1
|
Adeva-Andany MM, Domínguez-Montero A, Adeva-Contreras L, Fernández-Fernández C, Carneiro-Freire N, González-Lucán M. Body Fat Distribution Contributes to Defining the Relationship between Insulin Resistance and Obesity in Human Diseases. Curr Diabetes Rev 2024; 20:e160823219824. [PMID: 37587805 DOI: 10.2174/1573399820666230816111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
The risk for metabolic and cardiovascular complications of obesity is defined by body fat distribution rather than global adiposity. Unlike subcutaneous fat, visceral fat (including hepatic steatosis) reflects insulin resistance and predicts type 2 diabetes and cardiovascular disease. In humans, available evidence indicates that the ability to store triglycerides in the subcutaneous adipose tissue reflects enhanced insulin sensitivity. Prospective studies document an association between larger subcutaneous fat mass at baseline and reduced incidence of impaired glucose tolerance. Case-control studies reveal an association between genetic predisposition to insulin resistance and a lower amount of subcutaneous adipose tissue. Human peroxisome proliferator-activated receptorgamma (PPAR-γ) promotes subcutaneous adipocyte differentiation and subcutaneous fat deposition, improving insulin resistance and reducing visceral fat. Thiazolidinediones reproduce the effects of PPAR-γ activation and therefore increase the amount of subcutaneous fat while enhancing insulin sensitivity and reducing visceral fat. Partial or virtually complete lack of adipose tissue (lipodystrophy) is associated with insulin resistance and its clinical manifestations, including essential hypertension, hypertriglyceridemia, reduced HDL-c, type 2 diabetes, cardiovascular disease, and kidney disease. Patients with Prader Willi syndrome manifest severe subcutaneous obesity without insulin resistance. The impaired ability to accumulate fat in the subcutaneous adipose tissue may be due to deficient triglyceride synthesis, inadequate formation of lipid droplets, or defective adipocyte differentiation. Lean and obese humans develop insulin resistance when the capacity to store fat in the subcutaneous adipose tissue is exhausted and deposition of triglycerides is no longer attainable at that location. Existing adipocytes become large and reflect the presence of insulin resistance.
Collapse
Affiliation(s)
- María M Adeva-Andany
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Alberto Domínguez-Montero
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | | | - Carlos Fernández-Fernández
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Natalia Carneiro-Freire
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| | - Manuel González-Lucán
- Nephrology Division, Department of Internal Medicine, Hospital General Juan Cardona, c/ Pardo Bazán s/n, 15406 Ferrol, Spain
| |
Collapse
|
2
|
Besci Ö, Fırat SN, Özen S, Çetinkaya S, Akın L, Kör Y, Pekkolay Z, Özalkak Ş, Özsu E, Erdeve ŞS, Poyrazoğlu Ş, Berberoğlu M, Aydın M, Omma T, Akıncı B, Demir K, Oral EA. A National Multicenter Study of Leptin and Leptin Receptor Deficiency and Systematic Review. J Clin Endocrinol Metab 2023; 108:2371-2388. [PMID: 36825860 DOI: 10.1210/clinem/dgad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
CONTEXT Homozygous leptin (LEP) and leptin receptor (LEPR) variants lead to childhood-onset obesity. OBJECTIVE To present new cases with LEP and LEPR deficiency, report the long-term follow-up of previously described patients, and to define, based on all reported cases in literature, genotype-phenotype relationships. METHODS Our cohort included 18 patients (LEP = 11, LEPR = 7), 8 of whom had been previously reported. A systematic literature review was conducted in July 2022. Forty-two of 47 studies on LEP/LEPR were selected. RESULTS Of 10 new cases, 2 novel pathogenic variants were identified in LEP (c.16delC) and LEPR (c.40 + 5G > C). Eleven patients with LEP deficiency received metreleptin, 4 of whom had been treated for over 20 years. One patient developed loss of efficacy associated with neutralizing antibody development. Of 152 patients, including 134 cases from the literature review in addition to our cases, frameshift variants were the most common (48%) in LEP and missense variants (35%) in LEPR. Patients with LEP deficiency were diagnosed at a younger age [3 (9) vs 7 (13) years, P = .02] and had a higher median body mass index (BMI) SD score [3.1 (2) vs 2.8 (1) kg/m2, P = 0.02], which was more closely associated with frameshift variants (P = .02). Patients with LEP deficiency were more likely to have hyperinsulinemia (P = .02). CONCLUSION Frameshift variants were more common in patients with LEP deficiency whereas missense variants were more common in LEPR deficiency. Patients with LEP deficiency were identified at younger ages, had higher BMI SD scores, and had higher rates of hyperinsulinemia than patients with LEPR deficiency. Eleven patients benefitted from long-term metreleptin, with 1 losing efficacy due to neutralizing antibodies.
Collapse
Affiliation(s)
- Özge Besci
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Sevde Nur Fırat
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Samim Özen
- Division of Pediatric Endocrinology, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Semra Çetinkaya
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Leyla Akın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Yılmaz Kör
- Division of Pediatric Endocrinology, Ministry of Health, Adana Public Hospitals Association, Adana City Hospital, Adana 01040, Turkey
| | - Zafer Pekkolay
- Division of Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakır 21280, Turkey
| | - Şervan Özalkak
- Division Pediatric Endocrinology, Diyarbakir Gazi Yaşargil Training and Research Hospital, Diyarbakır 21070, Turkey
| | - Elif Özsu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Şenay Savaş Erdeve
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Şükran Poyrazoğlu
- Department of Pediatric Endocrinology, Istanbul University Istanbul Faculty of Medicine, İstanbul 34098, Turkey
| | - Merih Berberoğlu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Murat Aydın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Tülay Omma
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Barış Akıncı
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, İzmir 35340, Turkey
| | - Korcan Demir
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Elif Arioglu Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
3
|
Mazen IH, El-Gammal MA, Elaidy AA, Anwar GM, Ashaat EA, Abdel-Ghafar SF, Abdel-Hamid MS. Congenital leptin and leptin receptor deficiencies in nine new families: identification of six novel variants and review of literature. Mol Genet Genomics 2023; 298:919-929. [PMID: 37140700 DOI: 10.1007/s00438-023-02025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
Early childhood obesity is a real public health problem worldwide. Identifying the etiologies, especially treatable and preventable causes, can direct health professionals toward proper management. Measurement of serum leptin levels is helpful in the diagnosis of congenital leptin and leptin receptor deficiencies which are considered important rare causes of early childhood obesity. The main aim of this study was to investigate the frequency of LEP, LEPR, and MC4R gene variants among a cohort of Egyptian patients with severe early onset obesity. The current cross-sectional study included 30 children who developed obesity during the first year of life with BMI > 2SD (for age and sex). The studied patients were subjected to full medical history taking, anthropometric measurements, serum leptin and insulin assays, and genetic testing of LEP, LEPR and MC4R. Disease causing variants in LEP and LEPR were identified in 10/30 patients with a detection rate of 30%. Eight different homozygous variants (two pathogenic, three likely pathogenic, and three variants of uncertain significant) were identified in the two genes, including six previously unreported LEPR variants. Of them, a new frameshift variant in LEPR gene (c.1045delT, p.S349Lfs*22) was recurrent in two unrelated families and seems to have a founder effect in our population. In conclusion, we reported ten new patients with leptin and leptin receptor deficiencies and identified six novel LEPR variants expanding the mutational spectrum of this rare disorder. Furthermore, the diagnosis of these patients helped us in genetic counseling and patients' managements specially with the availability of drugs for LEP and LEPR deficiencies.
Collapse
Affiliation(s)
- Inas H Mazen
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona A El-Gammal
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Aya A Elaidy
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Ghada M Anwar
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Sherif F Abdel-Ghafar
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Eltahrir Street, Dokki, Cairo, 12311, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Eltahrir Street, Dokki, Cairo, 12311, Egypt.
| |
Collapse
|
4
|
Nalbantoğlu Ö, Hazan F, Acar S, Gürsoy S, Özkan B. Screening of non-syndromic early-onset child and adolescent obese patients in terms of LEP, LEPR, MC4R and POMC gene variants by next-generation sequencing. J Pediatr Endocrinol Metab 2022; 35:1041-1050. [PMID: 35801948 DOI: 10.1515/jpem-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Non-syndromic monogenic obesity is a rare cause of early-onset severe obesity in the childhood period. The aim of this study was to screen four obesity related genes (LEP, LEPR, MC4R and POMC) in children and adolescents who had severe, non-syndromic early onset obesity. METHODS Next-generation sequencing of all exons in LEP, LEPR, MC4R and POMC was performed in 154 children and adolescents with early onset severe obesity obesity. RESULTS Fifteen different variants in nineteen patients were identified with a variant detection rate of 12.3%. While six different heterozygous variants were observed in MC4R gene (10/154 patients; 6.5%), five different variants in POMC gene (four of them were heterozygous and one of them was homozygous) (6/154 patients; 3.9%) and four different homozygous variants in LEPR gene (3/154 patients; 1.9%) were described. However, no variants were detected in the LEP gene. The most common pathogenic variant was c.496G>A in MC4R gene, which was detected in four unrelated patients. Six novel variants (6/15 variants; 40%) were described in seven patients. Four of them including c.233C>A and c.752T>C in MC4R gene and c.761dup and c.1221dup in LEPR gene were evaluated as pathogenic or likely pathogenic. CONCLUSIONS In conclusion, MC4R variants are the most common genetic cause of monogenic early-onset obesity, consistent with the literature. The c.496G>A variant in MC4R gene is highly prevalent in early-onset obese patients.
Collapse
Affiliation(s)
- Özlem Nalbantoğlu
- Clinic of Pediatric Endocrinology, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Filiz Hazan
- Clinic of Medical Genetics, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Sezer Acar
- Clinic of Pediatric Endocrinology, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Semra Gürsoy
- Clinic of Pediatric Genetics, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| | - Behzat Özkan
- Clinic of Pediatric Endocrinology, University of Health Sciences Turkey, Dr. BehçetUz Child Disease and Pediatric Surgery Training and Research Hospital, İzmir, Turkey
| |
Collapse
|
5
|
Saeed S, Janjua QM, Haseeb A, Khanam R, Durand E, Vaillant E, Ning L, Badreddine A, Berberian L, Boissel M, Amanzougarene S, Canouil M, Derhourhi M, Bonnefond A, Arslan M, Froguel P. Rare Variant Analysis of Obesity-Associated Genes in Young Adults With Severe Obesity From a Consanguineous Population of Pakistan. Diabetes 2022; 71:694-705. [PMID: 35061034 DOI: 10.2337/db21-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022]
Abstract
Recent advances in genetic analysis have significantly helped in progressively attenuating the heritability gap of obesity and have brought into focus monogenic variants that disrupt the melanocortin signaling. In a previous study, next-generation sequencing revealed a monogenic etiology in ∼50% of the children with severe obesity from a consanguineous population in Pakistan. Here we assess rare variants in obesity-causing genes in young adults with severe obesity from the same region. Genomic DNA from 126 randomly selected young adult obese subjects (BMI 37.2 ± 0.3 kg/m2; age 18.4 ± 0.3 years) was screened by conventional or augmented whole-exome analysis for point mutations and copy number variants (CNVs). Leptin, insulin, and cortisol levels were measured by ELISA. We identified 13 subjects carrying 13 different pathogenic or likely pathogenic variants in LEPR, PCSK1, MC4R, NTRK2, POMC, SH2B1, and SIM1. We also identified for the first time in the human, two homozygous stop-gain mutations in ASNSD1 and IFI16 genes. Inactivation of these genes in mouse models has been shown to result in obesity. Additionally, we describe nine homozygous mutations (seven missense, one stop-gain, and one stop-loss) and four copy-loss CNVs in genes or genomic regions previously linked to obesity-associated traits by genome-wide association studies. Unexpectedly, in contrast to obese children, pathogenic mutations in LEP and LEPR were either absent or rare in this cohort of young adults. High morbidity and mortality risks and social disadvantage of children with LEP or LEPR deficiency may in part explain this difference between the two cohorts.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Qasim M Janjua
- Department of Physiology and Biophysics, National University of Science and Technology, Sohar, Oman
| | - Attiya Haseeb
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Roohia Khanam
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Emmanuelle Durand
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Lijiao Ning
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Alaa Badreddine
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Lionel Berberian
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mathilde Boissel
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Souhila Amanzougarene
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mickaël Canouil
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Amélie Bonnefond
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| | - Muhammad Arslan
- School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Philippe Froguel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Inserm UMR 1283, CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille, France
- Lille University Hospital, University of Lille, Lille, France
| |
Collapse
|
6
|
Ornoy A, Becker M, Weinstein-Fudim L, Ergaz Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. Int J Mol Sci 2021; 22:2965. [PMID: 33803995 PMCID: PMC7999044 DOI: 10.3390/ijms22062965] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
In spite of the huge progress in the treatment of diabetes mellitus, we are still in the situation that both pregestational (PGDM) and gestational diabetes (GDM) impose an additional risk to the embryo, fetus, and course of pregnancy. PGDM may increase the rate of congenital malformations, especially cardiac, nervous system, musculoskeletal system, and limbs. PGDM may interfere with fetal growth, often causing macrosomia, but in the presence of severe maternal complications, especially nephropathy, it may inhibit fetal growth. PGDM may also induce a variety of perinatal complications such as stillbirth and perinatal death, cardiomyopathy, respiratory morbidity, and perinatal asphyxia. GDM that generally develops in the second half of pregnancy induces similar but generally less severe complications. Their severity is higher with earlier onset of GDM and inversely correlated with the degree of glycemic control. Early initiation of GDM might even cause some increase in the rate of congenital malformations. Both PGDM and GDM may cause various motor and behavioral neurodevelopmental problems, including an increased incidence of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Most complications are reduced in incidence and severity with the improvement in diabetic control. Mechanisms of diabetic-induced damage in pregnancy are related to maternal and fetal hyperglycemia, enhanced oxidative stress, epigenetic changes, and other, less defined, pathogenic mechanisms.
Collapse
Affiliation(s)
- Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel; (L.W.-F.); (Z.E.)
| | - Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Liza Weinstein-Fudim
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel; (L.W.-F.); (Z.E.)
| | - Zivanit Ergaz
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 91120, Israel; (L.W.-F.); (Z.E.)
- Medical Center, Hadassah Hebrew University, Mount Scopus, Jerusalem 91240, Israel
| |
Collapse
|
7
|
Kang SJ, Bae JG, Kim S, Park JH. Birth anthropometry and cord blood leptin in Korean appropriate-for-gestational-age infants born at ≥ 28 weeks' gestation: a cross sectional study. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2020; 2020:12. [PMID: 32607107 PMCID: PMC7318406 DOI: 10.1186/s13633-020-00082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/13/2020] [Indexed: 11/10/2022]
Abstract
Background We investigated whether leptin during the third trimester was associated with fetal growth compared to IGF-1. Methods One hundred five appropriate-for-gestational-age (AGA) infants born at ≥28 weeks’ gestation were enrolled. Cord blood leptin and insulin like growth factor 1 (IGF-1) were collected simultaneously during delivery. Enrolled infants were stratified into three groups according to GA as follows: 28 to < 34 weeks’ gestation, very preterm (VP); 34 to < 37 weeks’ gestation, late preterm (LP); and 37 to < 41 weeks’ gestation, term. Birth weight (BW), birth length (BL), head circumference (HC), and body mass index (BMI) were measured. Leptin and IGF-1 were logarithmically transformed to normalize their distributions in multivariable regression analysis. Results Sixty-eight infants out of 105 infants were preterm (32.5 ± 2.5 weeks), and 37 infants were term (37.8 ± 1.2 weeks). BW, BL, HC, and BMI were higher with increasing gestational age among the three gestational age-specific groups. With regard to hormones, leptin and IGF-1 were higher with increasing gestational age. Log cord serum leptin was independently associated with BW and BL in multivariable linear regression analysis, after adjustment for confounding factors including gestational age, delivery mode, multiple pregnancy, pregnancy induced hypertension, gestational diabetes mellitus, infant’s BMI, and log cord blood IGF-1 levels. Conclusions During the third trimester, cord serum leptin was independently associated with fetal growth.
Collapse
Affiliation(s)
- Seok Jin Kang
- Department of Pediatrics, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Jin Gon Bae
- Department of Obstetrics and Gynecology, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Shin Kim
- Department of Immunology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jae Hyun Park
- Department of Pediatrics, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea
| |
Collapse
|
8
|
Niazi RK, Gjesing AP, Hollensted M, Have CT, Borisevich D, Grarup N, Pedersen O, Ullah A, Shahid G, Shafqat I, Gul A, Hansen T. Screening of 31 genes involved in monogenic forms of obesity in 23 Pakistani probands with early-onset childhood obesity: a case report. BMC MEDICAL GENETICS 2019; 20:152. [PMID: 31488071 PMCID: PMC6727494 DOI: 10.1186/s12881-019-0886-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Consanguine families display a high degree of homozygosity which increases the risk of family members suffering from autosomal recessive disorders. Thus, homozygous mutations in monogenic obesity genes may be a more frequent cause of childhood obesity in a consanguineous population. METHODS We identified 23 probands from 23 Pakistani families displaying autosomal recessive obesity. We have previously excluded mutations in MC4R, LEP and LEPR in all probands. Using a chip-based, target-region capture array, 31 genes involved in monogenic forms of obesity, were screened in all probands. RESULTS We identified 31 rare non-synonymous possibly pathogenic variants (28 missense and three nonsense) within the 31 selected genes. All variants were heterozygous, thus no homozygous pathogenic variants were found. Two of the rare heterozygous nonsense variants identified (p.R75X and p.R481X) were found in BBS9 within one proband, suggesting that obesity is caused by compound heterozygosity. Sequencing of the parents supported the compound heterozygous nature of obesity as each parent was carrying one of the variants. Subsequent clinical investigation strongly indicated that the proband had Bardet-Biedl syndrome. CONCLUSIONS Mutation screening in 31 genes among probands with severe early-onset obesity from Pakistani families did not reveal the presence of homozygous obesity causing variants. However, a compound heterozygote carrier of BBS9 mutations was identified, indicating that compound heterozygosity must not be overlooked when investigating the genetic etiology of severe childhood obesity in populations with a high degree of consanguinity.
Collapse
Affiliation(s)
- Robina Khan Niazi
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Children Hospital, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Anette Prior Gjesing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Hollensted
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Theil Have
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmitrii Borisevich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, PIMS, Islamabad, Pakistan
| | - Gulbin Shahid
- Children Hospital, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Ifrah Shafqat
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|