1
|
Pal M, Das D, Pandey M. Understanding genetic variations associated with familial breast cancer. World J Surg Oncol 2024; 22:271. [PMID: 39390525 PMCID: PMC11465949 DOI: 10.1186/s12957-024-03553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequent cancer among women. Genetics are the main risk factor for breast cancer. Statistics show that 15-25% of breast cancers are inherited among those with cancer-prone relatives. BRCA1, BRCA2, TP53, CDH1, PTEN, and STK11 are the most frequent genes for familial breast cancer, which occurs 80% of the time. In rare situations, moderate-penetrance gene mutations such CHEK2, BRIP1, ATM, and PALB2 contribute 2-3%. METHODS A search of the PubMed database was carried out spanning from 2005 to July 2024, yielding a total of 768 articles that delve into the realm of familial breast cancer, concerning genes and genetic syndromes. After exclusion 150 articles were included in the final review. RESULTS We report on a set of 20 familial breast cancer -associated genes into high, moderate, and low penetrance levels. Additionally, 10 genetic disorders were found to be linked with familial breast cancer. CONCLUSION Familial breast cancer has been linked to several genetic diseases and mutations, according to studies. Screening for genetic disorders is recommended by National Comprehensive Cancer Network recommendations. Evaluation of breast cancer candidate variations and risk loci may improve individual risk assessment. Only high- and moderate-risk gene variations have clinical guidelines, whereas low-risk gene variants require additional investigation. With increasing use of NGS technology, more linkage with rare genes is being discovered.
Collapse
Affiliation(s)
- Manjusha Pal
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Doutrina Das
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Abbouche L, Bythell-Douglas R, Deans AJ. FANCM branchpoint translocase: Master of traverse, reverse and adverse DNA repair. DNA Repair (Amst) 2024; 140:103701. [PMID: 38878565 DOI: 10.1016/j.dnarep.2024.103701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024]
Abstract
FANCM is a multifunctional DNA repair enzyme that acts as a sensor and coordinator of replication stress responses, especially interstrand crosslink (ICL) repair mediated by the Fanconi anaemia (FA) pathway. Its specialised ability to bind and remodel branched DNA structures enables diverse genome maintenance activities. Through ATP-powered "branchpoint translocation", FANCM can promote fork reversal, facilitate replication traverse of ICLs, resolve deleterious R-loop structures, and restrain recombination. These remodelling functions also support a role as sensor of perturbed replication, eliciting checkpoint signalling and recruitment of downstream repair factors like the Fanconi anaemia FANCI:FANCD2 complex. Accordingly, FANCM deficiency causes chromosome fragility and cancer susceptibility. Other recent advances link FANCM to roles in gene editing efficiency and meiotic recombination, along with emerging synthetic lethal relationships, and targeting opportunities in ALT-positive cancers. Here we review key properties of FANCM's biochemical activities, with a particular focus on branchpoint translocation as a distinguishing characteristic.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
3
|
Association of FANCM Mutations with Familial and Early-Onset Breast Cancer Risk in a South American Population. Int J Mol Sci 2023; 24:ijms24044041. [PMID: 36835452 PMCID: PMC9959766 DOI: 10.3390/ijms24044041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide. BRCA1/2 are responsible for 16-20% of the risk for hereditary BC. Other susceptibility genes have been identified; Fanconi Anemia Complementation Group M (FANCM) being one of these. Two variants in FANCM, rs144567652 and rs147021911, are associated with BC risk. These variants have been described in Finland, Italy, France, Spain, Germany, Australia, the United States, Sweden, Finnish, and the Netherlands, but not in the South American populations. Our study evaluated the association of the SNPs rs144567652 and rs147021911 with BC risk in non-carriers of BRCA1/2 mutations from a South American population. The SNPs were genotyped in 492 BRCA1/2-negative BC cases and 673 controls. Our data do not support an association between FANCM rs147021911 and rs144567652 SNPs and BC risk. Nevertheless, two BC cases, one with a family history of BC and the other with sporadic early-onset BC, were C/T heterozygotes for rs144567652. In conclusion, this is the first study related contribution of FANCM mutations and BC risk in a South American population. Nevertheless, more studies are necessary to evaluate if rs144567652 could be responsible for familial BC in BRCA1/2-negatives and for early-onset non-familial BC in Chilean BC cases.
Collapse
|
4
|
Nierenberg JL, Adamson AW, Hu D, Huntsman S, Patrick C, Li M, Steele L, Tong B, Shieh Y, Fejerman L, Gruber SB, Haiman CA, John EM, Kushi LH, Torres-Mejía G, Ricker C, Weitzel JN, Ziv E, Neuhausen SL. Whole exome sequencing and replication for breast cancer among Hispanic/Latino women identifies FANCM as a susceptibility gene for estrogen-receptor-negative breast cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.25.23284924. [PMID: 36747679 PMCID: PMC9901069 DOI: 10.1101/2023.01.25.23284924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Introduction Breast cancer (BC) is one of the most common cancers globally. Genetic testing can facilitate screening and risk-reducing recommendations, and inform use of targeted treatments. However, genes included in testing panels are from studies of European-ancestry participants. We sequenced Hispanic/Latina (H/L) women to identify BC susceptibility genes. Methods We conducted a pooled BC case-control analysis in H/L women from the San Francisco Bay area, Los Angeles County, and Mexico (4,178 cases and 4,344 controls). Whole exome sequencing was conducted on 1,043 cases and 1,188 controls and a targeted 857-gene panel on the remaining samples. Using ancestry-adjusted SKAT-O analyses, we tested the association of loss of function (LoF) variants with overall, estrogen receptor (ER)-positive, and ER-negative BC risk. We calculated odds ratios (OR) for BC using ancestry-adjusted logistic regression models. We also tested the association of single variants with BC risk. Results We saw a strong association of LoF variants in FANCM with ER-negative BC (p=4.1×10-7, OR [CI]: 6.7 [2.9-15.6]) and a nominal association with overall BC risk. Among known susceptibility genes, BRCA1 (p=2.3×10-10, OR [CI]: 24.9 [6.1-102.5]), BRCA2 (p=8.4×10-10, OR [CI]: 7.0 [3.5-14.0]), and PALB2 (p=1.8×10-8, OR [CI]: 6.5 [3.2-13.1]) were strongly associated with BC. There were nominally significant associations with CHEK2, RAD51D, and TP53. Conclusion In H/L women, LoF variants in FANCM were strongly associated with ER-negative breast cancer risk. It previously was proposed as a possible susceptibility gene for ER-negative BC, but is not routinely tested in clinical practice. Our results demonstrate that FANCM should be added to BC gene panels.
Collapse
Affiliation(s)
- Jovia L Nierenberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron W Adamson
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carmina Patrick
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Min Li
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Barry Tong
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yiwey Shieh
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Laura Fejerman
- Department of Public Health Service, University of California, Davis, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, USA
| | - Stephen B Gruber
- Department of Medical Oncology and Center for Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | | | - Charité Ricker
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Elad Ziv
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
5
|
Rashid MU, Muhammad N, Shehzad U, Khan FA, Loya A, Hamann U. Prevalence of FANCM germline variants in BRCA1/2 negative breast and/or ovarian cancer patients from Pakistan. Fam Cancer 2023; 22:31-41. [PMID: 35802266 DOI: 10.1007/s10689-022-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/18/2022] [Indexed: 01/12/2023]
Abstract
The Fanconi anemia complementation group M (FANCM) gene is a potential candidate for breast/ovarian cancer susceptibility in European populations. Here, we examined the contribution of FANCM germline variants to hereditary breast and/or ovarian cancer in Pakistan. Comprehensive FANCM variant screening was performed in 201 BRCA1 and BRCA2 (BRCA1/2) negative Pakistani patients with and without triple-negative breast cancer (TNBC) and/or ovarian cancer, using denaturing high-performance liquid chromatography analysis (DHPLC) followed by DNA sequencing. Novel variants were tested for their potential effect on protein function using in silico tools. Reverse transcription (RT)-PCR analysis of RNA extracted from one deletion/insertion (delins) variant (p.K1780delinsNGIT) carrier and three non-carriers was performed to evaluate the impact of this variant on splicing. Furthermore, potentially functional variants were evaluated in 200 healthy female controls. A missense variant (p.V1857M) was identified in a 50-year-old TNBC patient with a family history of breast cancer. It was also identified in the index patient´s daughter, who was diagnosed with osteosarcoma at 15 years of age. Further, one delins variant (p.K1780delinsNGIT) was identified in a 45-year-old non-TNBC patient, but not detected in her brother, who was diagnosed with Hodgkin's lymphoma at 38 years of age. Based on in silico and RNA analyses, p.V1857M and p.K1780delinsNGIT were predicted as variants of uncertain significance (VUS), respectively. Both variants were absent in 200 healthy controls. Our findings suggest a marginal contribution of FANCM variants to hereditary breast/ovarian cancer in Pakistan, which need to be confirmed in larger studies.
Collapse
Affiliation(s)
- Muhammad Usman Rashid
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan.
| | - Noor Muhammad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan
| | - Umara Shehzad
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan
| | - Faiz Ali Khan
- Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, 54000, Punjab, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Mekonnen N, Yang H, Shin YK. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front Oncol 2022; 12:880643. [PMID: 35785170 PMCID: PMC9247200 DOI: 10.3389/fonc.2022.880643] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022] Open
Abstract
Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the “BRCAness” phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.
Collapse
Affiliation(s)
- Negesse Mekonnen
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Department of Veterinary Science, School of Animal Science and Veterinary Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Hobin Yang
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
| | - Young Kee Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Science, Seoul National University College of Pharmacy, Seoul, South Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University Graduate School of Convergence Science and Technology, Seoul, South Korea
- LOGONE Bio Convergence Research Foundation, Center for Companion Diagnostics, Seoul, South Korea
- *Correspondence: Young Kee Shin,
| |
Collapse
|
7
|
Thakkar MK, Lee J, Meyer S, Chang VY. RecQ Helicase Somatic Alterations in Cancer. Front Mol Biosci 2022; 9:887758. [PMID: 35782872 PMCID: PMC9240438 DOI: 10.3389/fmolb.2022.887758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Named the “caretakers” of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.
Collapse
Affiliation(s)
- Megha K. Thakkar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lee
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefan Meyer
- Division of Cancer Studies, University of Manchester, Manchester, United Kingdom
- Department of Pediatric Hematology Oncology, Royal Manchester Children’s Hospital and Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Vivian Y. Chang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Childrens Discovery and Innovation Institute, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- *Correspondence: Vivian Y. Chang,
| |
Collapse
|
8
|
Zhang L, Wei XT, Niu JJ, Lin ZX, Xu Q, Ni JJ, Zhang WL, Han BX, Yan SS, Feng GJ, Zhang H, Yang XL, Zhang ZJ, Hai R, Ren HG, Zhang F, Pei YF. Joint Genome-Wide Association Analyses Identified 49 Novel Loci For Age at Natural Menopause. J Clin Endocrinol Metab 2021; 106:2574-2591. [PMID: 34050765 DOI: 10.1210/clinem/dgab377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Age at natural menopause (ANM) is an important index for women's health. Either early or late ANM is associated with a series of adverse outcomes later in life. Despite being an inheritable trait, its genetic determinant has not yet been fully understood. METHODS Aiming to better characterize the genetic architecture of ANM, we conducted genome-wide association study (GWAS) meta-analyses in European-specific as well as trans-ancestry samples by using GWAS summary statistics from the following 3 large studies: the Reproductive Genetics Consortium (ReproGen; N = 69 626), the UK Biobank cohort (UKBB; N = 111 593) and the BioBank Japan Project (BBJ; N = 43 861), followed by a series of bioinformatical assessments and functional annotations. RESULTS By integrating the summary statistics from the 3 GWAS of up to 225 200 participants, this largest meta-analysis identified 49 novel loci and 3 secondary signals that were associated with ANM at the genome-wide significance level (P < 5 × 10-8). No population specificity or heterogeneity was observed at most of the associated loci. Functional annotations prioritized 90 candidate genes at the newly identified loci. Among the 26 traits that were genetically correlated with ANM, hormone replacement therapy (HRT) exerted a causal relationship, implying a causal pattern by which HRT was determined by ANM. CONCLUSION Our findings improved our understanding of the etiology of female menopause, as well as shed light on potential new therapies for abnormal menopause.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Xin-Tong Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Jun-Jie Niu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
| | - Zi-Xuan Lin
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Qian Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Jing-Jing Ni
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Wan-Lin Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Bai-Xue Han
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Shan-Shan Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Gui-Juan Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
| | - Xiao-Lin Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College, Soochow University, Suzhou, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Jiangsu, Yangzhou, China
| | - Zi-Jia Zhang
- Health Commission of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China
| | - Rong Hai
- Health Commission of Inner Mongolia Autonomous Region, Inner Mongolia Autonomous Region, Hohhot, China
| | - Hai-Gang Ren
- Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yu-Fang Pei
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, the first affiliated hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Gianni P, Matenoglou E, Geropoulos G, Agrawal N, Adnani H, Zafeiropoulos S, Miyara SJ, Guevara S, Mumford JM, Molmenti EP, Giannis D. The Fanconi anemia pathway and Breast Cancer: A comprehensive review of clinical data. Clin Breast Cancer 2021; 22:10-25. [PMID: 34489172 DOI: 10.1016/j.clbc.2021.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
The development of breast cancer depends on several risk factors, including environmental, lifestyle and genetic factors. Despite the evolution of DNA sequencing techniques and biomarker detection, the epidemiology and mechanisms of various breast cancer susceptibility genes have not been elucidated yet. Dysregulation of the DNA damage response causes genomic instability and increases the rate of mutagenesis and the risk of carcinogenesis. The Fanconi Anemia (FA) pathway is an important component of the DNA damage response and plays a critical role in the repair of DNA interstrand crosslinks and genomic stability. The FA pathway involves 22 recognized genes and specific mutations have been identified as the underlying defect in the majority of FA patients. A thorough understanding of the function and epidemiology of these genes in breast cancer is critical for the development and implementation of individualized therapies that target unique tumor profiles. Targeted therapies (PARP inhibitors) exploiting the FA pathway gene defects have been developed and have shown promising results. This narrative review summarizes the current literature on the involvement of FA genes in sporadic and familial breast cancer with a focus on clinical data derived from large cohorts.
Collapse
Affiliation(s)
- Panagiota Gianni
- Department of Internal Medicine III, Hematology, Oncology, Palliative Medicine, Rheumatology and Infectious Diseases, University Hospital Ulm, Germany
| | - Evangelia Matenoglou
- Medical School, Aristotle University of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Geropoulos
- Thoracic Surgery Department, University College London Hospitals NHS Foundation Trust, London
| | - Nirav Agrawal
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Harsha Adnani
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY
| | - Stefanos Zafeiropoulos
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Santiago J Miyara
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, New York, NY
| | - Sara Guevara
- Department of Surgery, North Shore University Hospital, Manhasset, New York, NY
| | - James M Mumford
- Department of Family Medicine, Glen Cove Hospital, Glen Cove, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Ernesto P Molmenti
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY; Department of Surgery, North Shore University Hospital, Manhasset, New York, NY; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, NY
| | - Dimitrios Giannis
- Feinstein Institutes for Medical Research at Northwell Health, Manhasset, New York, NY.
| |
Collapse
|
10
|
Combinations of Low-Frequency Genetic Variants Might Predispose to Familial Pancreatic Cancer. J Pers Med 2021; 11:jpm11070631. [PMID: 34357098 PMCID: PMC8305658 DOI: 10.3390/jpm11070631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022] Open
Abstract
Familial pancreatic cancer (FPC) is an established but rare inherited tumor syndrome that accounts for approximately 5% of pancreatic ductal adenocarcinoma (PDAC) cases. No major causative gene defect has yet been identified, but germline mutations in predisposition genes BRCA1/2, CDKN2A and PALB2 could be detected in 10–15% of analyzed families. Thus, the genetic basis of disease susceptibility in the majority of FPC families remains unknown. In an attempt to identify new candidate genes, we performed whole-genome sequencing on affected patients from 15 FPC families, without detecting BRCA1/2, CDKN2A or PALB2 mutations, using an Illumina based platform. Annotations from CADD, PolyPhen-2, SIFT, Mutation Taster and PROVEAN were used to assess the potential impact of a variant on the function of a gene. Variants that did not segregate with pancreatic disease in respective families were excluded. Potential predisposing candidate genes ATM, SUFU, DAB1, POLQ, FGFBP3, MAP3K3 and ACAD9 were identified in 7 of 15 families. All identified gene mutations segregated with pancreatic disease, but sometimes with incomplete penetrance. An analysis of up to 46 additional FPC families revealed that the identified gene mutations appeared to be unique in most cases, despite a potentially deleterious ACAD9 Ala326Thr germline variant, which occurred in 4 (8.7%) of 46 FPC families. Notably, affected PDAC patients within a family carried identical germline mutations in up to three different genes, e.g., DAB1, POLQ and FGFBP3. These results support the hypothesis that FPC is a highly heterogeneous polygenetic disease caused by low-frequency or rare variants.
Collapse
|
11
|
Chan SH, Ni Y, Li ST, Teo JX, Ishak NDB, Lim WK, Ngeow J. Spectrum of Germline Mutations Within Fanconi Anemia–Associated Genes Across Populations of Varying Ancestry. JNCI Cancer Spectr 2021; 5:6146409. [DOI: 10.1093/jncics/pkaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Fanconi anemia (FA) is a rare genetic disorder associated with hematological disorders and solid tumor predisposition. Owing to phenotypic heterogeneity, some patients remain undetected until adulthood, usually following cancer diagnoses. The uneven prevalence of FA cases with different underlying FA gene mutations worldwide suggests variable genetic distribution across populations. Here, we aim to assess the genetic spectrum of FA-associated genes across populations of varying ancestries and explore potential genotype–phenotype associations in cancer.
Methods
Carrier frequency and variant spectrum of potentially pathogenic germline variants in 17 FA genes (excluding BRCA1/FANCS, BRCA2/FANCD1, BRIP1/FANCJ, PALB2/FANCN, RAD51C/FANCO) were evaluated in 3523 Singaporeans and 7 populations encompassing Asian, European, African, and admixed ancestries from the Genome Aggregation Database. Germline and somatic variants of 17 FA genes in 7 cancer cohorts from The Cancer Genome Atlas were assessed to explore genotype–phenotype associations.
Results
Germline variants in FANCA were consistently more frequent in all populations. Similar trends in carrier frequency and variant spectrum were detected in Singaporeans and East Asians, both distinct from other ancestry groups, particularly in the lack of recurrent variants. Our exploration of The Cancer Genome Atlas dataset suggested higher germline and somatic mutation burden between FANCA and FANCC with head and neck and lung squamous cell carcinomas as well as FANCI and SLX4/FANCP with uterine cancer, but the analysis was insufficiently powered to detect any statistical significance.
Conclusion
Our findings highlight the diverse genetic spectrum of FA-associated genes across populations of varying ancestries, emphasizing the need to include all known FA-related genes for accurate molecular diagnosis of FA.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Ying Ni
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shao-Tzu Li
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Nur Diana Binte Ishak
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
12
|
Rashid MU, Muhammad N, Khan FA, Shehzad U, Naeemi H, Malkani N, Hamann U. Prevalence of RECQL germline variants in Pakistani early-onset and familial breast cancer patients. Hered Cancer Clin Pract 2020; 18:25. [PMID: 33342430 PMCID: PMC7749988 DOI: 10.1186/s13053-020-00159-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background The RecQ Like Helicase (RECQL) gene has previously been shown to predispose to breast cancer mainly in European populations, in particular to estrogen receptor (ER) and/or progesterone receptor (PR) positive tumor. Here, we investigated the contribution of pathogenic RECQL germline variants to hereditary breast cancer in early-onset and familial breast cancer patients from Pakistan. Methods Comprehensive RECQL variant analysis was performed in 302 BRCA1 and BRCA2 negative patients with ER and/or PR positive breast tumors using denaturing high-performance liquid chromatography followed by DNA sequencing. Novel variants were classified using Sherloc guidelines. Results One novel pathogenic protein-truncating variant (p.W75*) was identified in a 37-year-old familial breast cancer patient. The pathogenic variant frequencies were 0.3% (1/302) in early-onset and familial breast cancer patients and 0.8% (1/133) in familial patients. Further, three novel variants of unknown significance, p.I141F, p.S182S, and p.C475C, were identified in familial breast cancer patients at the age of 47, 68, and 47 respectively. All variants were absent in 250 controls. Conclusions Our data suggest that the RECQL gene plays a negligible role in breast cancer predisposition in Pakistan.
Collapse
Affiliation(s)
- Muhammad Usman Rashid
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, Punjab, 54000, Pakistan. .,Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| | - Noor Muhammad
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, Punjab, 54000, Pakistan
| | - Faiz Ali Khan
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, Punjab, 54000, Pakistan
| | - Umara Shehzad
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, Punjab, 54000, Pakistan
| | - Humaira Naeemi
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), 7A, Block R3, Johar Town, Lahore, Punjab, 54000, Pakistan
| | - Naila Malkani
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Ben Kridis-Rejeb W, Ben Ayed-Guerfali D, Ammous-Boukhris N, Ayadi W, Kifagi C, Charfi S, Saguem I, Sellami-Boudawara T, Daoud J, Khanfir A, Mokdad-Gargouri R. Identification of novel candidate genes by exome sequencing in Tunisian familial male breast cancer patients. Mol Biol Rep 2020; 47:6507-6516. [PMID: 32901360 DOI: 10.1007/s11033-020-05703-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
Abstract
Male Breast Cancer (MBC) is a rare and aggressive disease that is associated with genetic factors. Mutations in BRCA1 and BRCA2 account for 10% of all MBC cases suggesting that other genetic factors are involved. The aim of the present study is to screen whole BRCA1 and BRCA2 exons using the Ampliseq BRCA panel in Tunisian MBC patients with family history. Furthermore, we performed exome sequencing using the TruSight One sequencing panel on an early onset BRCA negative patient. We showed that among the 6 MBC patients, only one (MBC-F1) harbored a novel frameshift mutation in exon 2 of the BRCA2 gene (c.17-20delAAGA, p.Lys6Xfs) resulting in a short BRCA2 protein of only 6 amino-acids. We selected 9 rare variants after applying several filter steps on the exome sequencing data. Among these variants, and based on their role in breast carcinogenesis, we retained 6 candidate genes (MSH5, DCC, ERBB3, NOTCH3, DIAPH1, and DNAH11). Further studies are needed to confirm the association of the selected genes with family MBC.
Collapse
Affiliation(s)
| | - Dorra Ben Ayed-Guerfali
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Nihel Ammous-Boukhris
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Wajdi Ayadi
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia
| | - Chamseddine Kifagi
- Division of Immunology & Vaccinology, DTU Nanotech, Department of Micro-and Nanotechnology, Kemitorvet, Buildings 202 and 204, Lyngby Campus, 2800, Kgs. Lyngby, Denmark
| | - Slim Charfi
- Department of Anatomo-Pathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Ines Saguem
- Department of Anatomo-Pathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Tahia Sellami-Boudawara
- Department of Anatomo-Pathology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Jamel Daoud
- Department of Radiotherapy, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Afef Khanfir
- Department of Oncology, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Center of Biotechnology of Sfax, University of Sfax, Sidi Mansour Street Km 6, BP 1177, 3038, Sfax, Tunisia.
| |
Collapse
|
14
|
Debnath S, Sharma S. RECQ1 Helicase in Genomic Stability and Cancer. Genes (Basel) 2020; 11:E622. [PMID: 32517021 PMCID: PMC7348745 DOI: 10.3390/genes11060622] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
RECQ1 (also known as RECQL or RECQL1) belongs to the RecQ family of DNA helicases, members of which are linked with rare genetic diseases of cancer predisposition in humans. RECQ1 is implicated in several cellular processes, including DNA repair, cell cycle and growth, telomere maintenance, and transcription. Earlier studies have demonstrated a unique requirement of RECQ1 in ensuring chromosomal stability and suggested its potential involvement in tumorigenesis. Recent reports have suggested that RECQ1 is a potential breast cancer susceptibility gene, and missense mutations in this gene contribute to familial breast cancer development. Here, we provide a framework for understanding how the genetic or functional loss of RECQ1 might contribute to genomic instability and cancer.
Collapse
Affiliation(s)
- Subrata Debnath
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA;
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA;
- National Human Genome Center, College of Medicine, Howard University, 520 W Street, NW, Washington, DC 20059, USA
| |
Collapse
|
15
|
Dzaparidze G, Anion E, Laan M, Minajeva A. The decline of FANCM immunohistochemical expression in prostate cancer stroma correlates with the grade group. Pathol Int 2020; 70:542-550. [PMID: 32462745 DOI: 10.1111/pin.12953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
Prostate adenocarcinoma (PCa) stromal markers have recently gained attention as complementary diagnostic tools. The DNA reparation complex protein FANCM has been shown to express in the normal prostate stroma and FANCM gene alterations to be associated with PCa susceptibility; this has led to the hypothesis that an insufficient level of FANCM expression may provide additional information for the evaluation of PCa. The study cohort comprised 60 radical prostatectomy specimens. The controls involved 11 autopsies (CTRL) and non-cancerous tissue (NCT) areas from the prostatectomy specimen. The samples were stained with the FANCM antibody. The quantification of the stromal staining index (SSI) was made using ImageJ and QuPath. Overall, 655 regions of interest (ROI) were analyzed. FANCM expression appeared equally intense and stroma specific in both CTRL and NCT, indicating the absence of underlying baseline alterations. Within the age span of the cohort 47-89 years, no significant effect of the age of the patients on the FANCM expression was seen. FANCM demonstrated Gleason grade (G) dependent decline in PCa, being statistically significant in controls versus G1 and G2 versus G3. In other adjacent International Society of Urological Pathology (ISUP) groups, it remained insignificant, still being meaningful between high and low-grade cancers.
Collapse
Affiliation(s)
| | | | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ave Minajeva
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
16
|
Exploring the Role of Mutations in Fanconi Anemia Genes in Hereditary Cancer Patients. Cancers (Basel) 2020; 12:cancers12040829. [PMID: 32235514 PMCID: PMC7226125 DOI: 10.3390/cancers12040829] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) is caused by biallelic mutations in FA genes. Monoallelic mutations in five of these genes (BRCA1, BRCA2, PALB2, BRIP1 and RAD51C) increase the susceptibility to breast/ovarian cancer and are used in clinical diagnostics as bona-fide hereditary cancer genes. Increasing evidence suggests that monoallelic mutations in other FA genes could predispose to tumor development, especially breast cancer. The objective of this study is to assess the mutational spectrum of 14 additional FA genes (FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, FANCP, FANCQ, FANCR and FANCU) in a cohort of hereditary cancer patients, to compare with local cancer-free controls as well as GnomAD. A total of 1021 hereditary cancer patients and 194 controls were analyzed using our next generation custom sequencing panel. We identified 35 pathogenic variants in eight genes. A significant association with the risk of breast cancer/breast and ovarian cancer was found for carriers of FANCA mutations (odds ratio (OR) = 3.14 95% confidence interval (CI) 1.4–6.17, p = 0.003). Two patients with early-onset cancer showed a pathogenic FA variant in addition to another germline mutation, suggesting a modifier role for FA variants. Our results encourage a comprehensive analysis of FA genes in larger studies to better assess their role in cancer risk.
Collapse
|
17
|
Hi-Plex2: a simple and robust approach to targeted sequencing-based genetic screening. Biotechniques 2019; 67:118-122. [PMID: 31267764 DOI: 10.2144/btn-2019-0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have previously reported Hi-Plex, a multiplex PCR methodology for building targeted DNA sequencing libraries that offers a low-cost protocol compatible with high-throughput processing. Here, we detail an improved protocol, Hi-Plex2, that more effectively enables the robust construction of small-to-medium panel-size libraries while maintaining low cost, simplicity and accuracy benefits of the Hi-Plex platform. Hi-Plex2 was applied to three panels, comprising 291, 740 and 1193 amplicons, targeting genes associated with risk for breast and/or colon cancer. We show substantial reduction of off-target amplification to enable library construction for small-to-medium-sized design panels not possible using the previous Hi-Plex chemistry.
Collapse
|
18
|
Hilz P, Heinrihsone R, Pätzold LA, Qi Q, Trofimovics G, Gailite L, Irmejs A, Gardovskis J, Miklasevics E, Daneberga Z. Allelic variants of breast cancer susceptibility genes PALB2 and RECQL in the Latvian population. Hered Cancer Clin Pract 2019; 17:17. [PMID: 31312277 PMCID: PMC6610821 DOI: 10.1186/s13053-019-0116-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background Large-scale case control studies revealed a number of moderate risk - low frequency breast cancer alleles of the PALB2 and RECQL genes. Some of these were reported as founder variants of Central and Eastern Europe. Based on highly similar founder variant spectra of the BRCA1 in Poland and Latvia, we decided to test the frequency of other common variants of moderate breast cancer risk — c.509_510delGA (rs515726124) and c.172_175delTTGT (rs180177143) of the PALB2 gene and c.1667_1667+3delAGTA variant of the RECQL gene in a breast cancer case-control series from Latvia to better understand the role of genes in susceptibility to breast cancer and their clinical significance. Methods The case-control study was performed based on an unselected breast cancer case group of 2480 women and a control group, including 1240 voluntary, to our knowledge unrelated, female donors without reported oncological disease. Results The calculated frequency for c.509_510delGA of the PALB2 gene in the case group is 0.35 and 0.00% in the control group, with respective relative risk (RR) 7.18 (CI 95% 0.37–138.75; p = 0.19). As for the PALB2 c.172_175delTTGT variant, the frequency in the case group of our study is 0.04%. In the control group of our study all individuals were homozygous for the wild-type allele, which lead to calculated RR = 1.50 (CI 95% 0.06–36.83; p-value = 0.80). There were no carriers of the RECQL variant c.1667_1667+3delAGTA identified in our case group and 2 heterozygotes were identified in the control group. The calculated RR = 0.26 (CI 95% 0.01–5.33; p-value = 0.38). Conclusion Results obtained for the PALB2 gene variants are able to supplement evidence on the allele frequency in breast cancer patients from the region of Central and Eastern Europe. Based on our results we cannot confirm the contribution of the RECQL variant c.1667_1667+3delAGTA allele to breast cancer development.
Collapse
Affiliation(s)
- Philip Hilz
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia.,Present address:Center for Anaesthesiology and Intensive Care Medicine, Martinistreet 52, Building Ost 10, 2.OG, 20246 Hamburg, Germany
| | - Reicela Heinrihsone
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | | | - Qi Qi
- 2Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 People's Republic of China
| | - Genadijs Trofimovics
- 3Department of Surgery, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Linda Gailite
- 4Scientific Laboratory of Molecular Genetics, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Arvids Irmejs
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia.,3Department of Surgery, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Janis Gardovskis
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia.,3Department of Surgery, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Edvins Miklasevics
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| | - Zanda Daneberga
- 1Institute of Oncology, Riga Stradins University, Dzirciema street 16, Riga, LV-1007 Latvia
| |
Collapse
|
19
|
Basbous J, Constantinou A. A tumor suppressive DNA translocase named FANCM. Crit Rev Biochem Mol Biol 2019; 54:27-40. [DOI: 10.1080/10409238.2019.1568963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jihane Basbous
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
20
|
Bowden AR, Tischkowitz M. Clinical implications of germline mutations in breast cancer genes: RECQL. Breast Cancer Res Treat 2019; 174:553-560. [PMID: 30610487 PMCID: PMC6439214 DOI: 10.1007/s10549-018-05096-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/29/2018] [Indexed: 12/12/2022]
Abstract
Background The identification of new hereditary breast cancer genes is an area of highly active research. In 2015, two independent studies provided initial evidence for a novel breast cancer susceptibility gene, RECQL, a DNA helicase which plays an important role in the DNA damage response. Several subsequent studies in independent patient cohorts have provided further data on RECQL variant frequency in additional populations, some of which have brought in to question the increased breast cancer risk associated with RECQL mutations. Results The initial reports present findings from whole exome sequencing of high-risk familial breast cancer cases in the French-Canadian, Polish and Han Chinese populations and estimate the carrier frequency of pathogenic RECQL mutations in high-risk breast cancer patients who have previously tested negative for BRCA1 and BRCA2 mutations to be approximately 1–2%. Proposed founder mutations were identified in French-Canadian and Polish populations. Functional studies support loss of function of the helicase activity of RECQL for some of the reported pathogenic mutations. An additional study in a cohort of Southern Chinese high-risk breast cancer patients estimated the frequency of pathogenic RECQL mutations to be 0.54%. A possible Chinese founder mutation was identified, but only a small number of controls were sequenced. Subsequent case–control studies screening for the Polish founder mutation in patients from Germany and Belarus did not find any evidence for increased breast cancer risk for this variant. An Australian case–control study also failed to identify an increased risk of breast cancer associated with RECQL loss of function variants. Conclusions RECQL plays an important role in DNA repair, and is a plausible candidate breast cancer susceptibility gene. Initial studies showed evidence of an association between variants in this gene and an increased breast cancer risk in three separate populations, and identified founder mutations with significantly increased odds ratios. However, several subsequent studies have failed to support the association. With the limited and conflicting evidence available, there remains debate as to whether there is an increased breast cancer risk in individuals carrying RECQL loss of function variants. Further studies are required to better quantify the risks associated with RECQL variants and the current evidence base is not sufficient to justify routine inclusion of RECQL on breast cancer gene panels in clinical use. Management of patients in whom RECQL variants have been identified should be based on clinician assessment, in the context of the family history. Further studies are required to better quantify the risks to RECQL mutation carriers and may also guide management and potential therapeutic targeting for patients.
Collapse
Affiliation(s)
- A Ramsay Bowden
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Marc Tischkowitz
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Trust, Cambridge, UK.
- Academic Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Box 238, Level 6 Addenbrooke's Treatment Centre, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
21
|
Kasak L, Punab M, Nagirnaja L, Grigorova M, Minajeva A, Lopes AM, Punab AM, Aston KI, Carvalho F, Laasik E, Smith LB, Conrad DF, Laan M, Laan M. Bi-allelic Recessive Loss-of-Function Variants in FANCM Cause Non-obstructive Azoospermia. Am J Hum Genet 2018; 103:200-212. [PMID: 30075111 DOI: 10.1016/j.ajhg.2018.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/02/2018] [Indexed: 01/19/2023] Open
Abstract
Infertility affects around 7% of men worldwide. Idiopathic non-obstructive azoospermia (NOA) is defined as the absence of spermatozoa in the ejaculate due to failed spermatogenesis. There is a high probability that NOA is caused by rare genetic defects. In this study, whole-exome sequencing (WES) was applied to two Estonian brothers diagnosed with NOA and Sertoli cell-only syndrome (SCOS). Compound heterozygous loss-of-function (LoF) variants in FANCM (Fanconi anemia complementation group M) were detected as the most likely cause for their condition. A rare maternally inherited frameshift variant p.Gln498Thrfs∗7 (rs761250416) and a previously undescribed splicing variant (c.4387-10A>G) derived from the father introduce a premature STOP codon leading to a truncated protein. FANCM exhibits enhanced testicular expression. In control subjects, immunohistochemical staining localized FANCM to the Sertoli and spermatogenic cells of seminiferous tubules with increasing intensity through germ cell development. This is consistent with its role in maintaining genomic stability in meiosis and mitosis. In the individual with SCOS carrying bi-allelic FANCM LoF variants, none or only faint expression was detected in the Sertoli cells. As further evidence, we detected two additional NOA-affected case subjects with independent FANCM homozygous nonsense variants, one from Estonia (p.Gln1701∗; rs147021911) and another from Portugal (p.Arg1931∗; rs144567652). The study convincingly demonstrates that bi-allelic recessive LoF variants in FANCM cause azoospermia. FANCM pathogenic variants have also been linked with doubled risk of familial breast and ovarian cancer, providing an example mechanism for the association between infertility and cancer risk, supported by published data on Fancm mutant mouse models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|