1
|
Yu R, Wang K, Xiong Y, Jiang H. A novel mutation of X-linked recessive deafness gene POU3F4 in a boy with congenital deafness. Laryngoscope Investig Otolaryngol 2022; 7:1150-1154. [PMID: 36000053 PMCID: PMC9392402 DOI: 10.1002/lio2.850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/07/2022] Open
Abstract
Purpose To report an interstitial deletion of Xq21.1 in chromosome X in a boy with congenital deafness. Methods The proband underwent a thorough physical examination and a detailed audiological and temporal bone computed tomography (CT) scan. Cochlear implantation was performed on the proband, and follow-up was conducted. High throughput sequencing and copy number analysis was made of peripheral blood samples from the proband, family members, and control subjects. Results Sensorineural hearing loss was present in the boy and temporal bone CT scan showed a bilateral incomplete partition type III anomaly (IP-III). Q21.1 (79.40-83.32 Mb) of chromosome X in the proband had a copy number deletion with a fragment size of about 3.92 Mb. Categories of auditory performance scores and SIR scores of the cochlea in this child improved after surgery. Conclusion Through the analysis of POU3F4, a novel mutation site with potentially pathogenic significance was found.Level of Evidence: 5.
Collapse
Affiliation(s)
- Rong Yu
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Kai Wang
- Department of OtorhinolaryngologyThe 908th Hospital of Chinese People's Liberation Army Joint Logistic Support ForceNanchangChina
| | - Yuanping Xiong
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Hongqun Jiang
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
2
|
García-Mato Á, Cervantes B, Murillo-Cuesta S, Rodríguez-de la Rosa L, Varela-Nieto I. Insulin-like Growth Factor 1 Signaling in Mammalian Hearing. Genes (Basel) 2021; 12:genes12101553. [PMID: 34680948 PMCID: PMC8535591 DOI: 10.3390/genes12101553] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a peptide hormone belonging to the insulin family of proteins. Almost all of the biological effects of IGF-1 are mediated through binding to its high-affinity tyrosine kinase receptor (IGF1R), a transmembrane receptor belonging to the insulin receptor family. Factors, receptors and IGF-binding proteins form the IGF system, which has multiple roles in mammalian development, adult tissue homeostasis, and aging. Consequently, mutations in genes of the IGF system, including downstream intracellular targets, underlie multiple common pathologies and are associated with multiple rare human diseases. Here we review the contribution of the IGF system to our understanding of the molecular and genetic basis of human hearing loss by describing, (i) the expression patterns of the IGF system in the mammalian inner ear; (ii) downstream signaling of IGF-1 in the hearing organ; (iii) mouse mutations in the IGF system, including upstream regulators and downstream targets of IGF-1 that inform cochlear pathophysiology; and (iv) human mutations in these genes causing hearing loss.
Collapse
Affiliation(s)
- Ángela García-Mato
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Blanca Cervantes
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| | - Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols” (IIBm), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), 28029 Madrid, Spain; (Á.G.-M.); (B.C.); (S.M.-C.)
- Rare Diseases Networking Biomedical Research Centre (CIBERER), CIBER, Carlos III Institute of Health, 28029 Madrid, Spain
- La Paz Hospital Institute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Correspondence: (L.R.-d.l.R.); (I.V.-N.)
| |
Collapse
|
3
|
Wang X, Wang HY, Hu GS, Tang WS, Weng L, Zhang Y, Guo H, Yao SS, Liu SY, Zhang GL, Han Y, Liu M, Zhang XD, Cen X, Shen HF, Xiao N, Liu CQ, Wang HR, Huang J, Liu W, Li P, Zhao TJ. DDB1 binds histone reader BRWD3 to activate the transcriptional cascade in adipogenesis and promote onset of obesity. Cell Rep 2021; 35:109281. [PMID: 34161765 DOI: 10.1016/j.celrep.2021.109281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/17/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity has become a global pandemic. Identification of key factors in adipogenesis helps to tackle obesity and related metabolic diseases. Here, we show that DDB1 binds the histone reader BRWD3 to promote adipogenesis and diet-induced obesity. Although typically recognized as a component of the CUL4-RING E3 ubiquitin ligase complex, DDB1 stimulates adipogenesis independently of CUL4. A DDB1 mutant that does not bind CUL4A or CUL4B fully restores adipogenesis in DDB1-deficient cells. Ddb1+/- mice show delayed postnatal development of white adipose tissues and are protected from diet-induced obesity. Mechanistically, by interacting with BRWD3, DDB1 is recruited to acetylated histones in the proximal promoters of ELK1 downstream immediate early response genes and facilitates the release of paused RNA polymerase II, thereby activating the transcriptional cascade in adipogenesis. Our findings have uncovered a CUL4-independent function of DDB1 in promoting the transcriptional cascade of adipogenesis, development of adipose tissues, and onset of obesity.
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hao-Yan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen, Fujian, China
| | - Wen-Shuai Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Weng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuzhu Zhang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shan-Shan Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shen-Ying Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China
| | - Guo-Liang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Han
- Department of Endocrinology and Diabetes, the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Dong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiang Cen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Feng Shen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen, Fujian, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chang-Qin Liu
- Department of Endocrinology and Diabetes, the First Affiliated Hospital, Xiamen University, Xiamen, Fujian, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen, Fujian, China
| | - Peng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China; State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tong-Jin Zhao
- Shanghai Key Laboratory of Metabolic Remodeling and Disease, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, and Shanghai Qi Zhi Institute, Shanghai, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
4
|
Akasaka M, Kamei A, Ito J, Oyama K. Turner Syndrome Associated With Refractory Seizures and Intellectual Disability: A Case Study. Cureus 2020; 12:e11364. [PMID: 33304697 PMCID: PMC7721081 DOI: 10.7759/cureus.11364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Turner syndrome (TS) is the most frequent sex abnormality in women. The physical features include short stature, webbing of the neck, and gonadal dysgenesis. Typically, patients with Turner syndrome exhibit no intellectual disability, and a few cases of TS have been associated with epilepsy. Herein, we present a case of TS with intractable epilepsy. The patient presented with global developmental delay at the age of two and karyotyping revealed mosaicism [45, X/46, X del (X) (q21.1)]. At the age of seven, she had generalized tonic epilepsy as well as several focal-onset seizures. She developed daily seizures, which were refractory to several antiepileptic drugs. Interictal electroencephalography (EEG) revealed multifocal spikes, and ictal EEG revealed shifting foci. She visited our hospital at the age of 13. Her peripheral white blood cells G-band and fluorescence in situ hybridization (FISH) method chromosome with cheek swab examinations revealed 45, X. Her peripheral white blood cell mosaic pattern may have disappeared over time or become indetectable. We treated her with clobazam, and then lamotrigine and valproic acid combination therapy, which resulted in a reduction in the frequency of seizures by approximately 50%. Epilepsy and intellectual disability in this case may be due to the mosaic deletion at Xq21.1. Further analysis of similar cases may provide valuable information for effective therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Jun Ito
- Pediatrics, Iwate Medical University, Morioka, JPN
| | - Kotaro Oyama
- Pediatrics, Iwate Medical University, Morioka, JPN
| |
Collapse
|
5
|
Williamson TT, Zhu X, Pineros J, Ding B, Frisina RD. Understanding hormone and hormone therapies' impact on the auditory system. J Neurosci Res 2020; 98:1721-1730. [PMID: 32026519 DOI: 10.1002/jnr.24588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 12/22/2019] [Accepted: 01/17/2020] [Indexed: 11/10/2022]
Abstract
Hormones such as estrogen, progesterone, and aldosterone all demonstrate vital roles in sustaining auditory function through either the maintenance of cochlear neurons, up/down regulation of critical molecules (i.e., IGF-1, BDNF, etc.), or generation of the endocochlear potential. With disease and/or age, hormone expression begins to decline drastically, which ultimately affects cochlear structures and the integrity of cochlear cells. The following review explores the latest findings as well as realistic outcomes for hormone therapy treatment in the auditory system. This information could serve as a potential guide for patients considering hormone therapy as a medicinal choice to alleviate the signs of onset of presbycusis-age-related hearing loss. Additional scientific investigations could also be carried out to further enhance recent findings.
Collapse
Affiliation(s)
- Tanika T Williamson
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Chemical & Biological Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Chemical & Biological Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Jennifer Pineros
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Chemical & Biological Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Bo Ding
- Department of Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Robert D Frisina
- Department of Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Chemical & Biological Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.,Department of Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB. All Together Now: Modeling the Interaction of Neural With Non-neural Systems Using Organoid Models. Front Neurosci 2019; 13:582. [PMID: 31293366 PMCID: PMC6598414 DOI: 10.3389/fnins.2019.00582] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/22/2019] [Indexed: 12/27/2022] Open
Abstract
The complex development of the human nervous system has been traditionally studied using a combination of animal models, human post-mortem brain tissue, and human genetics studies. However, there has been a lack of experimental human cellular models that would allow for a more precise elucidation of the intricate dynamics of early human brain development. The development of stem cell technologies, both embryonic and induced pluripotent stem cells (iPSCs), has given neuroscientists access to the previously inaccessible early stages of human brain development. In particular, the recent development of three-dimensional culturing methodologies provides a platform to study the differentiation of stem cells in both normal development and disease states in a more in vivo like context. Three-dimensional neural models or cerebral organoids possess an innate advantage over two-dimensional neural cultures as they can recapitulate tissue organization and cell type diversity that resemble the developing brain. Brain organoids also provide the exciting opportunity to model the integration of different brain regions in vitro. Furthermore, recent advances in the differentiation of non-neuronal tissue from stem cells provides the opportunity to study the interaction between the developing nervous system and other non-neuronal systems that impact neuronal function. In this review, we discuss the potential and limitations of the organoid system to study in vitro neurological diseases that arise in the neuroendocrine and the enteric nervous system or from interactions with the immune system.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Allison Osmundsen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Shannon W. Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| | - Sofia B. Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
7
|
Tenorio J, Alarcón P, Arias P, Ramos FJ, Campistol J, Climent S, García‐Miñaur S, Dapía I, Hernández A, Nevado J, Solís M, Ruiz‐Pérez VL, Lapunzina P. MRX93 syndrome (
BRWD3
gene): five new patients with novel mutations. Clin Genet 2019; 95:726-731. [DOI: 10.1111/cge.13504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jair Tenorio
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Pablo Alarcón
- Genetic SectionHospital Clínico Universidad de Chile Santiago Chile
| | - Pedro Arias
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Feliciano J. Ramos
- Clinical Genetics Unit, Service of PaediatricsUniversity Hospital “Lozano Blesa”, University of Zaragoza School of Medicine Zaragoza Spain
| | - Jaume Campistol
- Neurology UnitHospital Sant Joan de Deu ‐ Passeig Sant Joan de Déu Barcelona Spain
| | | | - Sixto García‐Miñaur
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Irene Dapía
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Alicia Hernández
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Julián Nevado
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Mario Solís
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | - Víctor L. Ruiz‐Pérez
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
- Instituto de Investigaciones Biomedicas de Madrid (CSIC‐UAM)Arturo Duperier Madrid Spain
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics (INGEMM)‐IdiPAZHospital Universitario La Paz‐UAM Paseo de La Castellana Madrid Spain
- CIBERERCIBERER, Center for Networking Biomedical Research of Rare Diseases Madrid Spain
| | | |
Collapse
|
8
|
Corvino V, Apisa P, Malesci R, Laria C, Auletta G, Franzé A. X-Linked Sensorineural Hearing Loss: A Literature Review. Curr Genomics 2018; 19:327-338. [PMID: 30065609 PMCID: PMC6030855 DOI: 10.2174/1389202919666171218163046] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/10/2017] [Accepted: 12/04/2017] [Indexed: 01/01/2023] Open
Abstract
Sensorineural hearing loss is a very diffuse pathology (about 1/1000 born) with several types of transmission. X-linked hearing loss accounts for approximately 1% - 2% of cases of non-syndromic forms, as well as for many syndromic forms. To date, six loci (DFNX1-6) and five genes (PRPS1 for DFNX1, POU3F4 for DFNX2, SMPX for DFNX4, AIFM1 for DFNX5 and COL4A6 for DFNX6) have been identified for X-linked non-syndromic hearing loss. For the syndromic forms, at least 15 genes have been identified, some of which are also implicated in non-syndromic forms. Moreover, some syndromic forms, presenting large chromosomal deletions, are associated with mental retardation too. This review presents an overview of the currently known genes related to X-linked hearing loss with the support of the most recent literature. It summarizes the genetics and clinical features of X-linked hearing loss to give information useful to realize a clear genetic counseling and an early diagnosis. It is important to get an early diagnosis of these diseases to decide the investigations to predict the evolution of the disease and the onset of any other future symptoms. This information will be clearly useful for choosing the best therapeutic strategy. In particular, regarding audiological aspects, this review highlights risks and benefits currently known in some cases for specific therapeutic intervention.
Collapse
Affiliation(s)
- Virginia Corvino
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Pasqualina Apisa
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Malesci
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Carla Laria
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Gennaro Auletta
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | - Annamaria Franzé
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
9
|
Rodríguez-de la Rosa L, Lassaletta L, Calvino M, Murillo-Cuesta S, Varela-Nieto I. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss. Front Aging Neurosci 2017; 9:411. [PMID: 29311900 PMCID: PMC5733003 DOI: 10.3389/fnagi.2017.00411] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1) bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL), also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lourdes Rodríguez-de la Rosa
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Luis Lassaletta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Miryam Calvino
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Silvia Murillo-Cuesta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Isabel Varela-Nieto
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|