1
|
Prasun P, Vermeire K, Alali A. Cerebral venous sinus thrombosis and SCN1A, a novel association? Mol Biol Rep 2024; 51:883. [PMID: 39088020 DOI: 10.1007/s11033-024-09820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Cerebral venous sinus thrombosis (CVST) is a rare cause of stroke. Acquired and inherited prothrombotic conditions are the most common risk factors for CVST. Sometimes, an etiology is not found. Wide utilization of next generation sequencing technologies in clinical practice may lead to identification of risk factors other than those classically associated with CVST. METHOD AND RESULTS This retrospective clinical-laboratory observational study has a reference patient who presented with CVST as an adolescent. Work up for prothrombotic conditions showed high homocysteine level secondary to homozygosity for a common polymorphism, c.677 C > T in the methylenetetrahydrofolate reductase (MTHFR) gene. His older unaffected brother has a similar MTHFR genotype and high homocysteine. The whole exome sequencing revealed a likely pathogenic variant in the sodium voltage gated channel, alpha subunit 1(SCN1A) gene. CONCLUSION CVST is a multifactorial disease. Prothrombotic conditions are the most common risk factors for CVST. High homocysteine due to the common MTHFR polymorphisms was previously attributed to various thrombotic conditions including CVST. Although high homocysteine due to MTHFR polymorphism may be a contributing factor, additional risk factors such as blood flow abnormalities during SCN1A related seizures may be needed for thrombosis.
Collapse
Affiliation(s)
- Pankaj Prasun
- Division of Genetics, Department of Pediatrics, West Virginia University Medicine, One Medical Center Drive, Morgantown, WV, 26506, USA.
| | - Kylie Vermeire
- Division of Genetics, Department of Pediatrics, West Virginia University Medicine, One Medical Center Drive, Morgantown, WV, 26506, USA
| | - Abdulrazak Alali
- Division of Genetics, Department of Pediatrics, West Virginia University Medicine, One Medical Center Drive, Morgantown, WV, 26506, USA
| |
Collapse
|
2
|
Triono A, Herini ES, Gunadi. Genetic exploration of Dravet syndrome: two case report. J Med Case Rep 2024; 18:215. [PMID: 38649973 PMCID: PMC11036636 DOI: 10.1186/s13256-024-04514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Dravet syndrome is an infantile-onset developmental and epileptic encephalopathy (DEE) characterized by drug resistance, intractable seizures, and developmental comorbidities. This article focuses on manifestations in two Indonesian children with Javanese ethnicity who experienced Dravet syndrome with an SCN1A gene mutation, presenting genetic analysis findings using next-generation sequencing. CASE PRESENTATION We present a case series involving two Indonesian children with Javanese ethnicity whom had their first febrile seizure at the age of 3 months, triggered after immunization. Both patients had global developmental delay and intractable seizures. We observed distinct genetic findings in both our cases. The first patient revealed heterozygous deletion mutation in three genes (TTC21B, SCN1A, and SCN9A). In our second patient, previously unreported mutation was discovered at canonical splice site upstream of exon 24 of the SCN1A gene. Our patient's outcomes improved after therapeutic evaluation based on mutation findings When comparing clinical manifestations in our first and second patients, we found that the more severe the genetic mutation discovered, the more severe the patient's clinical manifestations. CONCLUSION These findings emphasize the importance of comprehensive genetic testing beyond SCN1A, providing valuable insights for personalized management and tailored therapeutic interventions in patients with Dravet syndrome. Our study underscores the potential of next-generation sequencing in advancing genotype-phenotype correlations and enhancing diagnostic precision for effective disease management.
Collapse
Affiliation(s)
- Agung Triono
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia
| | - Elisabeth Siti Herini
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia.
| | - Gunadi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group/Translational Research Unit, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| |
Collapse
|
3
|
Martins M, Oliveira AR, Martins S, Vieira JP, Perdigão P, Fernandes AR, de Almeida LP, Palma PJ, Sequeira DB, Santos JMM, Duque F, Oliveira G, Cardoso AL, Peça J, Seabra CM. A Novel Genetic Variant in MBD5 Associated with Severe Epilepsy and Intellectual Disability: Potential Implications on Neural Primary Cilia. Int J Mol Sci 2023; 24:12603. [PMID: 37628781 PMCID: PMC10454663 DOI: 10.3390/ijms241612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Disruptions in the MBD5 gene have been linked with an array of clinical features such as global developmental delay, intellectual disability, autistic-like symptoms, and seizures, through unclear mechanisms. MBD5 haploinsufficiency has been associated with the disruption of primary cilium-related processes during early cortical development, and this has been reported in many neurodevelopmental disorders. In this study, we describe the clinical history of a 12-year-old child harboring a novel MBD5 rare variant and presenting psychomotor delay and seizures. To investigate the impact of MBD5 haploinsufficiency on neural primary cilia, we established a novel patient-derived cell line and used CRISPR-Cas9 technology to create an isogenic control. The patient-derived neural progenitor cells revealed a decrease in the length of primary cilia and in the total number of ciliated cells. This study paves the way to understanding the impact of MBD5 haploinsufficiency in brain development through its potential impact on neural primary cilia.
Collapse
Affiliation(s)
- Mariana Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rafaela Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Solange Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - José Pedro Vieira
- Neuropediatrics Unit, Central Lisbon Hospital Center, 1169-045 Lisbon, Portugal
| | - Pedro Perdigão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Rita Fernandes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Jorge Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Diana Bela Sequeira
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - João Miguel Marques Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Frederico Duque
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Guiomar Oliveira
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Ana Luísa Cardoso
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Peça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Catarina Morais Seabra
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
4
|
Schuermans N, Verdin H, Ghijsels J, Hellemans M, Debackere E, Bogaert E, Symoens S, Naesens L, Lecomte E, Crosiers D, Bergmans B, Verhoeven K, Poppe B, Laureys G, Herdewyn S, Van Langenhove T, Santens P, De Bleecker JL, Hemelsoet D, Dermaut B. Exome Sequencing and Multigene Panel Testing in 1,411 Patients With Adult-Onset Neurologic Disorders. Neurol Genet 2023; 9:e200071. [PMID: 37152446 PMCID: PMC10160959 DOI: 10.1212/nxg.0000000000200071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023]
Abstract
Background and Objectives Owing to their extensive clinical and molecular heterogeneity, hereditary neurologic diseases in adults are difficult to diagnose. The current knowledge about the diagnostic yield and clinical utility of exome sequencing (ES) for neurologic diseases in adults is limited. This observational study assesses the diagnostic value of ES and multigene panel analysis in adult-onset neurologic disorders. Methods From January 2019 through April 2022, ES-based multigene panel testing was conducted in 1,411 patients with molecularly unexplained neurologic phenotypes at the Ghent University Hospital. Gene panels were developed for ataxia and spasticity, leukoencephalopathy, movement disorders, paroxysmal episodic disorders, neurodegeneration with brain iron accumulation, progressive myoclonic epilepsy, and amyotrophic lateral sclerosis. Single nucleotide variants, small indels, and copy number variants were analyzed. Across all panels, our analysis covered a total of 725 genes associated with Mendelian inheritance. Results A molecular diagnosis was established in 10% of the cases (144 of 1,411) representing 71 different monogenic disorders. The diagnostic yield depended significantly on the presenting phenotype with the highest yield seen in patients with ataxia or spastic paraparesis (19%). Most of the established diagnoses comprised disorders with an autosomal dominant inheritance (62%), and the most frequently mutated genes were NOTCH3 (13 patients), SPG7 (11 patients), and RFC1 (8 patients). 34% of the disease-causing variants were novel, including a unique likely pathogenic variant in APP (Ghent mutation, p.[Asn698Asp]) in a family presenting with stroke and severe cerebral white matter disease. 7% of the pathogenic variants comprised copy number variants detected in the ES data and confirmed by an independent technique. Discussion ES and multigene panel testing is a powerful and efficient tool to diagnose patients with unexplained, adult-onset neurologic disorders.
Collapse
Affiliation(s)
- Nika Schuermans
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Hannah Verdin
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Jody Ghijsels
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Madeleine Hellemans
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Elke Debackere
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Elke Bogaert
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Sofie Symoens
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Leslie Naesens
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Elien Lecomte
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - David Crosiers
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Bruno Bergmans
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Kristof Verhoeven
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Bruce Poppe
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Guy Laureys
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Sarah Herdewyn
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Tim Van Langenhove
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Patrick Santens
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Jan L De Bleecker
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Dimitri Hemelsoet
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| | - Bart Dermaut
- Center for Medical Genetics (N.S., H.V., J.G., E.D., E.B., S.S., B.P., B.D.), Ghent University Hospital; Department of Biomolecular Medicine (N.S., H.V., J.G., M.H., E.D., E.B., S.S., B.P., B.D.), Faculty of Medicine and Health Sciences, Ghent University; Department of Internal Medicine and Pediatrics (L.N.), Ghent University; Primary Immunodeficiency Research Lab (L.N.), Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital; Department of Neurology (E.L.), O.L.V. Lourdes Hospital, Waregem; Department of Neurology (D.C.), Antwerp University Hospital UZA; Translational Neurosciences (D.C.), Faculty of Medicine and Health Sciences, University of Antwerp; Department of Neurology (B.B., K.V.), AZ Sint-Jan, Bruges; and Department of Neurology (B.B., G.L., S.H., T.V.L., P.S., J.L.D.B., D.H.), Ghent University Hospital, Belgium
| |
Collapse
|
5
|
Ogawa K, Tanigawa J, Mukai M, Tominaga K, Kagitani-Shimono K, Nabatame S, Ozono K. Epilepsy with myoclonic absence presenting with unilateral jerks: A case of 2q13 microdeletion syndrome. Seizure 2023; 106:77-79. [PMID: 36796225 DOI: 10.1016/j.seizure.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Affiliation(s)
- Katsuhiro Ogawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan; Epilepsy Center, Osaka University Hospital, Suita, 565-0871, Japan
| | - Junpei Tanigawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan; Epilepsy Center, Osaka University Hospital, Suita, 565-0871, Japan.
| | - Masashi Mukai
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan; Epilepsy Center, Osaka University Hospital, Suita, 565-0871, Japan
| | - Koji Tominaga
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan; Epilepsy Center, Osaka University Hospital, Suita, 565-0871, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan
| | - Kuriko Kagitani-Shimono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan; Epilepsy Center, Osaka University Hospital, Suita, 565-0871, Japan; Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan; Epilepsy Center, Osaka University Hospital, Suita, 565-0871, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| |
Collapse
|
6
|
Lopatkina ME, Ivanova SA, Lebedev IN. Estimation of the Prevalence and Parental Origin of Chromosomal Microdeletions and Microduplications Affecting the CNTN6 Gene in Patients with Neurodevelopmental Disorders and Healthy Individuals. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421070103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Lin CH, Lin WD, Chou IC, Lee IC, Hong SY. Is Preterm Birth a Risk Factor for Subsequent Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder in Children with Febrile Seizure?-A Retrospective Study. Life (Basel) 2021; 11:life11080854. [PMID: 34440598 PMCID: PMC8398685 DOI: 10.3390/life11080854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
Febrile seizure (FS) is the most prevalent childhood seizure; it is significantly related to subsequent epilepsy and has possible links to childhood neurodevelopmental disorders. Separately, premature births are believed to increase the risk of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Therefore, this study investigated whether preterm birth is a risk factor for subsequent epilepsy, ASD, and ADHD in children with FS. We retrospectively collected data for children aged < 5 years with FS from 1 January 2005, to 31 December 2013. We divided these children into two groups-the premature birth group and the full-term group-and compared their incidence rates of epilepsy, ASD and ADHD. The data of 426 patients with history of febrile convulsion were retrospectively collected. The premature birth group (FS+/preterm+) had 108 patients and the full-term group (FS+/preterm-) had 318 patients. The overall epilepsy risk in the FS+/preterm+ group was higher than in the FS+/preterm- group (odds ratio [OR], 2.52; 95% confidence interval [CI], 1.14-5.58; p = 0.02). The overall risk of ADHD in the FS+/preterm+ group was higher than that in the FS+/preterm- group (OR, 6.41; 95% CI, 3.39-12.09; p = 0.0001). In addition, children with FS+/preterm+ had 16.9 times (95% CI, 4.79-59.7; p = 0.0001) higher odds of having ASD compared with those with FS+/preterm-. Preterm birth may be a risk factor for subsequent epilepsy, ASD and ADHD in children with FS.
Collapse
Affiliation(s)
- Chien-Heng Lin
- Division of Pediatrics Pulmonology, China Medical University Children’s Hospital, Taichung 404327, Taiwan;
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University, Taichung 404327, Taiwan
| | - Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan;
| | - I-Ching Chou
- Division of Pediatrics Neurology, China Medical University Children’s Hospital, Taichung 404327, Taiwan;
| | - Inn-Chi Lee
- Department of Pediatrics, Chung Shan Medical University Hospital and Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 402306, Taiwan;
| | - Syuan-Yu Hong
- Division of Pediatrics Neurology, China Medical University Children’s Hospital, Taichung 404327, Taiwan;
- Department of Medicine, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Institute of Biomedicine, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Nelson AD, Bender KJ. Dendritic Integration Dysfunction in Neurodevelopmental Disorders. Dev Neurosci 2021; 43:201-221. [PMID: 34139699 PMCID: PMC8440332 DOI: 10.1159/000516657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) that affect cognition, social interaction, and learning, including autism spectrum disorder (ASD) and intellectual disability (ID), have a strong genetic component. Our current understanding of risk genes highlights two main groups of dysfunction: those in genes that act as chromatin modifiers and those in genes that encode for proteins localized at or near synapses. Understanding how dysfunction in these genes contributes to phenotypes observed in ASD and ID remains a major question in neuroscience. In this review, we highlight emerging evidence suggesting that dysfunction in dendrites - regions of neurons that receive synaptic input - may be key to understanding features of neuronal processing affected in these disorders. Dendritic integration plays a fundamental role in sensory processing, cognition, and conscious perception, processes hypothesized to be impaired in NDDs. Many high-confidence ASD genes function within dendrites where they control synaptic integration and dendritic excitability. Further, increasing evidence demonstrates that several ASD/ID genes, including chromatin modifiers and transcription factors, regulate the expression or scaffolding of dendritic ion channels, receptors, and synaptic proteins. Therefore, we discuss how dysfunction of subsets of NDD-associated genes in dendrites leads to defects in dendritic integration and excitability and may be one core phenotype in ASD and ID.
Collapse
Affiliation(s)
- Andrew D Nelson
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Kevin J Bender
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Zimmerman AJ, Hafez AK, Amoah SK, Rodriguez BA, Dell'Orco M, Lozano E, Hartley BJ, Alural B, Lalonde J, Chander P, Webster MJ, Perlis RH, Brennand KJ, Haggarty SJ, Weick J, Perrone-Bizzozero N, Brigman JL, Mellios N. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Mol Psychiatry 2020; 25:2712-2727. [PMID: 31988434 PMCID: PMC7577899 DOI: 10.1038/s41380-020-0653-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023]
Abstract
Although circular RNAs (circRNAs) are enriched in the mammalian brain, very little is known about their potential involvement in brain function and psychiatric disease. Here, we show that circHomer1a, a neuronal-enriched circRNA abundantly expressed in the frontal cortex, derived from Homer protein homolog 1 (HOMER1), is significantly reduced in both the prefrontal cortex (PFC) and induced pluripotent stem cell-derived neuronal cultures from patients with schizophrenia (SCZ) and bipolar disorder (BD). Moreover, alterations in circHomer1a were positively associated with the age of onset of SCZ in both the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC). No correlations between the age of onset of SCZ and linear HOMER1 mRNA were observed, whose expression was mostly unaltered in BD and SCZ postmortem brain. Using in vivo circRNA-specific knockdown of circHomer1a in mouse PFC, we show that it modulates the expression of numerous alternative mRNA transcripts from genes involved in synaptic plasticity and psychiatric disease. Intriguingly, in vivo circHomer1a knockdown in mouse OFC resulted in specific deficits in OFC-mediated cognitive flexibility. Lastly, we demonstrate that the neuronal RNA-binding protein HuD binds to circHomer1a and can influence its synaptic expression in the frontal cortex. Collectively, our data uncover a novel psychiatric disease-associated circRNA that regulates synaptic gene expression and cognitive flexibility.
Collapse
Affiliation(s)
- Amber J Zimmerman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Alexander K Hafez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Stephen K Amoah
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA
| | - Brian A Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Michela Dell'Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Evelyn Lozano
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Brigham J Hartley
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Begüm Alural
- Departments of Neurology and Psychiatry, Center for Genomic Medicine, Chemical Neurobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmin Lalonde
- Departments of Neurology and Psychiatry, Center for Genomic Medicine, Chemical Neurobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Maree J Webster
- Laboratory of Brain Research, Stanley Medical Research Institute, Chevy Chase, MD, USA
| | - Roy H Perlis
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Experimental Drugs and Diagnostics, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen J Haggarty
- Departments of Neurology and Psychiatry, Center for Genomic Medicine, Chemical Neurobiology Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason Weick
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA.
- Autophagy inflammation and metabolism (AIM) center, Albuquerque, NM, USA.
| |
Collapse
|
10
|
Schraegle WA, Young SR, Rettig EK, Payne AR, Wilson JK, Wedberg-Sivam EA, Titus JB. Improving Transitional Services for Adolescents and Young Adults with Epilepsy and Intellectual Disability. JOURNAL OF PEDIATRIC EPILEPSY 2020. [DOI: 10.1055/s-0040-1716915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe transition from pediatric to adult health care systems is challenging for many adolescents with epilepsy and their families, and those challenges are compounded for adolescents with comorbid intellectual disabilities and epilepsy (ID-E). Many traditional transition pathways to adult care are inadequate, as they fail to address important considerations unique to the ID-E population or are absent entirely. Poor organization of care during critical transition periods increases the risks of sudden unexpected death in epilepsy, suboptimal seizure control, inadequate management of comorbidities, and poor psychological and social outcomes. The literature lacks systematic studies on effective transition programs for this population. The present review provides an overview of the main themes important in care transitions for the ID-E population: (1) precise diagnosis and management of seizures; (2) mental health and medical comorbidities affecting care; (3) accessing behavioral, habilitative, legal, financial, and community resources; and (4) caretaker support. We propose a specific framework which includes targeted recommendations of minimum care standards for youth with ID-E transitioning to adult care.
Collapse
Affiliation(s)
- William A. Schraegle
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Comprehensive Pediatric Epilepsy Center, UT Health Austin Pediatric Neurosciences at Dell Children's, Dell Children's Medical Center, Austin, Texas, United States
| | - Stephanie R. Young
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Comprehensive Pediatric Epilepsy Center, UT Health Austin Pediatric Neurosciences at Dell Children's, Dell Children's Medical Center, Austin, Texas, United States
| | - Eman K. Rettig
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Comprehensive Pediatric Epilepsy Center, UT Health Austin Pediatric Neurosciences at Dell Children's, Dell Children's Medical Center, Austin, Texas, United States
| | - Angie R. Payne
- Ascension Seton’s Comprehensive Epilepsy Program, Dell Seton Medical Center at The University of Texas, Austin, Texas, United States
| | - Janet K. Wilson
- Comprehensive Pediatric Epilepsy Center, UT Health Austin Pediatric Neurosciences at Dell Children's, Dell Children's Medical Center, Austin, Texas, United States
| | - Elizabeth A. Wedberg-Sivam
- Ascension Seton’s Comprehensive Epilepsy Program, Dell Seton Medical Center at The University of Texas, Austin, Texas, United States
| | - Jeffrey B. Titus
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
- Comprehensive Pediatric Epilepsy Center, UT Health Austin Pediatric Neurosciences at Dell Children's, Dell Children's Medical Center, Austin, Texas, United States
| |
Collapse
|
11
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
12
|
Overrepresentation of genetic variation in the AnkyrinG interactome is related to a range of neurodevelopmental disorders. Eur J Hum Genet 2020; 28:1726-1733. [PMID: 32651551 DOI: 10.1038/s41431-020-0682-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
Upon the discovery of numerous genes involved in the pathogenesis of neurodevelopmental disorders, several studies showed that a significant proportion of these genes converge on common pathways and protein networks. Here, we used a reversed approach, by screening the AnkyrinG protein-protein interaction network for genetic variation in a large cohort of 1009 cases with neurodevelopmental disorders. We identified a significant enrichment of de novo potentially disease-causing variants in this network, confirming that this protein network plays an important role in the emergence of several neurodevelopmental disorders.
Collapse
|
13
|
Catusi I, Recalcati MP, Bestetti I, Garzo M, Valtorta C, Alfonsi M, Alghisi A, Cappellani S, Casalone R, Caselli R, Ceccarini C, Ceglia C, Ciaschini AM, Coviello D, Crosti F, D'Aprile A, Fabretto A, Genesio R, Giagnacovo M, Granata P, Longo I, Malacarne M, Marseglia G, Montaldi A, Nardone AM, Palka C, Pecile V, Pessina C, Postorivo D, Redaelli S, Renieri A, Rigon C, Tiberi F, Tonelli M, Villa N, Zilio A, Zuccarello D, Novelli A, Larizza L, Giardino D. Testing single/combined clinical categories on 5110 Italian patients with developmental phenotypes to improve array-based detection rate. Mol Genet Genomic Med 2019; 8:e1056. [PMID: 31851782 PMCID: PMC6978242 DOI: 10.1002/mgg3.1056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
Background Chromosomal microarray analysis (CMA) is nowadays widely used in the diagnostic path of patients with clinical phenotypes. However, there is no ascertained evidence to date on how to assemble single/combined clinical categories of developmental phenotypic findings to improve the array‐based detection rate. Methods The Italian Society of Human Genetics coordinated a retrospective study which included CMA results of 5,110 Italian patients referred to 17 genetics laboratories for variable combined clinical phenotypes. Results Non‐polymorphic copy number variants (CNVs) were identified in 1512 patients (30%) and 615 (32%) present in 552 patients (11%) were classified as pathogenic. CNVs were analysed according to type, size, inheritance pattern, distribution among chromosomes, and association to known syndromes. In addition, the evaluation of the detection rate of clinical subgroups of patients allowed to associate dysmorphisms and/or congenital malformations combined with any other single clinical sign to an increased detection rate, whereas non‐syndromic neurodevelopmental signs and non‐syndromic congenital malformations to a decreased detection rate. Conclusions Our retrospective study resulted in confirming the high detection rate of CMA and indicated new clinical markers useful to optimize their inclusion in the diagnostic and rehabilitative path of patients with developmental phenotypes.
Collapse
Affiliation(s)
- Ilaria Catusi
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | | | - Ilaria Bestetti
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | - Maria Garzo
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | - Chiara Valtorta
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | - Melissa Alfonsi
- U.O.C. di Genetica medica, Ospedale SS Annunziata, Chieti, Italy
| | - Alberta Alghisi
- U.O.S. Genetica e Biologia Molecolare, Azienda ULSS 6, Vicenza, Italy
| | | | - Rosario Casalone
- SMeL specializzato Citogenetica e Genetica Medica, ASST Sette Laghi, Osp. di Circolo e Fond. Macchi, Varese, Italy
| | - Rossella Caselli
- U.O.C. Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Carlo Ceglia
- UOSD Genetica Medica, AORN "SG Moscati", Avellino, Italy
| | - Anna Maria Ciaschini
- A.O.U. Ospedali Riuniti Umberto I - G.M.Lancisi - G.Salesi, Lab. Genetica Medica SOS Malattie Rare, Ancona, Italy
| | - Domenico Coviello
- Lab. di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesca Crosti
- U.S. Genetica Medica, Ospedale San Gerardo ASST Monza, Monza, Italy
| | | | | | - Rita Genesio
- U.O.C. di Citogenetica, A.O.U. Federico II, Napoli, Italy
| | | | - Paola Granata
- SMeL specializzato Citogenetica e Genetica Medica, ASST Sette Laghi, Osp. di Circolo e Fond. Macchi, Varese, Italy
| | - Ilaria Longo
- U.O.C. Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Michela Malacarne
- Lab. di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | | | | | - Chiara Palka
- Dipartimento di Pediatria, Università G. D'Annunzio, Chieti-Pescara, Italy
| | - Vanna Pecile
- S.C. Genetica Medica, IRCCS Burlo Garofolo, Trieste, Italy
| | - Chiara Pessina
- SMeL specializzato Citogenetica e Genetica Medica, ASST Sette Laghi, Osp. di Circolo e Fond. Macchi, Varese, Italy
| | - Diana Postorivo
- U.O.C. Lab. di Genetica Medica, Policlinico Tor Vergata, Roma, Italy
| | - Serena Redaelli
- Dipartimento di Medicina e Chirurgia, Università di Milano-Bicocca, Monza, Italy
| | - Alessandra Renieri
- U.O.C. Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Chiara Rigon
- U.O.C. Genetica e Epidemiologia Clinica, A.O.U. di Padova, Padova, Italy
| | - Fabiola Tiberi
- A.O.U. Ospedali Riuniti Umberto I - G.M.Lancisi - G.Salesi, Lab. Genetica Medica SOS Malattie Rare, Ancona, Italy
| | - Mariella Tonelli
- LCGM Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | - Nicoletta Villa
- U.S. Genetica Medica, Ospedale San Gerardo ASST Monza, Monza, Italy
| | - Anna Zilio
- U.O.S. Genetica e Biologia Molecolare, Azienda ULSS 6, Vicenza, Italy
| | - Daniela Zuccarello
- U.O.C. Genetica e Epidemiologia Clinica, A.O.U. di Padova, Padova, Italy
| | - Antonio Novelli
- U.O.C. Laboratorio di Genetica Medica, Ospedale Pediatrico del Bambino Gesù, Roma, Italy
| | - Lidia Larizza
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| | - Daniela Giardino
- Lab. di Citogenetica Medica, Istituto Auxologico Italiano, IRCCS, Milano, Italy
| |
Collapse
|
14
|
Lindstrand A, Eisfeldt J, Pettersson M, Carvalho CMB, Kvarnung M, Grigelioniene G, Anderlid BM, Bjerin O, Gustavsson P, Hammarsjö A, Georgii-Hemming P, Iwarsson E, Johansson-Soller M, Lagerstedt-Robinson K, Lieden A, Magnusson M, Martin M, Malmgren H, Nordenskjöld M, Norling A, Sahlin E, Stranneheim H, Tham E, Wincent J, Ygberg S, Wedell A, Wirta V, Nordgren A, Lundin J, Nilsson D. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Med 2019; 11:68. [PMID: 31694722 PMCID: PMC6836550 DOI: 10.1186/s13073-019-0675-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
Background Since different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements, underlie intellectual disability, we evaluated the use of whole-genome sequencing (WGS) rather than chromosomal microarray analysis (CMA) as a first-line genetic diagnostic test. Methods We analyzed three cohorts with short-read WGS: (i) a retrospective cohort with validated copy number variants (CNVs) (cohort 1, n = 68), (ii) individuals referred for monogenic multi-gene panels (cohort 2, n = 156), and (iii) 100 prospective, consecutive cases referred to our center for CMA (cohort 3). Bioinformatic tools developed include FindSV, SVDB, Rhocall, Rhoviz, and vcf2cytosure. Results First, we validated our structural variant (SV)-calling pipeline on cohort 1, consisting of three trisomies and 79 deletions and duplications with a median size of 850 kb (min 500 bp, max 155 Mb). All variants were detected. Second, we utilized the same pipeline in cohort 2 and analyzed with monogenic WGS panels, increasing the diagnostic yield to 8%. Next, cohort 3 was analyzed by both CMA and WGS. The WGS data was processed for large (> 10 kb) SVs genome-wide and for exonic SVs and SNVs in a panel of 887 genes linked to intellectual disability as well as genes matched to patient-specific Human Phenotype Ontology (HPO) phenotypes. This yielded a total of 25 pathogenic variants (SNVs or SVs), of which 12 were detected by CMA as well. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. Finally, a case of Prader-Willi syndrome with uniparental disomy (UPD) was validated in the WGS data. Important positional information was obtained in all cohorts. Remarkably, 7% of the analyzed cases harbored complex structural variants, as exemplified by a ring chromosome and two duplications found to be an insertional translocation and part of a cryptic unbalanced translocation, respectively. Conclusion The overall diagnostic rate of 27% was more than doubled compared to clinical microarray (12%). Using WGS, we detected a wide range of SVs with high accuracy. Since the WGS data also allowed for analysis of SNVs, UPD, and STRs, it represents a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
Collapse
Affiliation(s)
- Anna Lindstrand
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pettersson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Malin Kvarnung
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olof Bjerin
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter Gustavsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Hammarsjö
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Erik Iwarsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Johansson-Soller
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agne Lieden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Måns Magnusson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marcel Martin
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Helena Malmgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ameli Norling
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josephine Wincent
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Ygberg
- The Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.,Science for Life Laboratory, Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Lundin
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Nilsson
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Kessi M, Xiong J, Wu L, Yang L, He F, Chen C, Pang N, Duan H, Zhang W, Arafat A, Yin F, Peng J. Rare Copy Number Variations and Predictors in Children With Intellectual Disability and Epilepsy. Front Neurol 2018; 9:947. [PMID: 30510536 PMCID: PMC6252327 DOI: 10.3389/fneur.2018.00947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/23/2018] [Indexed: 11/19/2022] Open
Abstract
Introduction: The concurrence of intellectual disability/global developmental delay and epilepsy (ID/GDD-EP) is very common in the pediatric population. The etiologies for both conditions are complex and largely unknown. The predictors of significant copy number variations (CNVs) are known for the cases with ID/GDD, but unknown for those with exclusive ID/GDD-EP. Importantly, the known predictors are largely from the same ethnic group; hence, they lack replication. Purpose: We aimed to determine and investigate the diagnostic yield of CNV tests, new causative CNVs, and the independent predictors of significant CNVs in Chinese children with unexplained ID/GDD-EP. Materials and methods: A total of 100 pediatric patients with unexplained ID/GDD-EP and 1,000 healthy controls were recruited. The American College of Medical Genetics guideline was used to classify the CNVs. Additionally, clinical information was collected and compared between those with significant and non-significant CNVs. Results: Twenty-eight percent of the patients had significant CNVs, 16% had variants of unknown significance, and 56% had non-significant CNVs. In total, 31 CNVs were identified in 28% (28/100) of cases: 25 pathogenic and 6 likely pathogenic. Eighteen known syndromes were diagnosed in 17 cases. Thirteen rare CNVs (8 novel and 5 reported in literature) were identified, of which three spanned dosage-sensitive genes: 19q13.2 deletion (ATP1A3), Xp11.4-p11.3 deletion (CASK), and 6q25.3-q25.3 deletion (ARID1B). By comparing clinical features in patients with significant CNVs against those with non-significant CNVs, a statistically significant association was found between the presence of significant CNVs and speech and language delay for those aged above 2 years and for those with facial malformations, microcephaly, congenital heart disease, fair skin, eye malformations, and mega cisterna magna. Multivariate logistic regression analysis allowed the identification of two independent significant CNV predictors, which are eye malformations and facial malformations. Conclusion: Our study supports the performance of CNV tests in pediatric patients with unexplained ID/GDD-EP, as there is high diagnostic yield, which informs genetic counseling. It adds 13 rare CNVs (8 novel), which can be accountable for both conditions. Moreover, congenital eye and facial malformations are clinical markers that can aid clinicians to understand which patients can benefit from the CNV testing and which will not, thus helping patients to avoid unnecessary and expensive tests.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Wen Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ahmed Arafat
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
16
|
Gonçalves TC, Benoit E, Partiseti M, Servent D. The Na V1.7 Channel Subtype as an Antinociceptive Target for Spider Toxins in Adult Dorsal Root Ganglia Neurons. Front Pharmacol 2018; 9:1000. [PMID: 30233376 PMCID: PMC6131673 DOI: 10.3389/fphar.2018.01000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Although necessary for human survival, pain may sometimes become pathologic if long-lasting and associated with alterations in its signaling pathway. Opioid painkillers are officially used to treat moderate to severe, and even mild, pain. However, the consequent strong and not so rare complications that occur, including addiction and overdose, combined with pain management costs, remain an important societal and economic concern. In this context, animal venom toxins represent an original source of antinociceptive peptides that mainly target ion channels (such as ASICs as well as TRP, CaV, KV and NaV channels) involved in pain transmission. The present review aims to highlight the NaV1.7 channel subtype as an antinociceptive target for spider toxins in adult dorsal root ganglia neurons. It will detail (i) the characteristics of these primary sensory neurons, the first ones in contact with pain stimulus and conveying the nociceptive message, (ii) the electrophysiological properties of the different NaV channel subtypes expressed in these neurons, with a particular attention on the NaV1.7 subtype, an antinociceptive target of choice that has been validated by human genetic evidence, and (iii) the features of spider venom toxins, shaped of inhibitory cysteine knot motif, that present high affinity for the NaV1.7 subtype associated with evidenced analgesic efficacy in animal models.
Collapse
Affiliation(s)
- Tânia C Gonçalves
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Paris, France.,Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Evelyne Benoit
- Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France.,Institut des Neurosciences Paris-Saclay, UMR CNRS/Université Paris-Sud 9197, Gif-sur-Yvette, France
| | - Michel Partiseti
- Sanofi R&D, Integrated Drug Discovery - High Content Biology, Paris, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines, CEA de Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Webster RJ, Williams A, Marchetti F, Yauk CL. Discovering human germ cell mutagens with whole genome sequencing: Insights from power calculations reveal the importance of controlling for between-family variability. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:24-32. [PMID: 29875074 DOI: 10.1016/j.mrgentox.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022]
Abstract
Mutations in germ cells pose potential genetic risks to offspring. However, de novo mutations are rare events that are spread across the genome and are difficult to detect. Thus, studies in this area have generally been under-powered, and no human germ cell mutagen has been identified. Whole Genome Sequencing (WGS) of human pedigrees has been proposed as an approach to overcome these technical and statistical challenges. WGS enables analysis of a much wider breadth of the genome than traditional approaches. Here, we performed power analyses to determine the feasibility of using WGS in human families to identify germ cell mutagens. Different statistical models were compared in the power analyses (ANOVA and multiple regression for one-child families, and mixed effect model sampling between two to four siblings per family). Assumptions were made based on parameters from the existing literature, such as the mutation-by-paternal age effect. We explored two scenarios: a constant effect due to an exposure that occurred in the past, and an accumulating effect where the exposure is continuing. Our analysis revealed the importance of modeling inter-family variability of the mutation-by-paternal age effect. Statistical power was improved by models accounting for the family-to-family variability. Our power analyses suggest that sufficient statistical power can be attained with 4-28 four-sibling families per treatment group, when the increase in mutations ranges from 40 to 10% respectively. Modeling family variability using mixed effect models provided a reduction in sample size compared to a multiple regression approach. Much larger sample sizes were required to detect an interaction effect between environmental exposures and paternal age. These findings inform study design and statistical modeling approaches to improve power and reduce sequencing costs for future studies in this area.
Collapse
Affiliation(s)
- R J Webster
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - A Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - F Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - C L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
18
|
Efficient strategy for the molecular diagnosis of intractable early-onset epilepsy using targeted gene sequencing. BMC Med Genomics 2018; 11:6. [PMID: 29390993 PMCID: PMC5796507 DOI: 10.1186/s12920-018-0320-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 01/03/2018] [Indexed: 11/22/2022] Open
Abstract
Background We intended to evaluate diagnostic utility of a targeted gene sequencing by using next generation sequencing (NGS) panel in patients with intractable early-onset epilepsy (EOE) and find the efficient analytical step for increasing the diagnosis rate. Methods We assessed 74 patients with EOE whose seizures started before 3 years of age using a customized NGS panel that included 172 genes. Single nucleotide variants (SNVs) and exonic and chromosomal copy number variations (CNVs) were intensively examined with our customized pipeline and crosschecked with commercial or pre-built software. Variants were filtered and prioritized by in-depth clinical review, and finally classified according to the American College of Medical Genetics and Genomics guidelines. Each case was further discussed in a monthly consensus meeting that included the participation of all laboratory personnel, bioinformaticians, geneticists, and clinicians. Results The NGS panel identified 28 patients (37.8%) with genetic abnormalities; 25 patients had pathogenic or likely pathogenic SNVs in 17 genes including SXTBP1 (n = 3), CDKL5 (n = 2), KCNQ2 (n = 2), SCN1A (n = 2), SYNGAP1 (n = 2), GNAO1 (n = 2), KCNT1 (n = 2), BRAT1, WWOX, ZEB2, CHD2, PRICKLE2, COL4A1, DNM1, SCN8A, MECP2, SLC9A6 (n = 1). The other 3 patients had pathogenic CNVs (2 duplications and 1 deletion) with varying sizes (from 2.5 Mb to 12 Mb). The overall diagnostic yield was 37.8% after following our step-by-step approach for clinical consensus. Conclusions NGS is a useful diagnostic tool with great utility for patients with EOE. Diagnostic yields can be maximized with a standardized and team-based approach. Electronic supplementary material The online version of this article (10.1186/s12920-018-0320-7) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
|
20
|
Gelfman S, Wang Q, McSweeney KM, Ren Z, La Carpia F, Halvorsen M, Schoch K, Ratzon F, Heinzen EL, Boland MJ, Petrovski S, Goldstein DB. Annotating pathogenic non-coding variants in genic regions. Nat Commun 2017; 8:236. [PMID: 28794409 PMCID: PMC5550444 DOI: 10.1038/s41467-017-00141-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 06/05/2017] [Indexed: 12/21/2022] Open
Abstract
Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes. While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.
Collapse
Affiliation(s)
- Sahar Gelfman
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA. .,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA.
| | - Quanli Wang
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| | - K Melodi McSweeney
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| | - Francesca La Carpia
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, 10032, USA
| | - Matt Halvorsen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| | - Kelly Schoch
- Department of Pediatrics, Duke University Health System, Durham, North Carolina, 27705, USA
| | - Fanni Ratzon
- Department of Pathology, Lenox Hill Hospital, New York, New York, 10075, USA
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, 10032, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Neurology, Columbia University, New York, New York, 10032, USA
| | - Slavé Petrovski
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Medicine, Austin Health and Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, 3050, Australia
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, 10032, USA.,Department of Genetics and Development, Columbia University Medical Center, New York, New York, 10032, USA
| |
Collapse
|
21
|
Sutherland HG, Griffiths LR. Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders. Headache 2017; 57:537-569. [PMID: 28271496 DOI: 10.1111/head.13053] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Migraine is a complex, debilitating neurovascular disorder, typically characterized by recurring, incapacitating attacks of severe headache often accompanied by nausea and neurological disturbances. It has a strong genetic basis demonstrated by rare migraine disorders caused by mutations in single genes (monogenic), as well as familial clustering of common migraine which is associated with polymorphisms in many genes (polygenic). Hemiplegic migraine is a dominantly inherited, severe form of migraine with associated motor weakness. Family studies have found that mutations in three different ion channels genes, CACNA1A, ATP1A2, and SCN1A can be causal. Functional studies of these mutations has shown that they can result in defective regulation of glutamatergic neurotransmission and the excitatory/inhibitory balance in the brain, which lowers the threshold for cortical spreading depression, a wave of cortical depolarization thought to be involved in headache initiation mechanisms. Other putative genes for monogenic migraine include KCKN18, PRRT2, and CSNK1D, which can also be involved with other disorders. There are a number of primarily vascular disorders caused by mutations in single genes, which are often accompanied by migraine symptoms. Mutations in NOTCH3 causes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebrovascular disease that leads to ischemic strokes and dementia, but in which migraine is often present, sometimes long before the onset of other symptoms. Mutations in the TREX1 and COL4A1 also cause vascular disorders, but often feature migraine. With respect to common polygenic migraine, genome-wide association studies have now identified single nucleotide polymorphisms at 38 loci significantly associated with migraine risk. Functions assigned to the genes in proximity to these loci suggest that both neuronal and vascular pathways also contribute to the pathophysiology of common migraine. Further studies are required to fully understand these findings and translate them into treatment options for migraine patients.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
22
|
Abstract
Seizures in children are among the most common neurological disorders. A pediatrician should know how to approach a child who presents with a seizure. This review will focus on points that are important in the evaluation of children who have experienced seizures. A comprehensive and neurologically focused framework for history taking and a thorough clinical examination are the cornerstones in diagnosing and managing seizures. This article reviews the clinical approach to the diagnosis, investigation, and management of epilepsy in children, excluding neonatal seizures. A pediatrician should also be aware of common epilepsy syndromes that occur in children such as Benign Childhood Epilepsy with Centro-Temporal Spikes, and childhood absence epilepsy.
Collapse
Affiliation(s)
- Fahad A Bashiri
- Department of Pediatrics, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail:
| |
Collapse
|