1
|
Gao J, Wu Y, Yu J, Qiu Y, Yi T, Luo C, Zhang J, Lu G, Li X, Xiong F, Wu X, Pan X. Impact of genomic and epigenomic alterations of multigene on a multicancer pedigree. Cancer Med 2024; 13:e7394. [PMID: 38970307 PMCID: PMC11226725 DOI: 10.1002/cam4.7394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Germline mutations have been identified in a small number of hereditary cancers, but the genetic predisposition for many familial cancers remains to be elucidated. METHODS This study identified a Chinese pedigree that presented different cancers (breast cancer, BRCA; adenocarcinoma of the esophagogastric junction, AEG; and B-cell acute lymphoblastic leukemia, B-ALL) in each of the three generations. Whole-genome sequencing and whole-exome sequencing were performed on peripheral blood or bone marrow and cancer biopsy samples. Whole-genome bisulfite sequencing was conducted on the monozygotic twin brothers, one of whom developed B-ALL. RESULTS According to the ACMG guidelines, bioinformatic analysis of the genome sequencing revealed 20 germline mutations, particularly mutations in the DNAH11 (c.9463G > A) and CFH (c.2314G > A) genes that were documented in the COSMIC database and validated by Sanger sequencing. Forty-one common somatic mutated genes were identified in the cancer samples, displaying the same type of single nucleotide substitution Signature 5. Meanwhile, hypomethylation of PLEK2, MRAS, and RXRA as well as hypermethylation of CpG island associated with WT1 was shown in the twin with B-ALL. CONCLUSIONS These findings reveal genomic alterations in a pedigree with multiple cancers. Mutations found in the DNAH11, CFH genes, and other genes predispose to malignancies in this family. Dysregulated methylation of WT1, PLEK2, MRAS, and RXRA in the twin with B-ALL increases cancer susceptibility. The similarity of the somatic genetic changes among the three cancers indicates a hereditary impact on the pedigree. These familial cancers with germline and somatic mutations, as well as epigenomic alterations, represent a common molecular basis for many multiple cancer pedigrees.
Collapse
Affiliation(s)
- Jinyu Gao
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Yongzhang Wu
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jieming Yu
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical UniversityShenzhenChina
| | - Yinbin Qiu
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Tiantian Yi
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Chaochao Luo
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Junxiao Zhang
- SequMed Institute of Biomedical SciencesGuangzhouChina
| | - Gary Lu
- Department of Fetal Medicine and Prenatal DiagnosisZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Xu Li
- Kaiser Permanente Regional Genetics Laboratory, San Jose Medical CenterSan JoseCaliforniaUSA
| | - Fu Xiong
- Department of Medical GeneticsSchool of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
| | - Xuedong Wu
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
| | - Xinghua Pan
- Department of PediatricsNanfang Hospital, Southern Medical UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Single Cell Technology and ApplicationSouthern Medical UniversityGuangzhouChina
- Department of Biochemistry and Molecular BiologySchool of Basic Medical Sciences, Southern Medical UniversityGuangzhouChina
- Precision Regenerative Medicine Research Centre, Division of Medical SciencesMacau University of Science and TechnologyMacaoChina
| |
Collapse
|
2
|
Saikia S, Postwala H, Athilingam VP, Anandan A, Padma VV, Kalita PP, Chorawala M, Prajapati B. Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer. Curr Pharm Biotechnol 2024; 25:1915-1938. [PMID: 38310451 DOI: 10.2174/0113892010265004231116092802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.
Collapse
Affiliation(s)
- Surovi Saikia
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Vishnu Prabhu Athilingam
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Aparna Anandan
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - V Vijaya Padma
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Partha P Kalita
- Program of Biotechnology, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
3
|
Feng YN, Li BY, Wang K, Li XX, Zhang L, Dong XZ. Epithelial-mesenchymal transition-related long noncoding RNAs in gastric carcinoma. Front Mol Biosci 2022; 9:977280. [PMCID: PMC9605205 DOI: 10.3389/fmolb.2022.977280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
As an evolutionarily phenotypic conversion program, the epithelial-mesenchymal transition (EMT) has been implicated in tumour deterioration and has facilitated the metastatic ability of cancer cells via enhancing migration and invasion. Gastric cancer (GC) remains a frequently diagnosed non-skin malignancy globally. Most GC-associated mortality can be attributed to metastasis. Recent studies have shown that EMT-related long non-coding RNAs (lncRNAs) play a critical role in GC progression and GC cell motility. In addition, lncRNAs are associated with EMT-related transcription factors and signalling pathways. In the present review, we comprehensively described the EMT-inducing lncRNA molecular mechanisms and functional perspectives of EMT-inducing lncRNAs in GC progression. Taken together, the statements of this review provided a clinical implementation in identifying lncRNAs as potential therapeutic targets for advanced GC.
Collapse
|
4
|
Zhou Y, Xu L, Wang J, Ge B, Wang Q, Wang T, Liu C, Wei B, Wang Q, Gao Y. LRFN2 binding to NMDAR inhibits the progress of ESCC via regulating the Wnt/β-Catenin and NF-κB signaling pathway. Cancer Sci 2022; 113:3566-3578. [PMID: 35879265 PMCID: PMC9530863 DOI: 10.1111/cas.15510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
As a neuronal transmembrane protein, leucine-rich repeat and fibronectin type-III domain-containing protein 2 (LRFN2) can recruit and combine with N-methyl-D-aspartic acid receptors (NMDARs) to promote nerve growth. Genetic studies suggest that mutations in LRFN2 are associated with various cancers. However, the role and mechanism of LRFN2 in the progression of esophageal squamous cell carcinoma (ESCC) have not been elucidated. In this study, we demonstrated that LRFN2 was significantly downregulated in ESCC tissues by qRT-PCR and immunohistochemistry. Low LRFN2 expression was an adverse prognostic factor in patients with ESCC. Overexpression of LRFN2 effectively suppressed the proliferation, migration, invasion and epithelial-to-mesenchymal transition in vitro and tumor growth in vivo. Bioinformatics analysis indicated that Wnt/β-catenin signaling regulation was one of the most potential mechanisms and studies confirmed that overexpression of LFRN2 obviously downregulated the expression of β-catenin, c-Myc and cyclin D1 in ESCC cells and tumor tissues. Further studies revealed that LRFN2 plays anti-ESCC role by binding with NMDAR-GRIN2B and this effect can be weakened by NR2B-selective NMDA antagonist-NMDA-IN-1. Moreover, the bioinformatics analysis showed that the interaction of GRIN2B and GSK3β affects the NF-κB pathway, which was demonstrated by western blot experiments. Collectively, our results indicate that LRFN2 binding to NMDARs inhibits the progression of ESCC by regulating the Wnt/β-catenin and NF-κB pathway, which provides a new therapeutic target for improving the prognosis of patients with ESCC.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Medical Oncology, Cancer Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Lijuan Xu
- Department of Medical Oncology, Cancer Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Jiru Wang
- Department of Medical Oncology, Cancer Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Beibei Ge
- Department of Medical Oncology, Cancer Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Qiuzi Wang
- Department of Medical Oncology, Cancer Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Tao Wang
- Department of Medical Oncology, Cancer Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Chang Liu
- Department of Medical Oncology, Cancer Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Bin Wei
- Department of Medical Oncology, Cancer Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| | - Qilong Wang
- Department of Central Laboratory, Cancer Center, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, China
| | - Yong Gao
- Department of Medical Oncology, Cancer Center, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, China
| |
Collapse
|
5
|
Huang J, Yang H, Wang M, Zhao X, Shao S, Zhang F, Que R, Hu Q, Liang T. Gallbladder Adenosquamous Cancer with Situs Inversus Totalis: A Case Report and Literature Review. Onco Targets Ther 2021; 14:4299-4304. [PMID: 34349522 PMCID: PMC8327361 DOI: 10.2147/ott.s319030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Situs inversus totalis (SIT) is a rare genetic congenital disease, characterized with complete right-to-left inversion of all the internal organs. We herein describe a meaningful case which was diagnosed as gallbladder adenosquamous carcinoma, a rare histology type of gallbladder cancer, with SIT. Case Presentation A 59-year-old Chinese woman was admitted for persistent epigastric distention and intermittent abdominal pain. The abdominal CT scan revealed a huge mass at the gallbladder bottom, involving the adjacent transverse colon and liver. En-bloc radical resection of the gallbladder cancer, including partial colectomy and hepatectomy with regional node dissection, followed by colocolostomy and Roux-en-Y choledochojejunostomy, was successfully performed. Pathology analysis indicated an adenosquamous carcinoma with positive adenocarcinoma markers (CK7, CK19) and squamous carcinoma markers (CK5/6, P63). Conclusion The SIT anomaly might increase the risk of malignancies by sharing genome mutations, suggesting the importance of surveillance in the SIT settings.
Collapse
Affiliation(s)
- Junming Huang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Hanjin Yang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Xinyu Zhao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Shiyi Shao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Fu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Risheng Que
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Qida Hu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People's Republic of China
| |
Collapse
|