1
|
Jakhan J, Kojom Foko LP, Narang G, Singh V. Glucose-6-phosphate Dehydrogenase Variants: Analysing in Indian Plasmodium vivax Patients. Acta Parasitol 2024; 69:1522-1529. [PMID: 39164542 DOI: 10.1007/s11686-024-00883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Primaquine (PQ) is recommended for radical cure of Plasmodium vivax (Pv) malaria, but its utilization is still limited due to high risk of severe haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase deficiency (G6PD-d). The aim of the present study is to assess the different genotypic variants leading to G6PD-d in Delhi and Goa regions of India. METHODS A total of 46 samples (34 retrospective Pv-mono-infected samples and 12 Pv-uninfected samples) were included in the study. Various genetic variants leading to G6PD-d were analysed by PCR amplification and DNA sequencing of different targeted exons of G6PD gene. RESULTS Molecular analysis showed presence of four mutations in study population viz. 1311 C > T, 34.1% & IVSXI 93T > C, 45.5% and two novel mutations 1388G > T, 2.3% and 1398 C > T, 2.3% (silent mutation). The bioinformatics and computational analysis demonstrate that the slight conformational changes caused by R643L mutation in protein are deleterious in nature. CONCLUSION The observed mutations do not clarify the role or association between G6PD-d and Pv-infected cases. Further investigation is required in order to fully comprehend and analyse the precise role of these mutations with context to malaria infections.
Collapse
Affiliation(s)
- Jahnvi Jakhan
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, Sector-8, New Delhi, 110077, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Loick Pradel Kojom Foko
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, Sector-8, New Delhi, 110077, India
| | - Geetika Narang
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, Sector-8, New Delhi, 110077, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Dwarka, Sector-8, New Delhi, 110077, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zhang Z, Wang X, Jiang J. Screening results and mutation frequency analysis of G6PD deficiency in 1,291,274 newborns in Huizhou, China: a twenty-year experience. Ann Hematol 2024; 103:29-36. [PMID: 37971548 DOI: 10.1007/s00277-023-05533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES This study aimed to investigate the incidence rate and spectrum of gene mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency in the Huizhou city of southern China to provide a scientific basis for disease prevention and control in the area. METHODS From March 2003 to December 2022, newborn screening for G6PD enzyme activity was carried out in Huizhou city using the fluorescence quantitative method. Infants who tested positive during the initial screening were diagnosed using the nitroblue tetrazolium ratio method, while a subset of infants received further gene mutation analysis using the multicolor probe melting curve analysis method. RESULTS A total of 1,291,274 newborns were screened and the screening rate has increased from 20.39% to almost 100%. In the 20-year period, 57,217 (4.43%) infants testing positive during the initial screening. Out of these infants, 49,779 (87%) were recalled for confirmatory testing. G6PD deficiency was confirmed in 39,261 of the recalled infants, indicating a positive predictive value of 78.87%. The estimated incidence rate of G6PD deficiency in the region was 3.49%, which was significantly higher than the average incidence rate of 2.1% in southern China. On the other hand, seven pathogenic G6PD variants were identified in the analysis of the 99 diagnosed infants with the most common being c.1388 G > A (48.5%), followed by c.95 A > G (19.2%), c.1376 G > T (15.2%), c.871 G > A (9.1%), c.1360 C > T (3.0%), c.392 G > T (3.0%), and c.487 G > A (1.0%). CONCLUSION The incidence of G6PD deficiency in newborns in the Huizhou city was higher than the southern China average level, while the types and frequencies of gene mutations were found to vary slightly from other regions. Our findings suggested that free government screening and nearby diagnosis strategies could reduce the incidence of G6PD deficiency in the area.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Huizhou Second Maternal and Child Health Hospital, Huizhou, 516001, People's Republic of China
| | - Xiaoting Wang
- Huizhou Second Maternal and Child Health Hospital, Huizhou, 516001, People's Republic of China
| | - Jianhui Jiang
- Guangdong Maternal and Child Health Hospital, Guangzhou, 510000, People's Republic of China.
| |
Collapse
|
3
|
Mungkalasut P, Nimsamer P, Cheepsunthorn P, Payungporn S, Cheepsunthorn CL. Single-Drop Blood Detection of Common G6PD Mutations in Thailand Based on Allele-Specific Recombinase Polymerase Amplification with CRISPR-Cas12a. ACS OMEGA 2023; 8:44733-44744. [PMID: 38046356 PMCID: PMC10688097 DOI: 10.1021/acsomega.3c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023]
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited enzymopathy. Identification of the G6PD deficiency through screening is crucial to preventing adverse effects associated with hemolytic anemia following antimalarial drug exposure. Therefore, a rapid and precise field-based G6PD deficiency diagnosis is required, particularly in rural regions where malaria is prevalent. The phenotypic diagnosis of the G6PD intermediate has also been a challenging issue due to the overlapping of G6PD activity levels between deficient and normal individuals, leading to a misinterpretation. The availability of an accurate point-of-care testing (POCT) for G6PD genotype diagnosis will therefore increase the opportunity for screening heterozygous cases in a low-resource setting. In this study, an allele-specific recombinase polymerase amplification (AS RPA) with clustered regularly interspaced short palindromic repeats-Cas12a (CRISPR-Cas12a) was developed as a POCT for accurate diagnosis of common G6PD mutations in Thailand. The AS primers for the wild type and mutant alleles of G6PD MahidolG487A and G6PD ViangchanG871A were designed and used in RPA reactions. Following application of CRISPR-Cas12a systems containing specific protospacer adjacent motif, the targeted RPA amplicons were visualized with the naked eye. Results demonstrated that the G6PD MahidolG487A and G6PD ViangchanG871A assays reached 93.62 and 98.15% sensitivity, respectively. The specificity was 88.71% in MahidolG487A and 99.02% in G6PD ViangchanG871A. The diagnosis accuracy of the G6PD MahidolG487A and G6PD ViangchanG871A assays was 91.67 and 98.72%, respectively. From DNA extraction to detection, the assay required approximately 52 min. In conclusion, this study demonstrated the high performance of an AS RPA with the CRISPR-Cas12a platform for G6PD MahidolG487A and G6PD ViangchanG871A detection assays and the potential use of G6PD genotyping as POCT.
Collapse
Affiliation(s)
- Punchalee Mungkalasut
- Interdisciplinary
Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Department
of Biochemistry, Faculty of Medicine, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Pattaraporn Nimsamer
- Center
of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poonlarp Cheepsunthorn
- Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Department
of Biochemistry, Faculty of Medicine, Chulalongkorn
University, Bangkok 10330, Thailand
- Center
of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
4
|
Olewe PK, Awandu SS, Munde EO, Anyona SB, Raballah E, Amolo AS, Ogola S, Ndenga E, Onyango CO, Rochford R, Perkins DJ, Ouma C. Hemoglobinopathies, merozoite surface protein-2 gene polymorphisms, and acquisition of Epstein Barr virus among infants in Western Kenya. BMC Cancer 2023; 23:566. [PMID: 37340364 PMCID: PMC10280846 DOI: 10.1186/s12885-023-11063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Epstein Barr virus (EBV)-associated endemic Burkitt's Lymphoma pediatric cancer is associated with morbidity and mortality among children resident in holoendemic Plasmodium falciparum regions in western Kenya. P. falciparum exerts strong selection pressure on sickle cell trait (SCT), alpha thalassemia (-α3.7/αα), glucose-6-phosphate dehydrogenase (G6PD), and merozoite surface protein 2 (MSP-2) variants (FC27, 3D7) that confer reduced malarial disease severity. The current study tested the hypothesis that SCT, (-α3.7/αα), G6PD mutation and (MSP-2) variants (FC27, 3D7) are associated with an early age of EBV acquisition. METHODS Data on infant EBV infection status (< 6 and ≥ 6-12 months of age) was abstracted from a previous longitudinal study. Archived infant DNA (n = 81) and mothers DNA (n = 70) samples were used for genotyping hemoglobinopathies and MSP-2. The presence of MSP-2 genotypes in maternal DNA samples was used to indicate infant in-utero malarial exposure. Genetic variants were determined by TaqMan assays or standard PCR. Group differences were determined by Chi-square or Fisher's analysis. Bivariate regression modeling was used to determine the relationship between the carriage of genetic variants and EBV acquisition. RESULTS EBV acquisition for infants < 6 months was not associated with -α3.7/αα (OR = 1.824, P = 0.354), SCT (OR = 0.897, P = 0.881), or G6PD [Viangchan (871G > A)/Chinese (1024 C > T) (OR = 2.614, P = 0.212)] and [Union (1360 C > T)/Kaiping (1388G > A) (OR = 0.321, P = 0.295)]. There was no relationship between EBV acquisition and in-utero exposure to either FC27 (OR = 0.922, P = 0.914) or 3D7 (OR = 0.933, P = 0.921). In addition, EBV acquisition in infants ≥ 6-12 months also showed no association with -α3.7/αα (OR = 0.681, P = 0.442), SCT (OR = 0.513, P = 0.305), G6PD [(Viangchan (871G > A)/Chinese (1024 C > T) (OR = 0.640, P = 0.677)], [Mahidol (487G > A)/Coimbra (592 C > T) (OR = 0.948, P = 0.940)], [(Union (1360 C > T)/Kaiping (1388G > A) (OR = 1.221, P = 0.768)], African A (OR = 0.278, P = 0.257)], or in utero exposure to either FC27 (OR = 0.780, P = 0.662) or 3D7 (OR = 0.549, P = 0.241). CONCLUSION Although hemoglobinopathies (-α3.7/αα, SCT, and G6PD mutations) and in-utero exposure to MSP-2 were not associated with EBV acquisition in infants 0-12 months, novel G6PD variants were discovered in the population from western Kenya. To establish that the known and novel hemoglobinopathies, and in utero MSP-2 exposure do not confer susceptibility to EBV, future studies with larger sample sizes from multiple sites adopting genome-wide analysis are required.
Collapse
Affiliation(s)
- Perez K. Olewe
- Department of Biomedical Sciences, School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
| | - Shehu Shagari Awandu
- Department of Biomedical Sciences, School of Health Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Elly O. Munde
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Department of Clinical Medicine, Kirinyaga University, Kerugoya, Kenya
| | - Samuel B. Anyona
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Department of Medical Biochemistry, School of Medicine, Maseno University, Maseno, Kenya
| | - Evans Raballah
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Department of Medical Laboratory Sciences, School of Public Health Biomedical Science and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Asito S. Amolo
- Department of Biological Sciences School of Biological, Physical, Mathematics, and Actuarial Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Sidney Ogola
- Kenya Medical Research Institute - CGHR, Kisumu, Kenya
| | - Erick Ndenga
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Clinton O. Onyango
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
| | | | - Douglas J. Perkins
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Center for Global Health, Internal Medicine, University of New Mexico, New Mexico, NM USA
| | - Collins Ouma
- University of New Mexico-Kenyan Global Health Programs Laboratories, Kisumu and Siaya, New Mexico, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
- Research and Innovations, Maseno University, Kisumu-Busia Road Private Bag, Maseno, Kenya
| |
Collapse
|
5
|
Zhou L, Lei Q, Guo J, Gao Y, Shi J, Yu H, Yin W, Cao J, Xiao B, Andreo J, Ettlinger R, Jeffrey Brinker C, Wuttke S, Zhu W. Long-term whole blood DNA preservation by cost-efficient cryosilicification. Nat Commun 2022; 13:6265. [PMID: 36270991 PMCID: PMC9587218 DOI: 10.1038/s41467-022-33759-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/30/2022] [Indexed: 12/25/2022] Open
Abstract
Deoxyribonucleic acid (DNA) is the blueprint of life, and cost-effective methods for its long-term storage could have many potential benefits to society. Here we present the method of in situ cryosilicification of whole blood cells, which allows long-term preservation of DNA. Importantly, our straightforward approach is inexpensive, reliable, and yields cryosilicified samples that fulfill the essential criteria for safe, long-term DNA preservation, namely robustness against external stressors, such as radical oxygen species or ultraviolet radiation, and long-term stability in humid conditions at elevated temperatures. Our approach could enable the room temperature storage of genomic information in book-size format for more than one thousand years (thermally equivalent), costing only 0.5 $/person. Additionally, our demonstration of 3D-printed DNA banking artefacts, could potentially allow 'artificial fossilization'.
Collapse
Affiliation(s)
- Liang Zhou
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Qi Lei
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Jimin Guo
- grid.266832.b0000 0001 2188 8502Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131 USA
| | - Yuanyuan Gao
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Jianjun Shi
- grid.459319.30000 0001 0175 0741Science and Technology on Advanced Functional Composites Technology, Aerospace Research Institute of Materials & Processing Technology, Beijing, 100076 P. R. China
| | - Hong Yu
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Wenxiang Yin
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Jiangfan Cao
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Botao Xiao
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Jacopo Andreo
- grid.473251.60000 0004 6475 7301BCMaterials, Basque Center for Materials, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Romy Ettlinger
- grid.11914.3c0000 0001 0721 1626School of Chemistry, University of St. Andrews, St. Andrews, United Kingdom
| | - C. Jeffrey Brinker
- grid.266832.b0000 0001 2188 8502Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131 USA
| | - Stefan Wuttke
- grid.473251.60000 0004 6475 7301BCMaterials, Basque Center for Materials, UPV/EHU Science Park, 48940 Leioa, Spain ,grid.424810.b0000 0004 0467 2314Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Wei Zhu
- grid.79703.3a0000 0004 1764 3838MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 P. R. China
| |
Collapse
|
6
|
Alakbaree M, Amran S, Shamsir M, Ahmed HH, Hamza M, Alonazi M, Warsy A, Latif NA. Human G6PD variant structural studies: Elucidating the molecular basis of human G6PD deficiency. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Lee HY, Ithnin A, Azma RZ, Othman A, Salvador A, Cheah FC. Glucose-6-Phosphate Dehydrogenase Deficiency and Neonatal Hyperbilirubinemia: Insights on Pathophysiology, Diagnosis, and Gene Variants in Disease Heterogeneity. Front Pediatr 2022; 10:875877. [PMID: 35685917 PMCID: PMC9170901 DOI: 10.3389/fped.2022.875877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 01/04/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a prevalent condition worldwide and is caused by loss-of-function mutations in the G6PD gene. Individuals with deficiency are more susceptible to oxidative stress which leads to the classical, acute hemolytic anemia (favism). However, G6PD deficiency in newborn infants presents with an increased risk of hyperbilirubinemia, that may rapidly escalate to result in bilirubin induced neurologic dysfunction (BIND). Often with no overt signs of hemolysis, G6PD deficiency in the neonatal period appears to be different in the pathophysiology from favism. This review discusses and compares the mechanistic pathways involved in these two clinical presentations of this enzyme disorder. In contrast to the membrane disruption of red blood cells and Heinz bodies formation in favism, G6PD deficiency causing jaundice is perhaps attributed to the disruption of oxidant-antioxidant balance, impaired recycling of peroxiredoxin 2, thus affecting bilirubin clearance. Screening for G6PD deficiency and close monitoring of affected infants are important aspects in neonatal care to prevent kernicterus, a permanent and devastating neurological damage. WHO recommends screening for G6PD activity of all infants in countries with high prevalence of this deficiency. The traditional fluorescent spot test as a screening tool, although low in cost, misses a significant proportion of cases with moderate deficiency or the partially deficient, heterozygote females. Some newer and emerging laboratory tests and diagnostic methods will be discussed while developments in genomics and proteomics contribute to increasing studies that spatially profile genetic mutations within the protein structure that could predict their functional and structural effects. In this review, several known variants of G6PD are highlighted based on the location of the mutation and amino acid replacement. These could provide insights on why some variants may cause a higher degree of phenotypic severity compared to others. Further studies are needed to elucidate the predisposition of some variants toward certain clinical manifestations, particularly neonatal hyperbilirubinemia, and how some variants increase in severity when co-inherited with other blood- or bilirubin-related genetic disorders.
Collapse
Affiliation(s)
- Heng Yang Lee
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Azlin Ithnin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Raja Zahratul Azma
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| | - Ainoon Othman
- Department of Medical Science II, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Malaysia
| | - Armindo Salvador
- CNC-Centre for Neuroscience Cell Biology, University of Coimbra, Coimbra, Portugal.,Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Fook Choe Cheah
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| |
Collapse
|
8
|
Bahr TM, Agarwal AM, Meznarich JA, Prince WL, Wait TWP, Prchal JT, Christensen RD. Thirty-five males with severe (Class 1) G6PD deficiency (c.637G>T) in a North American family of European ancestry. Blood Cells Mol Dis 2021; 92:102625. [PMID: 34773909 DOI: 10.1016/j.bcmd.2021.102625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
In North America, jaundiced neonates are not usually tested for G6PD deficiency if the family is of European ancestry. However, we describe such a family where ≥35 males have had severe (Class I) G6PD deficiency. Many of the jaundiced neonates did not have this diagnosis considered, at least three of whom developed bilirubin neurotoxicity. Over seven generations 35 affected males were identified. Three developed signs of kernicterus spectrum disorder; three had exchange transfusions for hyperbilirubinemia; and nine received one or more blood transfusions during childhood.
Collapse
Affiliation(s)
- Timothy M Bahr
- Division of Neonatology, University of Utah Health, Salt Lake City, UT, USA; Neonatology, Intermountain Healthcare, Murray, UT, USA.
| | - Archana M Agarwal
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT, USA; ARUP Laboratories, Salt Lake City, UT, USA
| | - Jessica A Meznarich
- Division of Hematology/Oncology, Department of Pediatrics, University of Utah Health, Salt Lake City, UT, USA
| | | | - Tirzah W P Wait
- Internal Medicine Service, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Josef T Prchal
- Division of Hematology, Department of Internal Medicine, University of Utah Health, the Huntsman Cancer Institute, and the George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Robert D Christensen
- Division of Neonatology, University of Utah Health, Salt Lake City, UT, USA; Division of Hematology/Oncology, Department of Pediatrics, University of Utah Health, Salt Lake City, UT, USA; Neonatology, Intermountain Healthcare, Murray, UT, USA
| |
Collapse
|
9
|
Vela-Amieva M, Alcántara-Ortigoza MA, González-del Angel A, Belmont-Martínez L, López-Candiani C, Ibarra-González I. Genetic spectrum and clinical early natural history of glucose-6-phosphate dehydrogenase deficiency in Mexican children detected through newborn screening. Orphanet J Rare Dis 2021; 16:103. [PMID: 33637102 PMCID: PMC7913327 DOI: 10.1186/s13023-021-01693-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase deficiency (G6PDd) newborn screening is still a matter of debate due to its highly heterogeneous birth prevalence and clinical expression, as well as, the lack of enough knowledge on its natural history. Herein, we describe the early natural clinical course and the underlying GDPD genotypes in infants with G6PDd detected by newborn screening and later studied in a single follow-up center. G6PDd newborns were categorized into three groups: group 1: hospitalized with or without neonatal jaundice (NNJ); group 2: non-hospitalized with NNJ; and group 3: asymptomatic. Frequencies of homozygous UGT1A1*28 (rs34983651) genotypes among G6PDd patients with or without NNJ were also explored. RESULTS A total of 81 newborns (80 males, one female) were included. Most individuals (46.9%) had NNJ without other symptoms, followed by asymptomatic (42.0%) and hospitalized (11.1%) patients, although the hospitalization of only 3 of these patients was related to G6PDd, including NNJ or acute hemolytic anemia (AHA). Nine different G6PDd genotypes were found; the G6PD A-202A/376G genotype was the most frequent (60.5%), followed by the G6PD A-376G/968C (22.2%) and the Union-Maewo (rs398123546, 7.4%) genotypes. These genotypes produce a wide range of clinical and biochemical phenotypes with significant overlapping residual enzymatic activity values among class I, II or III variants. Some G6PD A-202A/376G individuals had enzymatic values that were close to the cutoff value (5.3 U/g Hb, 4.6 and 4.8 U/g Hb in the groups with and without NNJ, respectively), while others showed extremely low enzymatic values (1.1 U/g Hb and 1.4 U/g Hb in the groups with and without NNJ, respectively). Homozygosity for UGT1A1*28 among G6PDd patients with (11.9%, N = 5/42) or without (10.3%, N = 4/39) NNJ did not shown significant statistical difference (p = 0.611). CONCLUSION Wide variability in residual enzymatic activity was noted in G6PDd individuals with the same G6PD genotype. This feature, along with a documented heterogeneous mutational spectrum, makes it difficult to categorize G6PD variants according to current WHO classification and precludes the prediction of complications such as AHA, which can occur even with > 10% of residual enzymatic activity and/or be associated with the common and mild G6PD A-376G/968C and G6PD A-202A/376G haplotypes.
Collapse
Affiliation(s)
- Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo Y Tamiz, Instituto Nacional de Pediatría SS, CDMX, Mexico
| | | | | | - Leticia Belmont-Martínez
- Laboratorio de Errores Innatos del Metabolismo Y Tamiz, Instituto Nacional de Pediatría SS, CDMX, Mexico
| | | | - Isabel Ibarra-González
- UGN, Instituto de Investigaciones Biomédicas, UNAM-LEIMyT, Instituto Nacional de Pediatría SS, CDMX, Mexico
| |
Collapse
|