1
|
Vujić A, Klasić M, Lauc G, Polašek O, Zoldoš V, Vojta A. Predicting Biochemical and Physiological Parameters: Deep Learning from IgG Glycome Composition. Int J Mol Sci 2024; 25:9988. [PMID: 39337475 PMCID: PMC11432235 DOI: 10.3390/ijms25189988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
In immunoglobulin G (IgG), N-glycosylation plays a pivotal role in structure and function. It is often altered in different diseases, suggesting that it could be a promising health biomarker. Studies indicate that IgG glycosylation not only associates with various diseases but also has predictive capabilities. Additionally, changes in IgG glycosylation correlate with physiological and biochemical traits known to reflect overall health state. This study aimed to investigate the power of IgG glycans to predict physiological and biochemical parameters. We developed two models using IgG N-glycan data as an input: a regression model using elastic net and a machine learning model using deep learning. Data were obtained from the Korčula and Vis cohorts. The Korčula cohort data were used to train both models, while the Vis cohort was used exclusively for validation. Our results demonstrated that IgG glycome composition effectively predicts several biochemical and physiological parameters, especially those related to lipid and glucose metabolism and cardiovascular events. Both models performed similarly on the Korčula cohort; however, the deep learning model showed a higher potential for generalization when validated on the Vis cohort. This study reinforces the idea that IgG glycosylation reflects individuals' health state and brings us one step closer to implementing glycan-based diagnostics in personalized medicine. Additionally, it shows that the predictive power of IgG glycans can be used for imputing missing covariate data in deep learning frameworks.
Collapse
Affiliation(s)
- Ana Vujić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Klasić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Ozren Polašek
- Department of Public Health, University of Split School of Medicine, 21000 Split, Croatia
- Croatian Science Foundation, 10000 Zagreb, Croatia
| | - Vlatka Zoldoš
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Aleksandar Vojta
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
3
|
Forte G, Buonadonna AL, Pantaleo A, Fasano C, Capodiferro D, Grossi V, Sanese P, Cariola F, De Marco K, Lepore Signorile M, Manghisi A, Guglielmi AF, Simonetti S, Laforgia N, Disciglio V, Simone C. Classic Galactosemia: Clinical and Computational Characterization of a Novel GALT Missense Variant (p.A303D) and a Literature Review. Int J Mol Sci 2023; 24:17388. [PMID: 38139222 PMCID: PMC10744227 DOI: 10.3390/ijms242417388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Classic galactosemia is an autosomal recessive inherited liver disorder of carbohydrate metabolism caused by deficient activity of galactose-1-phosphate uridylyltransferase (GALT). While a galactose-restricted diet is lifesaving, most patients still develop long-term complications. In this study, we report on a two-week-old female patient who is a compound heterozygote for a known pathogenic variant (p.K285N) and a novel missense variant (p.A303D) in the GALT gene. Segregation analysis showed that the patient inherited the p.K285N pathogenic variant from her father and the p.A303D variant from her mother. A bioinformatics analysis to predict the impact of the p.A303D missense variant on the structure and stability of the GALT protein revealed that it may be pathogenic. Based on this finding, we performed a literature review of all GALT missense variants identified in homozygous and compound heterozygous galactosemia patients carrying the p.K285N pathogenic variant to explore their molecular effects on the clinical phenotype of the disease. Our analysis revealed that these missense variants are responsible for a wide range of molecular defects. This study expands the clinical and mutational spectrum in classic galactosemia and reinforces the importance of understanding the molecular consequences of genetic variants to incorporate genetic analysis into clinical care.
Collapse
Affiliation(s)
- Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Antonia Lucia Buonadonna
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Donatella Capodiferro
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy; (D.C.); (N.L.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Andrea Manghisi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Anna Filomena Guglielmi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Simonetta Simonetti
- Clinical Pathology and Neonatal Screening, Azienda Ospedaliera Universitaria Policlinico-Giovanni XXIII, 70124 Bari, Italy;
| | - Nicola Laforgia
- Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy; (D.C.); (N.L.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (A.L.B.); (A.P.); (C.F.); (V.G.); (P.S.); (F.C.); (K.D.M.); (M.L.S.); (A.M.); (A.F.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
4
|
Shkunnikova S, Mijakovac A, Sironic L, Hanic M, Lauc G, Kavur MM. IgG glycans in health and disease: Prediction, intervention, prognosis, and therapy. Biotechnol Adv 2023; 67:108169. [PMID: 37207876 DOI: 10.1016/j.biotechadv.2023.108169] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Immunoglobulin (IgG) glycosylation is a complex enzymatically controlled process, essential for the structure and function of IgG. IgG glycome is relatively stable in the state of homeostasis, yet its alterations have been associated with aging, pollution and toxic exposure, as well as various diseases, including autoimmune and inflammatory diseases, cardiometabolic diseases, infectious diseases and cancer. IgG is also an effector molecule directly involved in the inflammation processes included in the pathogenesis of many diseases. Numerous recently published studies support the idea that IgG N-glycosylation fine-tunes the immune response and plays a significant role in chronic inflammation. This makes it a promising novel biomarker of biological age, and a prognostic, diagnostic and treatment evaluation tool. Here we provide an overview of the current state of knowledge regarding the IgG glycosylation in health and disease, and its potential applications in pro-active prevention and monitoring of various health interventions.
Collapse
Affiliation(s)
- Sofia Shkunnikova
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Anika Mijakovac
- University of Zagreb, Faculty of Science, Department of Biology, Horvatovac 102a, Zagreb, Croatia
| | - Lucija Sironic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Maja Hanic
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb, Croatia; University of Zagreb, Faculty of Pharmacy and Biochemistry, Ulica Ante Kovačića 1, Zagreb, Croatia
| | | |
Collapse
|
5
|
Stettner NM, Cutler DJ, Fridovich-Keil JL. Racial and ethnic diversity of classic and clinical variant galactosemia in the United States. Mol Genet Metab 2023; 138:107542. [PMID: 36848716 PMCID: PMC10133179 DOI: 10.1016/j.ymgme.2023.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Classic and clinical variant galactosemia (CG/CVG) are allelic, autosomal recessive disorders that result from deficiency of galactose-1-P uridylyltransferase (GALT). CG/CVG has been reported globally among patients of diverse ancestries, but most large studies of outcomes have included, almost exclusively, patients categorized as White or Caucasian. As a first step to explore whether the cohorts studied are representative of the CG/CVG population at large, we sought to define the racial and ethnic makeup of CG/CVG newborns in a diverse population with essentially universal newborn screening (NBS) for galactosemia: the United States (US). First, we estimated the predicted racial and ethnic distribution of CG/CVG by combining the reported demographics of US newborns from 2016 to 2018 with predicted homozygosity or compound heterozygosity of pathogenic, or likely pathogenic, GALT alleles from the relevant ancestral groups. Incorporating some simplifying assumptions, we predicted that of US newborns diagnosed with CG/CVG, 65% should be White (non-Hispanic), 23% should be Black (non-Hispanic), 10% should be Hispanic, and 2% should be Asian (non-Hispanic). Next, we calculated the observed racial and ethnic distribution of US newborns diagnosed with CG/CVG using available de-identified data from state NBS programs from 2016 to 2018. Of the 235 newborns in this cohort, 41 were categorized as other or unknown. Of the remaining 194, 66% were White (non-Hispanic or ethnicity unknown), 16% were Black (non-Hispanic or ethnicity unknown),15% were Hispanic, and 2% were Asian (non-Hispanic or ethnicity unknown). This observed distribution was statistically indistinguishable from the predicted distribution. To the limits of our study, these data confirm the racial and ethnic diversity of newborns with CG/CVG in the US, demonstrate an approach for estimating CG/CVG racial and ethnic diversity in other populations, and raise the troubling possibility that current understanding of long-term outcomes in CG/CVG may be skewed by ascertainment bias of the cohorts studied.
Collapse
Affiliation(s)
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
6
|
Akgun A, Dogan Y. All aspects of galactosemia: a single center experience. J Pediatr Endocrinol Metab 2023; 36:29-35. [PMID: 36399011 DOI: 10.1515/jpem-2022-0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Classic galactosemia is a galactose metabolism disorder due to galactose-1-phosphate uridyltransferase deficiency. In this study we report the clinical features of a cohort of children with classic galactosemia. METHODS A retrospective evaluation was made of the files of 42 cases followed up for a diagnosis of classic galactosemia between January 2000 and December 2021. The data were collected of clinical, laboratory and genetic characteristics. RESULTS The cases comprised of 25 (59.5%) girls and 17 (40.5%) boys with a median age of 15 days (range, 1 day to 9 years) at diagnosis. In addition, thirty-six cases (92.3%) could be diagnosed before they were 4 months old by hospitalization with various clinical findings, primarily liver dysfunction. The most common complaints on presentation were jaundice (78.4%) and vomiting (27%) and the most frequently seen genetic pathogenic variant was c.563A>G (p.Gln188Arg) (92.4%). CONCLUSIONS It can be emphasized that there is a need for a neonatal screening program for classic galactosemia to be able to increase the possibility of early diagnosis and to be able to start treatment before the development of a severe clinical picture.
Collapse
Affiliation(s)
- Abdurrahman Akgun
- Department of Pediatrics, Division of Metabolism, Firat University School of Medicine, Elazig, Turkiye
| | - Yasar Dogan
- Department of Pediatrics, Division of Gastroenterology, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
7
|
Katler Q, Stepien KM, Paull N, Patel S, Adams M, Balci MC, Berry GT, Bosch AM, De La O A, Demirbas D, Edman J, Ficicioglu C, Goff M, Hacker S, Knerr I, Lancaster K, Li H, Mendelsohn BA, Nichols B, de Rezende Pinto WBV, Rocha JC, Rubio-Gozalbo ME, Saad-Naguib M, Scholl-Buergi S, Searcy S, de Souza PVS, Wittenauer A, Fridovich-Keil JL. A multinational study of acute and long-term outcomes of Type 1 galactosemia patients who carry the S135L (c.404C > T) variant of GALT. J Inherit Metab Dis 2022; 45:1106-1117. [PMID: 36093991 PMCID: PMC9643640 DOI: 10.1002/jimd.12556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
Abstract
Patients with galactosemia who carry the S135L (c.404C > T) variant of galactose-1-P uridylyltransferase (GALT), documented to encode low-level residual GALT activity, have been under-represented in most prior studies of outcomes in Type 1 galactosemia. What is known about the acute and long-term outcomes of these patients, therefore, is based on very limited data. Here, we present a study comparing acute and long-term outcomes of 12 patients homozygous for S135L, 25 patients compound heterozygous for S135L, and 105 patients homozygous for two GALT-null (G) alleles. This is the largest cohort of S135L patients characterized to date. Acute disease following milk exposure in the newborn period was common among patients in all 3 comparison groups in our study, as were long-term complications in the domains of speech, cognition, and motor outcomes. In contrast, while at least 80% of both GALT-null and S135L compound heterozygous girls and women showed evidence of an adverse ovarian outcome, prevalence was only 25% among S135L homozygotes. Further, all young women in this study with even one copy of S135L achieved spontaneous menarche; this is true for only about 33% of women with classic galactosemia. Overall, we observed that while most long-term outcomes trended milder among groups of patients with even one copy of S135L, many individual patients, either homozygous or compound heterozygous for S135L, nonetheless experienced long-term outcomes that were not mild. This was true despite detection by newborn screening and both early and life-long dietary restriction of galactose. This information should empower more evidence-based counseling for galactosemia patients with S135L.
Collapse
Affiliation(s)
- Quinton Katler
- Division of Reproductive Endocrinology and Infertility, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia USA
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases Department, Salford Royal Foundation NHS Trust, Salford, Greater Manchester, UK
| | - Nathan Paull
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia USA
| | - Sneh Patel
- Emory College, Emory University, Atlanta, Georgia USA
| | - Michael Adams
- UNC School of Medicine, Division of Pediatric Genetics and Metabolism, Chapel Hill, North Carolina USA
| | - Mehmet Cihan Balci
- Department of Pediatric Metabolic Disease, Istanbul Medical School, Fatihİstanbul, Turkey
| | - Gerard T. Berry
- Division of Genetics and Genomics, Department of Pediatrics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts USA
| | - Annet M. Bosch
- Amsterdam UMC location University of Amsterdam, Emma Children’s Hospital, Department of Pediatrics, Division of Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | | | - Didem Demirbas
- Division of Genetics and Genomics, Department of Pediatrics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts USA
| | - Julianna Edman
- Department of Pediatric Genetics, University of Illinois-Chicago, Chicago, Illinois USA
| | - Can Ficicioglu
- The Children’s Hospital of Philadelphia, Division of Human Genetics and Metabolism, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, Pennsylvania USA
| | - Melanie Goff
- Division of Genetic and Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Stephanie Hacker
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida USA
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Temple St. Children’s University Hospital, Dublin, Ireland
| | - Kristen Lancaster
- UNC School of Medicine, Division of Pediatric Genetics and Metabolism, Chapel Hill, North Carolina USA
| | - Hong Li
- Departments of Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, Georgia USA
| | - Bryce A. Mendelsohn
- Department of Genetics, Oakland Medical Center, Kaiser Permanente, Oakland, California USA
| | - Brandi Nichols
- Department of Clinical Nutrition, Arkansas Children’s Hospital, Little Rock, Arkansas USA
| | | | - Júlio César Rocha
- Nutrition & Metabolism, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa Reference Centre of Inherited Metabolic Diseases, Centro Hospitalar Universitário de Lisboa Central, and Center for Health Technology and Services Research (CINTESIS), NOVA Medical School, Lisboa, Portugal
| | - M Estela Rubio-Gozalbo
- Department of Pediatrics, Department of Clinical Genetics, GROW-School for Oncology and Reproduction, European Reference Network for Hereditary Metabolic Disorders (MetabERN) member and United for Metabolic Diseases member, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Michael Saad-Naguib
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida USA
| | | | - Sarah Searcy
- Division of Genetic and Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio USA
| | | | - Angela Wittenauer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia USA
| | | |
Collapse
|
8
|
Crespo C, Eiroa H, Otegui MI, Bonetto MC, Chertkoff L, Gravina LP. Molecular analysis of GALT gene in Argentinian population: Correlation with enzyme activity and characterization of a novel Duarte-like allele. Mol Genet Metab Rep 2020; 25:100695. [PMID: 33335841 PMCID: PMC7733017 DOI: 10.1016/j.ymgmr.2020.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 11/02/2022] Open
Abstract
Background Classical galactosemia is an autosomal recessive inherited metabolic disorder caused by mutations in the galactose-1-phosphate uridyltransferase (GALT) gene. GALT enzyme deficiency leads to the accumulation of galactose-1-phosphate in various organs, causing hepatic, renal and cerebral impairment. Over 300 mutations have been reported in the GALT gene. The aim of this study was to describe molecular characterization of GALT gene in Argentinian patients with decreased GALT activity, and to correlate molecular results with enzyme activity. Methods 37 patients with enzyme activity below 6.3 μmol/h/g Hb (35% of normal value) were included. GALT activity was measured on red blood cells. DNA was extracted from peripheral blood. p.Gln188Arg mutation was studied by PCR-RFLP and, on samples negative or heterozygous, GALT gene was sequenced. In vivo splicing analysis of the GALT gene was performed on RNA extracted from leukocytes of one patient. Results 14 different sequence variations were identified among 72 unrelated alleles. The two most common disease-causing mutations were p.Gln188Arg (24/72) and p.Lys285Asn (9/72). Three novel mutations were detected. One of them, c.688G>A, caused partial skipping of exon 9 of the GALT gene. Enzyme activity correlated with GALT genotype in 36 of the 37 patients. Conclusion This is the first report of sequence variations in the GALT gene in the Argentinian population. This study highlights the contribution of the molecular analysis to the diagnosis of Galactosemia and reveals c.688G>A as a novel Duarte-like variant, with a high prevalence in our population.
Collapse
Affiliation(s)
- Carolina Crespo
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Hernán Eiroa
- Servicio de Errores Congénitos del Metabolismo, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - María Inés Otegui
- Laboratorio de Errores Congénitos del Metabolismo, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Mara Cecilia Bonetto
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Lilien Chertkoff
- Área de Laboratorios de Especialidades, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| | - Luis Pablo Gravina
- Laboratorio de Biología Molecular, Servicio de Genética, Hospital de Pediatría "Prof. Dr. Juan P. Garrahan", Buenos Aires, Argentina
| |
Collapse
|
9
|
Li L, Ma L, Sun M, Jiao J, Zhang Y, Tang Y, Yang N, Kong Y. High-Throughput Sequencing Reveals the Loss-of-Function Mutations in GALT Cause Recessive Classical Galactosemia. Front Pediatr 2020; 8:443. [PMID: 32903656 PMCID: PMC7438714 DOI: 10.3389/fped.2020.00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Classical Galactosemia (CG) is a rare autosomal recessive metabolic disease caused by mutations in the galactose-1-phosphate uridyl transferase (GALT) gene. This study aim to identify pathogenic mutations underlying classic galactosemia in two Chinese families. Methods: We collected blood samples from two Chinese families and extracted genomic DNA. High-throughput sequencing, sanger sequencing, and bioinformatics analysis were used to investigate the molecular cause of manifestations in the two Chinese families. Results: We found compound heterozygous mutations (c.396C>G; p.His132Gln and c.974C>T; p.Pro325Leu) in family 1 and a homozygous missense variant (c.974C>T; p.Pro325Leu) in family 2. Bioinformatics and Sanger sequencing were performed to verify the identified variants. Conclusion: The present study identified the GALT mutations as a genetic etiology in the two Chinese families with classic galactosemia and expanded the phenotypic and mutational spectrum of GALT. Our findings could be useful in providing evidence for prenatal interventions and more precise pharmacological treatments to patients. High-throughput sequencing conducted in our study is a convenient and useful tool for clinical diagnosis of galactosemia and other associated genetic disorders.
Collapse
Affiliation(s)
- Lulu Li
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Li Ma
- Department of Neonatology, Hebei Provincial Children's Hospital, Shijiazhuang, China
| | - Min Sun
- Department of Neonatology, Hebei Provincial Children's Hospital, Shijiazhuang, China
| | - Jiancheng Jiao
- Department of Neonatology, Hebei Provincial Children's Hospital, Shijiazhuang, China
| | - Yudong Zhang
- Department of Neonatology, Hebei Provincial Children's Hospital, Shijiazhuang, China
| | - Yue Tang
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Nan Yang
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yuanyuan Kong
- Department of Newborn Screening Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
10
|
Teke Kisa P, Kose M, Unal O, Er E, Hismi BO, Bulbul FS, Kose E, Gunduz M, Canda E, Kucukcongar A, Arslan N. Clinical and molecular characteristics and time of diagnosis of patients with classical galactosemia in an unscreened population in Turkey. J Pediatr Endocrinol Metab 2019; 32:675-681. [PMID: 31194682 DOI: 10.1515/jpem-2018-0457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/30/2019] [Indexed: 12/23/2022]
Abstract
Classical galactosemia is an autosomal recessive inborn error of metabolism caused by biallelic pathogenic variants in the GALT gene. With the benefit of early diagnosis by newborn screening, the acute presentation of galactosemia can be prevented. In this study, we describe the clinical phenotypes, time of diagnosis and GALT genotypes of 76 galactosemia patients from Turkey, where the disease is not yet included in the newborn screening program. The median age at first symptom was 10 days (range 5-20), while the median age at diagnosis was 30 days (range 17-53). Nearly half of the patients (36 patients, 47.4%) were diagnosed later than age 1 month. Fifty-eight individuals were found to have 18 different pathogenic variants in their 116 mutant alleles. In our sample, Q188R variant has the highest frequency with 53%, the other half of the allele frequency of the patients showed 17 different genotypes. Despite presenting with typical clinical manifestations, classical galactosemia patients are diagnosed late in Turkey. Due to the geographical location of our country, different pathogenic GALT variants may be seen in Turkish patients. In the present study, a clear genotype-phenotype correlation could not be established in patients.
Collapse
Affiliation(s)
- Pelin Teke Kisa
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Melis Kose
- Division of Pediatric Metabolism and Nutrition, Dr. Behcet Uz Children's Training and Research Hospital, Izmir, Turkey
| | - Ozlem Unal
- Division of Pediatric Metabolism and Nutrition, Ankara Children's Training and Research Hospital, Ankara, Turkey
| | - Esra Er
- Division of Pediatric Metabolism and Nutrition, Ege University Faculty of Medicine, Izmir, Turkey
| | - Burcu Ozturk Hismi
- Division of Pediatric Metabolism and Nutrition, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Fatma Selda Bulbul
- Division of Pediatric Metabolism and Nutrition, Kirikkale University, Kirikkale, Turkey
| | - Engin Kose
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Mehmet Gunduz
- Division of Pediatric Metabolism and Nutrition, Ankara Children's Training and Research Hospital, Ankara, Turkey
| | - Ebru Canda
- Division of Pediatric Metabolism and Nutrition, Ege University Faculty of Medicine, Izmir, Turkey
| | - Aynur Kucukcongar
- Division of Pediatric Metabolism and Nutrition, Ankara Children's Training and Research Hospital, Ankara, Turkey
| | - Nur Arslan
- Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
11
|
De Lucca M, Barba C, Casique L. A novel splicing mutation in GALT gene causing Galactosemia in Ecuadorian family. Clin Chim Acta 2017; 470:20-23. [PMID: 28450132 DOI: 10.1016/j.cca.2017.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 12/11/2022]
Abstract
Classic Galactosemia (OMIM 230400) is an autosomal recessive disorder of galactose metabolism caused by mutations in the galactose-1-phosphate uridyl transferase (GALT) gene. This disease caused by the inability to metabolize galactose is potentially life-threatening but its pathophysiology has not been clearly defined. GALT gene presents high allelic heterogeneity and around 336 variations have been identified. Here, we report the case of a patient with Classic Galactosemia who was detected during a neonatal screening in Ecuador. Molecular study revealed a mutation in GALT gene intron 1, c.82+3A>G in homozygous condition, this mutation has not been previously reported. This gene variation was not found in any of the 119 healthy Ecuadorian individuals used as control. Furthermore, the mutation was the only alteration detected in the propositus's GALT after sequencing all exons and introns of this gene. In silico modeling predicted that the mutation was pathogenic.
Collapse
Affiliation(s)
- M De Lucca
- Laboratorio de Biología Molecular y Celular, Universidad Técnica de Ambato, Ambato, Ecuador.
| | - C Barba
- Laboratorio de Biología Molecular y Celular, Universidad Técnica de Ambato, Ambato, Ecuador
| | - L Casique
- Departamento de Biología Celular, Universidad Simón Bolívar, Caracas, Venezuela
| |
Collapse
|