1
|
Du X, Yu M, Ju H, Xue S, Li Y, Wu X, Xu H, Shen Q. Inhibition of MAPK/ERK pathway activation rescues congenital anomalies of the kidney and urinary tract (CAKUT) in Robo2 PB/+ Gen1 PB/+ mice. Biochem Biophys Res Commun 2023; 653:153-160. [PMID: 36870240 DOI: 10.1016/j.bbrc.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) have been attributed to genetic and environmental factors. However, monogenic and copy number variations cannot sufficiently explain the cause of the majority of CAKUT cases. Multiple genes through various modes of inheritance may lead to CAKUT pathogenesis. We previously showed that Robo2 and Gen1 coregulated the germination of ureteral buds (UB), significantly increasing CAKUT incidence. Furthermore, MAPK/ERK pathway activation is the central mechanism of these two genes. Thus, we explored the effect of the MAPK/ERK inhibitor U0126 in the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice. Intraperitoneal injection of U0126 during pregnancy prevented the development of the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice. Additionally, a single dose of 30 mg/kg U0126 on day 10.5 embryos (E10.5) was most effective for reducing CAKUT incidence and ectopic UB outgrowth in Robo2PB/+Gen1PB/+ mice. Furthermore, embryonic kidney mesenchymal levels of p-ERK were significantly decreased on day E11.5 after U0126 treatment, along with decreased cell proliferation index PHH3 and ETV5 expression. Collectively, Gen1 and Robo2 exacerbated the CAKUT phenotype in Robo2PB/+Gen1PB/+ mice through the MAPK/ERK pathway, increasing proliferation and ectopic UB outgrowth.
Collapse
Affiliation(s)
- Xuanjin Du
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Minghui Yu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Haixin Ju
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Shanshan Xue
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Yaxin Li
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China
| | - Xiaohui Wu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China; State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200433, China.
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China.
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Fudan University, Shanghai, 201102, China.
| |
Collapse
|
2
|
Münch J, Engesser M, Schönauer R, Hamm JA, Hartig C, Hantmann E, Akay G, Pehlivan D, Mitani T, Coban Akdemir Z, Tüysüz B, Shirakawa T, Dateki S, Claus LR, van Eerde AM, Smol T, Devisme L, Franquet H, Attié-Bitach T, Wagner T, Bergmann C, Höhn AK, Shril S, Pollack A, Wenger T, Scott AA, Paolucci S, Buchan J, Gabriel GC, Posey JE, Lupski JR, Petit F, McCarthy AA, Pazour GJ, Lo CW, Popp B, Halbritter J. Biallelic pathogenic variants in roundabout guidance receptor 1 associate with syndromic congenital anomalies of the kidney and urinary tract. Kidney Int 2022; 101:1039-1053. [PMID: 35227688 PMCID: PMC10010616 DOI: 10.1016/j.kint.2022.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 11/16/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) represent the most common cause of chronic kidney failure in children. Despite growing knowledge of the genetic causes of CAKUT, the majority of cases remain etiologically unsolved. Genetic alterations in roundabout guidance receptor 1 (ROBO1) have been associated with neuronal and cardiac developmental defects in living individuals. Although Slit-Robo signaling is pivotal for kidney development, diagnostic ROBO1 variants have not been reported in viable CAKUT to date. By next-generation-sequencing methods, we identified six unrelated individuals and two non-viable fetuses with biallelic truncating or combined missense and truncating variants in ROBO1. Kidney and genitourinary manifestation included unilateral or bilateral kidney agenesis, vesicoureteral junction obstruction, vesicoureteral reflux, posterior urethral valve, genital malformation, and increased kidney echogenicity. Further clinical characteristics were remarkably heterogeneous, including neurodevelopmental defects, intellectual impairment, cerebral malformations, eye anomalies, and cardiac defects. By in silico analysis, we determined the functional significance of identified missense variants and observed absence of kidney ROBO1 expression in both human and murine mutant tissues. While its expression in multiple tissues may explain heterogeneous organ involvement, variability of the kidney disease suggests gene dosage effects due to a combination of null alleles with mild hypomorphic alleles. Thus, comprehensive genetic analysis in CAKUT should include ROBO1 as a new cause of recessively inherited disease. Hence, in patients with already established ROBO1-associated cardiac or neuronal disorders, screening for kidney involvement is indicated.
Collapse
Affiliation(s)
- Johannes Münch
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Marie Engesser
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ria Schönauer
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - J Austin Hamm
- East Tennessee Children's Hospital, Genetic Center, Knoxville, Tennessee, USA
| | - Christin Hartig
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Elena Hantmann
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Pediatrics, University of Utah, Salt Lake, Utah, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Hospital, Houston, Texas, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Department of Epidemiology, Human Genetics, and Environmental Sciences, Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
| | | | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Laura R Claus
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Thomas Smol
- Centre Hospitalier Universitaire de Lille, Institut de Génétique Médicale, Lille, France
| | - Louise Devisme
- Centre Hospitalier Universitaire de Lille, Institut de Pathologie, Lille, France
| | - Hélène Franquet
- Centre Hospitalier Universitaire de Lille, Institut de Pathologie, Lille, France
| | - Tania Attié-Bitach
- Laboratoire de biologie médicale multisites SeqOIA, Paris, France; Service de Médecine Génomique des Maladies Rares, APHP.Centre, Université de Paris, Paris, France
| | - Timo Wagner
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany; Department of Medicine, Nephrology, University Hospital Freiburg, Freiburg, Germany
| | - Anne Kathrin Höhn
- Division of Pathology, University of Leipzig Medical Center, Leipzig, Germany
| | - Shirlee Shril
- Division of Nephrology, Boston Children's Hospital, Boston, USA
| | - Ari Pollack
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Tara Wenger
- Division of Genetic Medicine, University of Washington, Seattle, Washington, USA
| | - Abbey A Scott
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Sarah Paolucci
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Jillian Buchan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA; Texas Children's Hospital, Houston, Texas, USA; Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Florence Petit
- Centre Hospitalier Universitaire de Lille, Clinique de Génétique Guy Fontaine, Lille, France
| | | | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | - Bernt Popp
- Institute for Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.
| | - Jan Halbritter
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
3
|
Li Y, Yu M, Tan L, Xue S, Du X, Wu X, Xu H, Shen Q. Robo2 and Gen1 Coregulate Ureteric Budding by Activating the MAPK/ERK Signaling Pathway in Mice. Front Med (Lausanne) 2022; 8:807898. [PMID: 35071283 PMCID: PMC8766746 DOI: 10.3389/fmed.2021.807898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are some of the most common developmental defects and have a complicated etiology, indicating an interaction of (epi-) genetic and environmental factors. Single gene mutations and copy number variations (CNVs) do not explain most cases of CAKUT, and simultaneous contributions of more than one gene (di-, oligo-, or polygenic effects; i.e., complex genetics) may lead to the pathogenesis of CAKUT. Robo2 plays a key role in regulating ureteric bud (UB) formation in the embryo, with mutations leading to supernumerary kidneys. Gen1 is a candidate gene associated with CAKUT because of its important role in early metanephric development in mice. We established a mouse model with double disruption of Robo2 and Gen1 using a piggyBac transposon and found that double gene mutation led to significantly increased CAKUT phenotypes in Robo2PB/+Gen1PB/+ mouse offspring, especially a duplicated collecting system. Increased ectopic UB formation was observed in the Robo2PB/+Gen1PB/+ mice during the embryonic period. Robo2 and Gen1 exert synergistic effects on mouse kidney development, promoting cell proliferation by activating the GDNF/RET pathway and downstream MAPK/ERK signaling. Our findings provide a disease model for CAKUT as an oligogenic disorder.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Minghui Yu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lihong Tan
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Shanshan Xue
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xuanjin Du
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Collaborative Innovation Center of Genetics and Development, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Yu M, Tan L, Li Y, Chen J, Zhai Y, Rao J, Fang X, Wu X, Xu H, Shen Q. Intrauterine low-protein diet aggravates developmental abnormalities of the urinary system via the Akt/Creb3 pathway in Robo2 mutant mice. Am J Physiol Renal Physiol 2019; 318:F43-F52. [PMID: 31630547 DOI: 10.1152/ajprenal.00405.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The offspring of Robo2 mutant mice usually present with variable phenotypes of congenital anomalies of the kidney and urinary tract (CAKUT). An intrauterine low-protein diet can also cause CAKUT in offspring, dominated by the duplicated collecting system phenotype. A single genetic or environment factor can only partially explain the pathogenesis of CAKUT. The present study aimed to establish an intrauterine low-protein diet roundabout 2 (Robo2) mutant mouse model and found that the intrauterine low-protein diet led to significantly increased CAKUT phenotypes in Robo2PB/+ mice offspring, dominant by a duplicated collecting system. At the same time, more ectopic and lower located ureteric buds (UBs) were observed in the intrauterine low-protein diet-fed Robo2 mutant mouse model, and the number of UB branches was reduced in the serum-free culture. During UB protrusion, intrauterine low-protein diet reduced the expression of Slit2/Robo2 in Robo2 mutant mice and affected the expression of glial cell-derived neurotrophic factor/Ret, which is a key molecule for metanephric development, with increasing phospho-Akt and phospho-cAMP responsive element-binding protein 3 activity and a reduction of apoptotic cells in embryonic day 11.5 UB tissues. The mechanism by which an intrauterine low-protein diet aggravates CAKUT in Robo2 mutant mice may be related to the disruption of Akt/cAMP responsive element-binding protein 3 signaling and a reduction in apoptosis in UB tissue.
Collapse
Affiliation(s)
- Minghui Yu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Lihong Tan
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Yaxin Li
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jing Chen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Yihui Zhai
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaoyan Fang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Xiaohui Wu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China.,State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
| |
Collapse
|
5
|
Tham MS, Smyth IM. Cellular and molecular determinants of normal and abnormal kidney development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e338. [DOI: 10.1002/wdev.338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Ming S. Tham
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| | - Ian M. Smyth
- Department of Anatomy and Developmental Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
- Department of Biochemistry and Molecular Biology Monash Biomedicine Discovery Institute, Monash University Melbourne Victoria Australia
| |
Collapse
|
6
|
Liu M, Ru Y, Gu Y, Tang J, Zhang T, Wu J, Yu F, Yuan Y, Xu C, Wang J, Shi H. Disruption of Ssp411 causes impaired sperm head formation and male sterility in mice. Biochim Biophys Acta Gen Subj 2017; 1862:660-668. [PMID: 29247744 DOI: 10.1016/j.bbagen.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously cloned the Ssp411 gene. We found that the Ssp411 protein is predominantly expressed in elongated spermatids in the rat testis in a stage-dependent manner. Although our findings strongly suggested that Ssp411 might play an important role in mammalian spermatogenesis, this hypothesis has not been studied. METHODS We first used real-time PCR, Western blotting and immunohistochemistry to confirm that the expression pattern of Ssp411 in several murine tissues is similar to its expression pattern in corresponding rat tissues. To better understand the roles of Ssp411 in male reproduction in vivo, we identified and characterized an Ssp411 expression-disrupted murine strain (Ssp411PB/PB) that was generated by piggyBac (PB) transposon insertion. We studied Ssp411-interacting proteins using proteome microarray, co-IP and GST pull-down assay. RESULTS Both Ssp411 mRNA and protein were detected exclusively in spermatids after step 9 during spermiogenesis in testis. Phenotypic analysis suggested that only Ssp411PB/PB males are sterile. These males have smaller testes, reduced sperm counts, decreased sperm motility and deformed spermatozoa. Microscopy analysis indicated that the manchette, a structurally reshaped sperm head, is aberrant in Ssp411PB/PB spermatids. The results of proteome microarray analysis and GST pull-down assays suggested that Ssp411 participates the ubiquitin-proteasome system by interacting with PSMC3. This has been reported to be manchette-associated and important for the head shaping of spermatids. CONCLUSIONS Our study suggested that Ssp411 is required for spermiogenesis. It seems to play a role in sperm head shaping. The lack of Ssp411 causes sperm deformation and results in male infertility. GENERAL SIGNIFICANCE Ssp411PB/PB mouse strain is an animal model of idiopathic oligoasthenoteratozoospermia (iOAT), and the gene may represent a therapeutic target for iOAT patients.
Collapse
Affiliation(s)
- Miao Liu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Yanfei Ru
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Yihua Gu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Jianan Tang
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Tiancheng Zhang
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Jun Wu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Fudong Yu
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Yao Yuan
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China
| | - Chen Xu
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jian Wang
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China.
| | - Huijuan Shi
- NHFPC Key Lab of Reproduction Regulation, SIPPR, Pharmacy School, Fudan University, China.
| |
Collapse
|