prospective validation cohort. In the training cohort (AUC 0.958), internal validation cohort (0.942), and prospective validation cohort (0.880), ADGGIP had good accuracy in predicting ADG grade. ADGGIP was also significantly better than the single-modality prediction model (AUC 0.860) and clinical imaging morphology model (0.841) (all p < .01) in the prospective validation cohort. When the threshold probability was greater than 5%, ADGGIP provided the greatest net benefit. CONCLUSION ADGGIP, which is based on advanced diffusion modalities, can predict the grade of ADG with high accuracy and robustness and can help improve clinical decision-making. CLINICAL RELEVANCE STATEMENT Integrated multi-modal predictive modeling is beneficial for early detection and treatment planning of adult-type diffuse gliomas, as well as for investigating the genuine clinical significance of biomarkers. KEY POINTS • Integrated model exhibits the highest performance and stability. • When the threshold is greater than 5%, the integrated model has the greatest net benefit. • The advanced diffusion models do not demonstrate better performance than the simple technology.
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
- Inner Mongolia Medical University, Hohhot, 010110, China
| | - Shenghui Xie
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
| | - Qiong Wu
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
| | - Lixin Weng
- Inner Mongolia Medical University, Hohhot, 010110, China
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
| | - Zhiyue Hao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
| | - Pengxuan Yuan
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
| | - Chi Zhang
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
| | - Weilin Gao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China
| | - Shaoyu Wang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, 201318, China
| | - Huapeng Zhang
- MR Scientific Marketing, Siemens Healthineers, Shanghai, 201318, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers, Shanghai, 201318, China
| | - Jinlong He
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| | - Yang Gao
- Department of Radiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010059, China.
| |
Collapse
|
13
|
Hooper GW, Ansari S, Johnson JM, Ginat DT. Advances in the Radiological Evaluation of and Theranostics for Glioblastoma. Cancers (Basel) 2023; 15:4162. [PMID: 37627190 PMCID: PMC10453051 DOI: 10.3390/cancers15164162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Imaging is essential for evaluating patients with glioblastoma. Traditionally a multimodality undertaking, CT, including CT cerebral blood profusion, PET/CT with traditional fluorine-18 fluorodeoxyglucose (18F-FDG), and MRI have been the mainstays for diagnosis and post-therapeutic assessment. However, recent advances in these modalities, in league with the emerging fields of radiomics and theranostics, may prove helpful in improving diagnostic accuracy and treating the disease.
Collapse
Affiliation(s)
| | - Shehbaz Ansari
- Rush University Medical Center, Department of Radiology and Nuclear Medicine, Chicago, IL 60612, USA;
| | - Jason M. Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Daniel T. Ginat
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Chilaca-Rosas MF, Contreras-Aguilar MT, Garcia-Lezama M, Salazar-Calderon DR, Vargas-Del-Angel RG, Moreno-Jimenez S, Piña-Sanchez P, Trejo-Rosales RR, Delgado-Martinez FA, Roldan-Valadez E. Identification of Radiomic Signatures in Brain MRI Sequences T1 and T2 That Differentiate Tumor Regions of Midline Gliomas with H3.3K27M Mutation. Diagnostics (Basel) 2023; 13:2669. [PMID: 37627927 PMCID: PMC10453217 DOI: 10.3390/diagnostics13162669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Radiomics refers to the acquisition of traces of quantitative features that are usually non-perceptible to human vision and are obtained from different imaging techniques and subsequently transformed into high-dimensional data. Diffuse midline gliomas (DMG) represent approximately 20% of pediatric CNS tumors, with a median survival of less than one year after diagnosis. We aimed to identify which radiomics can discriminate DMG tumor regions (viable tumor and peritumoral edema) from equivalent midline normal tissue (EMNT) in patients with the positive H3.F3K27M mutation, which is associated with a worse prognosis. PATIENTS AND METHODS This was a retrospective study. From a database of 126 DMG patients (children, adolescents, and young adults), only 12 had H3.3K27M mutation and available brain magnetic resonance DICOM file. The MRI T1 post-gadolinium and T2 sequences were uploaded to LIFEx software to post-process and extract radiomic features. Statistical analysis included normal distribution tests and the Mann-Whitney U test performed using IBM SPSS® (Version 27.0.0.1, International Business Machines Corp., Armonk, NY, USA), considering a significant statistical p-value ≤ 0.05. RESULTS EMNT vs. Tumor: From the T1 sequence 10 radiomics were identified, and 14 radiomics from the T2 sequence, but only one radiomic identified viable tumors in both sequences (p < 0.05) (DISCRETIZED_Q1). Peritumoral edema vs. EMNT: From the T1 sequence, five radiomics were identified, and four radiomics from the T2 sequence. However, four radiomics could discriminate peritumoral edema in both sequences (p < 0.05) (CONVENTIONAL_Kurtosis, CONVENTIONAL_ExcessKurtosis, DISCRETIZED_Kurtosis, and DISCRETIZED_ExcessKurtosis). There were no radiomics useful for distinguishing tumor tissue from peritumoral edema in both sequences. CONCLUSIONS Less than 5% of the radiomic characteristics identified tumor regions of medical-clinical interest in T1 and T2 sequences of conventional magnetic resonance imaging. The first-order and second-order radiomic features suggest support to investigators and clinicians for careful evaluation for diagnosis, patient classification, and multimodality cancer treatment planning.
Collapse
Affiliation(s)
- Maria-Fatima Chilaca-Rosas
- Radiotherapy Department, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico; (M.-F.C.-R.); (D.-R.S.-C.)
| | - Manuel-Tadeo Contreras-Aguilar
- Radiotherapy Department, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico; (M.-F.C.-R.); (D.-R.S.-C.)
| | - Melissa Garcia-Lezama
- Directorate of Research, Hospital General de Mexico Dr Eduardo Liceaga, Mexico City 06720, Mexico;
| | - David-Rafael Salazar-Calderon
- Radiotherapy Department, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico; (M.-F.C.-R.); (D.-R.S.-C.)
| | | | - Sergio Moreno-Jimenez
- Neurological Center, Neurosurgery Department of National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico;
- Neurological Center, Neurosurgery Department of American British Cowdray Medical Center, Mexico City 01120, Mexico
| | - Patricia Piña-Sanchez
- Oncology Diagnostic, Unidad de Investigacion Medica en Enfermedades Oncologicas U.I.M.E.O, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico;
| | - Raul-Rogelio Trejo-Rosales
- Medical Oncology, Hospital de Oncología, Centro Medico Nacional Siglo XXI, Instituto Mexicano Del Seguro Social, Mexico City 06720, Mexico;
| | - Felipe-Alfredo Delgado-Martinez
- Magnetic Resonance Service, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ernesto Roldan-Valadez
- Directorate of Research, Hospital General de Mexico Dr Eduardo Liceaga, Mexico City 06720, Mexico;
- Department of Radiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
15
|
Liu X, Li Z, Yin Y. Clinical application of MR-Linac in tumor radiotherapy: a systematic review. Radiat Oncol 2023; 18:52. [PMID: 36918884 PMCID: PMC10015924 DOI: 10.1186/s13014-023-02221-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023] Open
Abstract
Recent years have seen both a fresh knowledge of cancer and impressive advancements in its treatment. However, the clinical treatment paradigm of cancer is still difficult to implement in the twenty-first century due to the rise in its prevalence. Radiotherapy (RT) is a crucial component of cancer treatment that is helpful for almost all cancer types. The accuracy of RT dosage delivery is increasing as a result of the quick development of computer and imaging technology. The use of image-guided radiation (IGRT) has improved cancer outcomes and decreased toxicity. Online adaptive radiotherapy will be made possible by magnetic resonance imaging-guided radiotherapy (MRgRT) using a magnetic resonance linear accelerator (MR-Linac), which will enhance the visibility of malignancies. This review's objectives are to examine the benefits of MR-Linac as a treatment approach from the perspective of various cancer patients' prognoses and to suggest prospective development areas for additional study.
Collapse
Affiliation(s)
- Xin Liu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhenjiang Li
- Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yong Yin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China. .,Department of Radiation Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
16
|
Karami G, Pascuzzo R, Figini M, Del Gratta C, Zhang H, Bizzi A. Combining Multi-Shell Diffusion with Conventional MRI Improves Molecular Diagnosis of Diffuse Gliomas with Deep Learning. Cancers (Basel) 2023; 15:cancers15020482. [PMID: 36672430 PMCID: PMC9856805 DOI: 10.3390/cancers15020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
The WHO classification since 2016 confirms the importance of integrating molecular diagnosis for prognosis and treatment decisions of adult-type diffuse gliomas. This motivates the development of non-invasive diagnostic methods, in particular MRI, to predict molecular subtypes of gliomas before surgery. At present, this development has been focused on deep-learning (DL)-based predictive models, mainly with conventional MRI (cMRI), despite recent studies suggesting multi-shell diffusion MRI (dMRI) offers complementary information to cMRI for molecular subtyping. The aim of this work is to evaluate the potential benefit of combining cMRI and multi-shell dMRI in DL-based models. A model implemented with deep residual neural networks was chosen as an illustrative example. Using a dataset of 146 patients with gliomas (from grade 2 to 4), the model was trained and evaluated, with nested cross-validation, on pre-operative cMRI, multi-shell dMRI, and a combination of the two for the following classification tasks: (i) IDH-mutation; (ii) 1p/19q-codeletion; and (iii) three molecular subtypes according to WHO 2021. The results from a subset of 100 patients with lower grades gliomas (2 and 3 according to WHO 2016) demonstrated that combining cMRI and multi-shell dMRI enabled the best performance in predicting IDH mutation and 1p/19q codeletion, achieving an accuracy of 75 ± 9% in predicting the IDH-mutation status, higher than using cMRI and multi-shell dMRI separately (both 70 ± 7%). Similar findings were observed for predicting the 1p/19q-codeletion status, with the accuracy from combining cMRI and multi-shell dMRI (72 ± 4%) higher than from each modality used alone (cMRI: 65 ± 6%; multi-shell dMRI: 66 ± 9%). These findings remain when we considered all 146 patients for predicting the IDH status (combined: 81 ± 5% accuracy; cMRI: 74 ± 5%; multi-shell dMRI: 73 ± 6%) and for the diagnosis of the three molecular subtypes according to WHO 2021 (combined: 60 ± 5%; cMRI: 57 ± 8%; multi-shell dMRI: 56 ± 7%). Together, these findings suggest that combining cMRI and multi-shell dMRI can offer higher accuracy than using each modality alone for predicting the IDH and 1p/19q status and in diagnosing the three molecular subtypes with DL-based models.
Collapse
Affiliation(s)
- Golestan Karami
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D’Annunzio University, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, Gabriele D’Annunzio University, 66100 Chieti, Italy
| | - Riccardo Pascuzzo
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Correspondence:
| | - Matteo Figini
- Centre for Medical Image Computing and Department of Computer Science, University College London, London WC1V 6LJ, UK
| | - Cosimo Del Gratta
- Department of Neuroscience, Imaging and Clinical Sciences, Gabriele D’Annunzio University, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies, Gabriele D’Annunzio University, 66100 Chieti, Italy
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London WC1V 6LJ, UK
| | - Alberto Bizzi
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|