1
|
Richards T, Wilson P, Goggolidou P. Next generation sequencing identifies WNT signalling as a significant pathway in Autosomal Recessive Polycystic Kidney Disease (ARPKD) manifestation and may be linked to disease severity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167309. [PMID: 38885798 DOI: 10.1016/j.bbadis.2024.167309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Autosomal Recessive Polycystic Kidney Disease (ARPKD) is a rare paediatric disease primarily caused by sequence variants in PKHD1. ARPKD presents with considerable clinical variability relating to the type of PKHD1 sequence variant, but not its position. Animal models of Polycystic Kidney Disease (PKD) suggest a complex genetic landscape, with genetic modifiers as a potential cause of disease variability. METHODS To investigate in an unbiased manner the molecular mechanisms of ARPKD and identify potential indicators of disease severity, Whole Exome Sequencing (WES) and RNA-Sequencing (RNA-Seq) were employed on human ARPKD kidneys and age-matched healthy controls. RESULTS WES confirmed the clinical diagnosis of ARPKD in our patient cohort consisting of ten ARPKD kidneys. Sequence variant type, nor position of PKHD1 sequence variants, was linked to disease severity. Sequence variants in genes associated with other ciliopathies were detected in the ARPKD cohort, but only PKD1 could be linked to disease severity. Transcriptomic analysis on a subset of four ARPKD kidneys representing severe and moderate ARPKD, identified a significant number of genes relating to WNT signalling, cellular metabolism and development. Increased expression of WNT signalling-related genes was validated by RT-qPCR in severe and moderate ARPKD kidneys. Two individuals in our cohort with the same PKHD1 sequence variants but different rates of kidney disease progression, with displayed transcriptomic differences in the expression of WNT signalling genes. CONCLUSION ARPKD kidney transcriptomics highlights changes in WNT signalling as potentially significant in ARPKD manifestation and severity, providing indicators for slowing down the progression of ARPKD.
Collapse
Affiliation(s)
- Taylor Richards
- School of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Patricia Wilson
- Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill, London NW3 2PF, UK
| | - Paraskevi Goggolidou
- School of Biomedical Science and Physiology, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| |
Collapse
|
2
|
许 欣, 周 青, 田 云, 赵 琼, 潘 菡, 陈 芊, 罗 玉, 郭 征, 李 天, 杨 景. [Autosomal recessive polycystic kidney disease in a girl]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:954-960. [PMID: 39267511 PMCID: PMC11404465 DOI: 10.7499/j.issn.1008-8830.2401066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/17/2024] [Indexed: 09/17/2024]
Abstract
A 5-year-old girl was admitted due to one episode of melena and one episode of hematemesis. Upon admission, gastroscopy revealed esophageal and gastric varices. Abdominal CT scan, MRI, and color Doppler ultrasound suggested cirrhosis, intrahepatic bile duct dilation, and bilateral kidney enlargement. Genetic testing identified compound heterozygous mutations in the PKHD1 gene: c.2264C>T (p.Pro755Leu) and c.1886T>C (p.Val629Ala). The c.2264C>T (p.Pro755Leu) mutation is a known pathogenic variant with previous reports, while c.1886T>C (p.Val629Ala) is a novel mutation predicted to have pathogenic potential according to Mutation Taster and PolyPhen2. The child was diagnosed with autosomal recessive polycystic kidney disease. In children presenting with gastrointestinal bleeding without obvious causes, particularly those with liver or kidney disease, consideration should be given to the possibility of autosomal recessive polycystic kidney disease, and genetic testing should be conducted for definitive diagnosis when necessary.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - 征征 郭
- 云南中医药大学第一临床医学院,云南昆明 650500
| | - 天鹤 李
- 云南中医药大学第一临床医学院,云南昆明 650500
| | | |
Collapse
|
3
|
Henein M, Russo F, Sentell ZT, Goupil R, Kitzler TM. Phenotypic Discordance among Siblings with Autosomal Recessive Polycystic Kidney Disease: Case Report and Review of the Literature. Nephron Clin Pract 2024:1-9. [PMID: 39467534 DOI: 10.1159/000540741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 08/02/2024] [Indexed: 10/30/2024] Open
Abstract
Missense variants in the PKHD1 gene are associated with the full spectrum of autosomal recessive polycystic kidney disease severity and exhibit variable expressivity. The study of clinical expressivity is limited by the extensive allelic heterogeneity within the PKHD1 gene, which encodes a 4074-amino-acid protein. We report the case of adult siblings with biallelic missense PKHD1 variants, c.4870C>T (p.Arg1624Trp) and c.8206T>G (p.Trp2736Gly), who presented with discordant phenotypes. Patient A developed progressive chronic kidney disease and Caroli syndrome in childhood requiring combined liver and kidney transplantation, while patient B remains minimally affected in the fourth decade of life with normal kidney function and signs of medullary sponge kidney on imaging. We review previously reported cases of phenotypic discordance among siblings and suggest that genotypes composed of at least one hypomorphic missense variant are more likely to lead to phenotypic discordance.
Collapse
Affiliation(s)
- Marc Henein
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada,
| | - Felicia Russo
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada
| | - Zachary T Sentell
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Rémi Goupil
- Department of Nephrology, Hôpital du Sacré-Cœur de Montréal, Montreal, Québec, Canada
| | - Thomas M Kitzler
- Division of Medical Genetics, McGill University Health Centre, Montreal, Québec, Canada
- Department of Human Genetics, McGill University, Montreal, Québec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
4
|
Alqahtani AS, Alotibi RS, Aloraini T, Almsned F, Alassali Y, Alfares A, Alhaddad B, Al Eissa MM. Prospect of genetic disorders in Saudi Arabia. Front Genet 2023; 14:1243518. [PMID: 37799141 PMCID: PMC10548463 DOI: 10.3389/fgene.2023.1243518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction: Rare diseases (RDs) create a massive burden for governments and families because sufferers of these diseases are required to undergo long-term treatment or rehabilitation to maintain a normal life. In Saudi Arabia (SA), the prevalence of RDs is high as a result of cultural and socio-economic factors. This study, however, aims to shed light on the genetic component of the prevalence of RDs in SA. Methodology: A retrospective study was conducted between September 2020 and December 2021 at King Saud Medical City, a tertiary hospital of the Ministry of Health (MOH), SA. A total of 1080 individuals with 544 potentially relevant variants were included. The index was 738, and the samples were tested in a commercialized laboratory using different molecular techniques, including next-generation sequencing. Result: A total of 867 molecular genetics tests were conducted on 738 probands. These tests included 610 exome sequencing (ES) tests, four genome sequencing (GS) tests, 82 molecular panels, 106 single nucleotide polymorphism (SNP) array, four methylation studies, 58 single-gene studies and three mitochondrial genome sequencing tests. The diagnostic yield among molecular genetics studies was 41.8% in ES, 24% in panels, 12% in SNP array and 24% in single gene studies. The majority of the identified potential variants (68%) were single nucleotide variants (SNV). Other ascertained variants included frameshift (11%), deletion (10%), duplication (5%), splicing (9%), in-frame deletion (3%) and indels (1%). The rate of positive consanguinity was 56%, and the autosomal recessive accounted for 54%. We found a significant correlation between the ES detection rate and positive consanguinity. We illustrated the presence of rare treatable conditions in DNAJC12, SLC19A3, and ALDH7A1, and the presence of the founder effect variant in SKIC2. Neurodevelopmental disorders were the main phenotype for which genetics studies were required (35.7%). Conclusion: This is the sixth-largest local study reporting next-generation sequencing. The results indicate the influence of consanguineous marriages on genetic disease and the burden it causes for the Kingdom of SA. This study highlights the need to enrich our society's knowledge of genetic disorders. We recommend utilising ES as a first-tier test to establish genetic diagnosis in a highly consanguineous population.
Collapse
Affiliation(s)
- Amerh S. Alqahtani
- Medical Genetics Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Raniah S. Alotibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- Division of Translational Pathology, Department of Laboratory Medicine, King Abdulaziz Medical City, Department of Genetics, King Abdullah Specialized Children Hospital, MNGHA, Riyadh, Saudi Arabia
| | - Taghrid Aloraini
- Division of Translational Pathology, Department of Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- Department of Genetics, King Abdullah Specialized Children Hospital, MNGHA, Riyadh, Saudi Arabia
| | - Fahad Almsned
- Research Centre, King Fahad Specialist Hospital in Dammam (KFSH-D), Dammam, Saudi Arabia
- Population Health Management, Eastern Health Cluster, Dammam, Saudi Arabia
- Research and Development Department, NovoGenomics, Riyadh, Saudi Arabia
| | - Yara Alassali
- Medical School, AlFaisal University, Riyadh, Saudi Arabia
| | - Ahmed Alfares
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bader Alhaddad
- Molecular Genetics Department, King Saud Medical City, Riyadh, Saudi Arabia
- Laboratory Medicine Department, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al Khobar, Saudi Arabia
| | - Mariam M. Al Eissa
- Medical School, AlFaisal University, Riyadh, Saudi Arabia
- Public Health Authority, Public Health Lab, Molecular Genetics Laboratory, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Goggolidou P, Richards T. The genetics of Autosomal Recessive Polycystic Kidney Disease (ARPKD). Biochim Biophys Acta Mol Basis Dis 2022; 1868:166348. [PMID: 35032595 DOI: 10.1016/j.bbadis.2022.166348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022]
Abstract
ARPKD is a genetically inherited kidney disease that manifests by bilateral enlargement of cystic kidneys and liver fibrosis. It shows a range of severity, with 30% of individuals dying early on and the majority having good prognosis if they survive the first year of life. The reasons for this variability remain unclear. Two genes have been shown to cause ARPKD when mutated, PKHD1, mutations in which lead to most of ARPKD cases and DZIP1L, which is associated with moderate ARPKD. This mini review will explore the genetics of ARPKD and discuss potential genetic modifiers and phenocopies that could affect diagnosis.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Taylor Richards
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| |
Collapse
|
6
|
Yao X, Ao W, Fang J, Mao G, Chen C, Yu L, Cai H, Xu C. Imaging manifestations of Caroli disease with autosomal recessive polycystic kidney disease: a case report and literature review. BMC Pregnancy Childbirth 2021; 21:294. [PMID: 33845788 PMCID: PMC8042699 DOI: 10.1186/s12884-021-03768-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background Both Caroli disease (CD) and autosomal recessive polycystic kidney disease (ARPKD) are autosomal recessive disorders, which are more commonly found in infants and children, for whom surviving to adulthood is rare. Early diagnosis and intervention can improve the survival rate to some extent. This study adopted the case of a 26-year-old pregnant woman to explore the clinical and imaging manifestations and progress of CD concomitant with ARPKD to enable a better understanding of the disease. Case presentation A 26-year-old pregnant woman was admitted to our hospital for more than 2 months following the discovery of pancytopenia and increased creatinine. Ultrasonography detected an enlarged left liver lobe, widened hepatic portal vein, splenomegaly, and dilated splenic vein. In addition, both kidneys were obviously enlarged and sonolucent areas of varying sizes were visible, but color Doppler flow imaging revealed no abnormal blood flow signals. The gestational age was approximately 25 weeks, which was consistent with the actual fetal age. Polyhydramnios was detected but no other abnormalities were identified. Magnetic resonance imaging revealed that the liver was plump, and polycystic liver disease was observed near the top of the diaphragm. The T1 and T2 weighted images were the low and high signals, respectively. The bile duct was slightly dilated; the portal vein was widened; and the spleen volume was enlarged. Moreover, the volume of both kidneys had increased to an abnormal shape, with multiple, long, roundish T1 and T2 abnormal signals being observed. Magnetic resonance cholangiopancreatography revealed that intrahepatic cystic lesions were connected with intrahepatic bile ducts. The patient underwent a genetic testing, the result showed she carried two heterozygous mutations in PKHD1. The patient was finally diagnosed with CD with concomitant ARPKD. The baby underwent a genetic test three months after birth, the result showed that the patient carried one heterozygous mutations in PKHD1, which indicated the baby was a PKHD1 carrier. Conclusions This case demonstrates that imaging examinations are of great significance for the diagnosis and evaluation of CD with concomitant ARPKD.
Collapse
Affiliation(s)
- Xiuzhen Yao
- Department of Ultrasound, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Weiqun Ao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianhua Fang
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqun Mao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chuanghua Chen
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lifang Yu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huaijie Cai
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenke Xu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Zamani M, Seifi T, Sedighzadeh S, Negahdari S, Zeighami J, Sedaghat A, Yadegari T, Saberi A, Hamid M, Shariati G, Galehdari H. Whole-Exome Sequencing Application for Genetic Diagnosis of Kidney Diseases: A Study from Southwest of Iran. KIDNEY360 2021; 2:873-877. [PMID: 35373060 PMCID: PMC8791347 DOI: 10.34067/kid.0006902020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Mina Zamani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran,Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Tahereh Seifi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran,Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Sahar Sedighzadeh
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran,Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Samira Negahdari
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Jawaher Zeighami
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Alireza Sedaghat
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran,Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tahereh Yadegari
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran
| | - Alihossein Saberi
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran,Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hamid
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran,Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Shariati
- Whole Exome Sequencing Division, Narges Medical Genetics and Prenatal Diagnosis Laboratory, Ahvaz, Iran,Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
8
|
Australia and New Zealand renal gene panel testing in routine clinical practice of 542 families. NPJ Genom Med 2021; 6:20. [PMID: 33664247 PMCID: PMC7933190 DOI: 10.1038/s41525-021-00184-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic testing in nephrology clinical practice has moved rapidly from a rare specialized test to routine practice both in pediatric and adult nephrology. However, clear information pertaining to the likely outcome of testing is still missing. Here we describe the experience of the accredited Australia and New Zealand Renal Gene Panels clinical service, reporting on sequencing for 552 individuals from 542 families with suspected kidney disease in Australia and New Zealand. An increasing number of referrals have been processed since service inception with an overall diagnostic rate of 35%. The likelihood of identifying a causative variant varies according to both age at referral and gene panel. Although results from high throughput genetic testing have been primarily for diagnostic purposes, they will increasingly play an important role in directing treatment, genetic counseling, and family planning.
Collapse
|
9
|
Serra G, Corsello G, Antona V, D'Alessandro MM, Cassata N, Cimador M, Giuffrè M, Schierz IAM, Piro E. Autosomal recessive polycystic kidney disease: case report of a newborn with rare PKHD1 mutation, rapid renal enlargement and early fatal outcome. Ital J Pediatr 2020; 46:154. [PMID: 33059727 PMCID: PMC7560064 DOI: 10.1186/s13052-020-00922-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Autosomal recessive polycystic kidney disease (ARPKD; MIM#263200) is one of the most frequent pediatric renal cystic diseases, with an incidence of 1:20,000. It is caused by mutations of the PKHD1 gene, on chromosome 6p12. The clinical spectrum is highly variable, ranging from late-onset milder forms to severe perinatal manifestations. The management of newborns with severe pulmonary insufficiency is challenging, and causes of early death are sepsis or respiratory failure. In cases of massive renal enlargement, early bilateral nephrectomy and peritoneal dialysis may reduce infant mortality. However, there is no conclusive data on the role of surgery, and decision-making is driven by patient's clinical condition and expertise of the center. PATIENT PRESENTATION We hereby describe a preterm female newborn with perinatal, rapid and bilateral, abnormal growth of both kidneys, respiratory failure and initial signs of liver disease. She was subsequently confirmed to be affected by a rare and severe homozygous mutation of the PKHD1 gene, inherited from both her consanguineous parents. Our patient died 78 days after birth, due to a fungal sepsis which worsened her respiratory insufficiency. CONCLUSIONS This patient report shows some of the clinical and ethical issues of neonatal ARPKD, and the need of multidisciplinary approach and good communication with the family. Target next generation sequencing (NGS) techniques may guide and support clinicians, as well as guarantee to these patients the most appropriate clinical management, avoiding unnecessary and/or disproportionate treatments.
Collapse
Affiliation(s)
- Gregorio Serra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", Palermo, Italy.
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", Palermo, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", Palermo, Italy
| | | | - Nicola Cassata
- Department of Pediatrics, A.O. Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Marcello Cimador
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", Palermo, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", Palermo, Italy
| | - Ingrid Anne Mandy Schierz
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", Palermo, Italy
| | - Ettore Piro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "G. D'Alessandro", University Hospital "P.Giaccone", Palermo, Italy
| |
Collapse
|
10
|
Al Alawi I, Molinari E, Al Salmi I, Al Rahbi F, Al Mawali A, Sayer JA. Clinical and genetic characteristics of autosomal recessive polycystic kidney disease in Oman. BMC Nephrol 2020; 21:347. [PMID: 32799815 PMCID: PMC7429752 DOI: 10.1186/s12882-020-02013-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND There is a high prevalence of rare genetic disorders in the Middle East, and their study provides unique clinical and genetic insights. Autosomal recessive polycystic kidney disease (ARPKD) is one of the leading causes of kidney and liver-associated morbidity and mortality in Oman. We describe the clinical and genetic profile of cohort of ARPKD patients. METHODS We studied patients with a clinical diagnosis of ARPKD (n = 40) and their relatives (parents (n = 24) and unaffected siblings (n = 10)) from 32 apparently unrelated families, who were referred to the National Genetic Centre in Oman between January 2015 and December 2018. Genetic analysis of PKHD1 if not previously known was performed using targeted exon PCR of known disease alleles and Sanger sequencing. RESULTS A clinical diagnosis of ARPKD was made prenatally in 8 patients, 21 were diagnosed during infancy (0-1 year), 9 during early childhood (2-8 years) and 2 at later ages (9-13 years). Clinical phenotypes included polycystic kidneys, hypertension, hepatic fibrosis and splenomegaly. Twenty-four patients had documented chronic kidney disease (median age 3 years). Twenty-four out of the 32 families had a family history suggesting an autosomal recessive pattern of inherited kidney disease, and there was known consanguinity in 21 families (66%). A molecular genetic diagnosis with biallelic PKHD1 mutations was known in 18 patients and newly identified in 20 other patients, totalling 38 patients from 30 different families. Two unrelated patients remained genetically unsolved. The different PKHD1 missense pathogenic variants were: c.107C > T, p.(Thr36Met); c.406A > G, p.(Thr136Ala); c.4870C > T, p.(Arg1624Trp) and c.9370C > T, p.(His3124Tyr) located in exons 3, 6, 32 and 58, respectively. The c.406A > G, p.(Thr136Ala) missense mutation was detected homozygously in one family and heterozygously with a c.107C > T, p.(Thr36Met) allele in 5 other families. Overall, the most commonly detected pathogenic allele was c.107C > T; (Thr36Met), which was seen in 24 families. CONCLUSIONS Molecular genetic screening of PKHD1 in clinically suspected ARPKD cases produced a high diagnostic rate. The limited number of PKHD1 missense variants identified in ARPKD cases suggests these may be common founder alleles in the Omani population. Cost effective targeted PCR analysis of these specific alleles can be a useful diagnostic tool for future cases of suspected ARPKD in Oman.
Collapse
Affiliation(s)
- Intisar Al Alawi
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
- National Genetic Center, Ministry of Health, Muscat, Oman.
| | - Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Issa Al Salmi
- Renal Medicine Department, Ministry of Health, Royal Hospital, Muscat, Oman
| | - Fatma Al Rahbi
- Renal Medicine Department, Ministry of Health, Royal Hospital, Muscat, Oman
| | - Adhra Al Mawali
- Center of Studies and Research, Ministry of Health, Muscat, Oman
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
11
|
Luis-Yanes MI, Martínez Gómez G, Tapia-Romero C, Tejera-Carreño P, García-Nieto VM. Presence of compound heterozygous mutations in the PHKD1 gene in an asymptomatic patient. Nefrologia 2020; 40:672-673. [PMID: 32571524 DOI: 10.1016/j.nefro.2020.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022] Open
Affiliation(s)
- María Isabel Luis-Yanes
- Sección de Nefrología Pediátrica del Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - Georgina Martínez Gómez
- Servicio de Nefrología Pediátrica de la UMAE Hospital de Pediatría CMNO, Guadalajara, México
| | - Carolina Tapia-Romero
- Servicio de Nefrología Pediátrica de la UMAE Hospital de Pediatría CMNO, Guadalajara, México
| | - Patricia Tejera-Carreño
- Sección de Nefrología Pediátrica del Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - Víctor M García-Nieto
- Sección de Nefrología Pediátrica del Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España.
| |
Collapse
|
12
|
Results of targeted next-generation sequencing in children with cystic kidney diseases often change the clinical diagnosis. PLoS One 2020; 15:e0235071. [PMID: 32574212 PMCID: PMC7310724 DOI: 10.1371/journal.pone.0235071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic kidney diseases are a very heterogeneous group of chronic kidney diseases. The diagnosis is usually based on clinical and ultrasound characteristics and the final diagnosis is often difficult to be made. Next-generation sequencing (NGS) may help the clinicians to find the correct final diagnosis. The aim of our study was to test the diagnostic yield of NGS and its ability to improve the diagnosis precision in a heterogeneous group of children with cystic kidney diseases. Next-generation sequencing of genes responsible for the formation of cystic kidneys was performed in 31 unrelated patients with various clinically diagnosed cystic kidney diseases gathered at the Department of Pediatrics of Motol University Hospital in Prague between 2013 and 2018. The underlying pathogenic variants were detected in 71% of patients (n = 22), no or only one (in case of autosomal recessive inheritance) pathogenic variant was found in 29% of patients (n = 9). The result of NGS correlated with the clinical diagnosis made before the NGS in 55% of patients (n = 17), in the remaining 14 children (45%) the result of NGS revealed another type of cystic kidney disease that was suspected clinically before or did not find causal mutation in suspected genes. The most common unexpected findings were variants in nephronophthisis (NPHP) genes in children with clinically suspected autosomal recessive polycystic kidney disease (ARPKD, n = 4). Overall, 24 pathogenic or probably pathogenic variants were detected in the PKHD1 gene, 8 variants in the TMEM67 gene, 4 variants in the PKD1 gene, 2 variants in the HNF1B gene and 2 variants in BBS1 and NPHP1 genes, respectively. NGS is a valuable tool in the diagnostics of various forms of cystic kidney diseases. Its results changed the clinically based diagnoses in 16% (n = 5) of the children.
Collapse
|
13
|
Zhang J, Dai LM, Li FR, Zhang B, Zhao JH, Cheng JB. A Chinese family of autosomal recessive polycystic kidney disease identified by whole exome sequencing. Medicine (Baltimore) 2020; 99:e20413. [PMID: 32481435 DOI: 10.1097/md.0000000000020413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) is an autosomal recessive hepatorenal fibrocystic syndrome. The majority of ARPKD patients progress to end-stage renal disease. Precise molecular diagnosis of ARPKD has proven valuable for understanding its mechanism and selecting optimal therapy. METHODS A Chinese family with ARPKD was recruited in current study. The clinical characteristics of ARPKD patient were collected from medical records and the potential responsible genes were studied by the whole exome sequencing (WES). Candidate pathogenic variants were validated by Sanger sequencing. RESULTS Both renal manifestation and hepatobiliary phenotype were observed. WES revealed compound heterozygous mutations of polycystic kidney and hepatic disease 1 genes, NM_138694: c.751G>T, (p.Asp251Tyr) and c.3998_4004delACCTGAA (p.Asn1333Thr fs × 13), which were confirmed by Sanger sequencing. Moreover, the mutations in the proband and its affected sib were co-segregated with the phenotype. CONCLUSIONS The novel mutation in polycystic kidney and hepatic disease 1 gene identified by WES might be molecular pathogenic basis of this disorder.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| | - Li-Meng Dai
- Department of Medical Genetics, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fu-Rong Li
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| | - Bo Zhang
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| | - Jing-Hong Zhao
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| | - Jin-Bo Cheng
- Department of Nephrology, the key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Kidney Center of PLA, Xinqiao Hospital
| |
Collapse
|
14
|
Szabó T, Orosz P, Balogh E, Jávorszky E, Máttyus I, Bereczki C, Maróti Z, Kalmár T, Szabó AJ, Reusz G, Várkonyi I, Marián E, Gombos É, Orosz O, Madar L, Balla G, Kappelmayer J, Tory K, Balogh I. Comprehensive genetic testing in children with a clinical diagnosis of ARPKD identifies phenocopies. Pediatr Nephrol 2018; 33:1713-1721. [PMID: 29956005 DOI: 10.1007/s00467-018-3992-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/12/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) is genetically one of the least heterogeneous ciliopathies, resulting primarily from mutations of PKHD1. Nevertheless, 13-20% of patients diagnosed with ARPKD are found not to carry PKHD1 mutations by sequencing. Here, we assess whether PKHD1 copy number variations or second locus mutations explain these cases. METHODS Thirty-six unrelated patients with the clinical diagnosis of ARPKD were screened for PKHD1 point mutations and copy number variations. Patients without biallelic mutations were re-evaluated and screened for second locus mutations targeted by the phenotype, followed, if negative, by clinical exome sequencing. RESULTS Twenty-eight patients (78%) carried PKHD1 point mutations, three of whom on only one allele. Two of the three patients harbored in trans either a duplication of exons 33-35 or a large deletion involving exons 1-55. All eight patients without PKHD1 mutations (22%) harbored mutations in other genes (PKD1 (n = 2), HNF1B (n = 3), NPHP1, TMEM67, PKD1/TSC2). Perinatal respiratory failure, a kidney length > +4SD and early-onset hypertension increase the likelihood of PKHD1-associated ARPKD. A patient compound heterozygous for a second and a last exon truncating PKHD1 mutation (p.Gly4013Alafs*25) presented with a moderate phenotype, indicating that fibrocystin is partially functional in the absence of its C-terminal 62 amino acids. CONCLUSIONS We found all ARPKD cases without PKHD1 point mutations to be phenocopies, and none to be explained by biallelic PKHD1 copy number variations. Screening for copy number variations is recommended in patients with a heterozygous point mutation.
Collapse
Affiliation(s)
- Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petronella Orosz
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Eszter Balogh
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary.,MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary
| | - Eszter Jávorszky
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary.,MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary
| | - István Máttyus
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Zoltán Maróti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Tibor Kalmár
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Attila J Szabó
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - George Reusz
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Ildikó Várkonyi
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary
| | - Erzsébet Marián
- Department of Pediatrics, Szabolcs-Szatmár-Bereg Jósa András County Hospital, Nyíregyháza, Hungary
| | - Éva Gombos
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - Orsolya Orosz
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - László Madar
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - György Balla
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Kappelmayer
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary
| | - Kálmán Tory
- Ist Department of Pediatrics, Semmelweis University Budapest, Bókay J. u. 53., Budapest, 1083, Hungary. .,MTA-SE Lendulet Nephrogenetic Laboratory, Budapest, Hungary.
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Nagyerdei krt. 98., Debrecen, Hungary.
| |
Collapse
|
15
|
Kadakia N, Lobritto SJ, Ovchinsky N, Remotti HE, Yamashiro DJ, Emond JC, Martinez M. A Challenging Case of Hepatoblastoma Concomitant with Autosomal Recessive Polycystic Kidney Disease and Caroli Syndrome-Review of the Literature. Front Pediatr 2017; 5:114. [PMID: 28638817 PMCID: PMC5461266 DOI: 10.3389/fped.2017.00114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We report a rare case of an 18-month-old female with autosomal recessive polycystic kidney disease, Caroli syndrome, and pure fetal type hepatoblastoma. The liver tumor was surgically resected with no chemotherapy given. Now 9 years post resection she demonstrates no local or distant recurrence and stable renal function.
Collapse
Affiliation(s)
- Nevil Kadakia
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Steven J Lobritto
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Nadia Ovchinsky
- Department of Pediatrics, Children's Hospital of Montefiore, Bronx, NY, United States
| | - Helen E Remotti
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Darrell J Yamashiro
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States.,Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, United States.,Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Jean C Emond
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Mercedes Martinez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY, United States
| |
Collapse
|