1
|
Takumi K, Nakanosono R, Nagano H, Hakamada H, Kanzaki F, Kamimura K, Nakajo M, Eizuru Y, Nagano H, Yoshiura T. Multiparametric approach with synthetic MR imaging for diagnosing salivary gland lesions. Jpn J Radiol 2024; 42:983-992. [PMID: 38733471 PMCID: PMC11364709 DOI: 10.1007/s11604-024-01578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
PURPOSE To determine whether synthetic MR imaging can distinguish between benign and malignant salivary gland lesions. METHODS The study population included 44 patients with 33 benign and 11 malignant salivary gland lesions. All MR imaging was obtained using a 3 Tesla system. The QRAPMASTER pulse sequence was used to acquire images with four TI values and two TE values, from which quantitative images of T1 and T2 relaxation times and proton density (PD) were generated. The Mann-Whitney U test was used to compare T1, T2, PD, and ADC values among the subtypes of salivary gland lesions. ROC analysis was used to evaluate diagnostic capability between malignant tumors (MTs) and either pleomorphic adenomas (PAs) or Warthin tumors (WTs). We further calculated diagnostic accuracy for distinguishing malignant from benign lesions when combining these parameters. RESULTS PAs demonstrated significantly higher T1, T2, PD, and ADC values than WTs (all p < 0.001). Compared to MTs, PAs had significantly higher T1, T2, and ADC values (all p < 0.001), whereas WTs had significantly lower T1, T2, and PD values (p < 0.001, p = 0.008, and p = 0.003, respectively). T2 and ADC were most effective in differentiating between MTs and PAs (AUC = 0.928 and 0.939, respectively), and T1 and PD values for differentiating between MTs and WTs (AUC = 0.915 and 0.833, respectively). Combining T1 with T2 or ADC achieved accuracy of 86.4% in distinguishing between malignant and benign tumors. Similarly, combining PD with T2 or ADC reached accuracy of 86.4% for differentiating between malignant and benign tumors. CONCLUSIONS Utilizing a combination of synthetic MRI parameters may assist in differentiating malignant from benign salivary gland lesions.
Collapse
Affiliation(s)
- Koji Takumi
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan.
| | - Ryota Nakanosono
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| | - Hiroaki Nagano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| | - Hiroto Hakamada
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| | - Fumiko Kanzaki
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| | - Kiyohisa Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| | - Yukari Eizuru
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| | - Hiromi Nagano
- Department of Otolaryngology Head and Neck Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, 890-8544, Japan
| |
Collapse
|
2
|
Zhang JH, Neumann T, Schaeffter T, Kolbitsch C, Kerkering KM. Respiratory motion-corrected T1 mapping of the abdomen. MAGMA (NEW YORK, N.Y.) 2024; 37:637-649. [PMID: 39133420 PMCID: PMC11417068 DOI: 10.1007/s10334-024-01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE The purpose of this study was to investigate an approach for motion-corrected T1 mapping of the abdomen that allows for free breathing data acquisition with 100% scan efficiency. MATERIALS AND METHODS Data were acquired using a continuous golden radial trajectory and multiple inversion pulses. For the correction of respiratory motion, motion estimation based on a surrogate was performed from the same data used for T1 mapping. Image-based self-navigation allowed for binning and reconstruction of respiratory-resolved images, which were used for the estimation of respiratory motion fields. Finally, motion-corrected T1 maps were calculated from the data applying the estimated motion fields. The method was evaluated in five healthy volunteers. For the assessment of the image-based navigator, we compared it to a simultaneously acquired ultrawide band radar signal. Motion-corrected T1 maps were evaluated qualitatively and quantitatively for different scan times. RESULTS For all volunteers, the motion-corrected T1 maps showed fewer motion artifacts in the liver as well as sharper kidney structures and blood vessels compared to uncorrected T1 maps. Moreover, the relative error to the reference breathhold T1 maps could be reduced from up to 25% for the uncorrected T1 maps to below 10% for the motion-corrected maps for the average value of a region of interest, while the scan time could be reduced to 6-8 s. DISCUSSION The proposed approach allows for respiratory motion-corrected T1 mapping in the abdomen and ensures accurate T1 maps without the need for any breathholds.
Collapse
Affiliation(s)
- Jana Huiyue Zhang
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany.
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Tom Neumann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Department of Biomedical Engineering, Technical University of Berlin, Berlin, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | |
Collapse
|
3
|
Meloni A, Carnevale A, Gaio P, Positano V, Passantino C, Pepe A, Barison A, Todiere G, Grigoratos C, Novani G, Pistoia L, Giganti M, Cademartiri F, Cossu A. Liver T1 and T2 mapping in a large cohort of healthy subjects: normal ranges and correlation with age and sex. MAGMA (NEW YORK, N.Y.) 2024; 37:93-100. [PMID: 38019376 DOI: 10.1007/s10334-023-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE We established normal ranges for native T1 and T2 values in the human liver using a 1.5 T whole-body imager (General Electric) and we evaluated their variation across hepatic segments and their association with age and sex. MATERIALS AND METHODS One-hundred healthy volunteers aged 20-70 years (50% females) underwent MRI. Modified Look-Locker inversion recovery and multi-echo fast-spin-echo sequences were used to measure hepatic native global and segmental T1 and T2 values, respectively. RESULTS T1 and T2 values exhibited good intra- and inter-observer reproducibility (coefficient of variation < 5%). T1 value over segment 4 was significantly lower than the T1 values over segments 2 and 3 (p < 0.0001). No significant regional T2 variability was detected. Segmental and global T1 values were not associated with age or sex. Global T2 values were independent from age but were significantly lower in males than in females. The lower and upper limits of normal for global T1 values were, respectively, 442 ms and 705 ms. The normal range for global T2 values was 35 ms-54 ms in males and 39 ms-54 ms in females. DISCUSSION Liver T1 and T2 mapping is feasible and reproducible and the provided normal ranges may help to establish diagnosis and progression of various liver diseases.
Collapse
Affiliation(s)
- Antonella Meloni
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Aldo Carnevale
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Gaio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Vincenzo Positano
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | | | - Alessia Pepe
- Institute of Radiology, University of Padua, Padua, Italy
| | - Andrea Barison
- Division of Cardiology and Cardiovascular Medicine, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Giancarlo Todiere
- Division of Cardiology and Cardiovascular Medicine, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Chrysanthos Grigoratos
- Division of Cardiology and Cardiovascular Medicine, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Giovanni Novani
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy
| | - Laura Pistoia
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy
- U.O.S.V.D. Ricerca Clinica, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | | | - Filippo Cademartiri
- Radiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Via Moruzzi, 1-56124, Pisa, Italy.
| | - Alberto Cossu
- University Radiology Unit, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Zhang K, Triphan SMF, Wielpütz MO, Ziener CH, Ladd ME, Schlemmer HP, Kauczor HU, Kurz FT, Sedlaczek O. Simultaneous T 1, T 2 and T 2⁎ mapping of the liver with multi-shot MI-SAGE. Magn Reson Imaging 2024; 105:75-81. [PMID: 37939972 DOI: 10.1016/j.mri.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE To apply multi-shot high-resolution multi inversion spin and gradient echo (MI-SAGE) acquisition for simultaneous liver T1, T2 and T2* mapping. METHODS Inversion prepared spin- and gradient-echo EPI was developed with ascending slice order across measurements for efficient acquisition with T1, T2, and T2⁎ weighting. Multi-shot EPI was also implemented to minimize distortion and blurring while enabling high in-plane resolution. A dictionary-matching approach was used to fit the images to quantitative parameter maps, which were compared to T1 measured by modified Look-Locker (MOLLI), T1 measured by variable flip angle (VFA), T2 measured by multiple echo time-based Half Fourier Single-shot Turbo spin-Echo (HASTE), T2 measured by radial turbo-spin-echo (rTSE) and T2⁎ measured by multiple gradient echo (MGRE) sequences. RESULTS The multi-shot variant of the sequence achieved higher in-plane resolution of 1.7 × 1.7 mm2 with good image quality in 28 s. Derived quantitative maps showed comparable values to conventional mapping methods. As measured in phantom and in vivo, MOLLI, MESE and MGRE give closest values to MISAGE. VFA, HASTE and rTSE show obvious overestimation. CONCLUSIONS The proposed multi-shot inversion prepared spin- and gradient-echo EPI sequence allows for high-resolution quantitative T1, T2 and T2 liver tissue characterization in a single breath-hold scan.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Simon M F Triphan
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Mark O Wielpütz
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Christian H Ziener
- Divison of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Mark E Ladd
- Divison of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Hans-Ulrich Kauczor
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T Kurz
- Divison of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Diagnostic & Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic & Interventional Radiology with Nuclear Medicine, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany; Divison of Radiology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
5
|
Qu J, Pan B, Su T, Chen Y, Zhang T, Chen X, Zhu X, Xu Z, Wang T, Zhu J, Zhang Z, Feng F, Jin Z. T1 and T2 mapping for identifying malignant lymph nodes in head and neck squamous cell carcinoma. Cancer Imaging 2023; 23:125. [PMID: 38105217 PMCID: PMC10726506 DOI: 10.1186/s40644-023-00648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND This study seeks to assess the utility of T1 and T2 mapping in distinguishing metastatic lymph nodes from reactive lymphadenopathy in patients with head and neck squamous cell carcinoma (HNSCC), using diffusion-weighted imaging (DWI) as a comparison. METHODS Between July 2017 and November 2019, 46 HNSCC patients underwent neck MRI inclusive of T1 and T2 mapping and DWI. Quantitative measurements derived from preoperative T1 and T2 mapping and DWI of metastatic and non-metastatic lymph nodes were compared using independent samples t-test or Mann-Whitney U test. Receiver operating characteristic curves and the DeLong test were employed to determine the most effective diagnostic methodology. RESULTS We examined a total of 122 lymph nodes, 45 (36.9%) of which were metastatic proven by pathology. Mean T2 values for metastatic lymph nodes were significantly lower than those for benign lymph nodes (p < 0.001). Conversely, metastatic lymph nodes exhibited significantly higher apparent diffusion coefficient (ADC) and standard deviation of T1 values (T1SD) (p < 0.001). T2 generated a significantly higher area under the curve (AUC) of 0.890 (0.826-0.954) compared to T1SD (0.711 [0.613-0.809]) and ADC (0.660 [0.562-0.758]) (p = 0.007 and p < 0.001). Combining T2, T1SD, ADC, and lymph node size achieved an AUC of 0.929 (0.875-0.983), which did not significantly enhance diagnostic performance over using T2 alone (p = 0.089). CONCLUSIONS The application of T1 and T2 mapping is feasible in differentiating metastatic from non-metastatic lymph nodes in HNSCC and can improve diagnostic efficacy compared to DWI.
Collapse
Affiliation(s)
- Jiangming Qu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Boju Pan
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Tong Su
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yu Chen
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Tao Zhang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Xingming Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Xiaoli Zhu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhentan Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Tianjiao Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Jinxia Zhu
- MR Research Collaboration, Siemens Healthineers Ltd, Beijing, China
| | - Zhuhua Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Fellner C, Nickel MD, Kannengiesser S, Verloh N, Stroszczynski C, Haimerl M, Luerken L. Water-Fat Separated T1 Mapping in the Liver and Correlation to Hepatic Fat Fraction. Diagnostics (Basel) 2023; 13:diagnostics13020201. [PMID: 36673011 PMCID: PMC9858222 DOI: 10.3390/diagnostics13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
(1) Background: T1 mapping in magnetic resonance imaging (MRI) of the liver has been proposed to estimate liver function or to detect the stage of liver disease, among others. Thus far, the impact of intrahepatic fat on T1 quantification has only been sparsely discussed. Therefore, the aim of this study was to evaluate the potential of water-fat separated T1 mapping of the liver. (2) Methods: A total of 386 patients underwent MRI of the liver at 3 T. In addition to routine imaging techniques, a 3D variable flip angle (VFA) gradient echo technique combined with a two-point Dixon method was acquired to calculate T1 maps from an in-phase (T1_in) and water-only (T1_W) signal. The results were correlated with proton density fat fraction using multi-echo 3D gradient echo imaging (PDFF) and multi-echo single voxel spectroscopy (PDFF_MRS). Using T1_in and T1_W, a novel parameter FF_T1 was defined and compared with PDFF and PDFF_MRS. Furthermore, the value of retrospectively calculated T1_W (T1_W_calc) based on T1_in and PDFF was assessed. Wilcoxon test, Pearson correlation coefficient and Bland-Altman analysis were applied as statistical tools. (3) Results: T1_in was significantly shorter than T1_W and the difference of both T1 values was correlated with PDFF (R = 0.890). FF_T1 was significantly correlated with PDFF (R = 0.930) and PDFF_MRS (R = 0.922) and yielded only minor bias compared to both established PDFF methods (0.78 and 0.21). T1_W and T1_W_calc were also significantly correlated (R = 0.986). (4) Conclusion: T1_W acquired with a water-fat separated VFA technique allows to minimize the influence of fat on liver T1. Alternatively, T1_W can be estimated retrospectively from T1_in and PDFF, if a Dixon technique is not available for T1 mapping.
Collapse
Affiliation(s)
- Claudia Fellner
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | | | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | | | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: (M.H.); (L.L.); Tel.: +49-941-944-7401 (M.H.)
| | - Lukas Luerken
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
- Correspondence: (M.H.); (L.L.); Tel.: +49-941-944-7401 (M.H.)
| |
Collapse
|