1
|
Moghrabi S, Abdlkadir AS, Al-Hajaj N, Gnanasegaran G, Kumar R, Syed G, Bozkurt MF, Shukri S, Obeidat S, Khalaf A, Shahait M, Al-Nabhani K, Al-Ibraheem A. A New Era for PET/CT: Applications in Non-Tumorous Renal Pathologies. J Clin Med 2024; 13:4632. [PMID: 39200774 PMCID: PMC11355182 DOI: 10.3390/jcm13164632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Non-tumorous kidney diseases include a variety of conditions affecting both the structure and function of the kidneys, thereby causing a range of health-related problems. Positron emission tomography/computed tomography (PET/CT) has emerged as a potential diagnostic tool, offering a multifaceted approach to evaluating non-tumorous kidney diseases. Its clinical significance extends beyond its conventional role in cancer imaging, enabling a comprehensive assessment of renal structure and function. This review explores the diverse applications of PET/CT imaging in the evaluation of non-cancerous kidney diseases. It examines PET/CT's role in assessing acute kidney injuries, including acute pyelonephritis and other forms of nephritis, as well as chronic conditions such as immune complex-mediated glomerulonephritis and chronic kidney disease. Additionally, the review delves into PET/CT's utility in evaluating complications in renal transplant recipients, identifying renal histiocytosis and detecting renal amyloidosis. The current review aims to promote further research and technological advancements to popularize PET/CT's clinical utility in diagnosing and treating non-tumorous kidney diseases.
Collapse
Affiliation(s)
- Serin Moghrabi
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
| | - Ahmed Saad Abdlkadir
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
| | - Nabeela Al-Hajaj
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
| | - Gopinath Gnanasegaran
- Department of Nuclear Medicine, Royal Free London NHS Foundation Trust, London NW3 2QG, UK;
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110608, India;
| | - Ghulam Syed
- Department of Nuclear Medicine, National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Murat Fani Bozkurt
- Department of Nuclear Medicine, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey;
| | - Saad Shukri
- Al-Razi Outpatient Clinic of Internal Medicine, Baghdad 10044, Iraq;
| | - Shahed Obeidat
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
| | - Aysar Khalaf
- Department of Nuclear Medicine, Warith International Cancer Institute, Karbala 56001, Iraq;
| | - Mohammed Shahait
- Surgery Department, Clemenceau Medical Center, Dubai 6869, United Arab Emirates;
| | | | - Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Amman 11941, Jordan; (S.M.); (A.S.A.); (N.A.-H.); (S.O.)
- School of Medicine, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Courchesne M, Manrique G, Bernier L, Moussa L, Cresson J, Gutzeit A, Froehlich JM, Koh DM, Chartrand-Lefebvre C, Matoori S. Gender Differences in Pharmacokinetics: A Perspective on Contrast Agents. ACS Pharmacol Transl Sci 2024; 7:8-17. [PMID: 38230293 PMCID: PMC10789139 DOI: 10.1021/acsptsci.3c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Gender is an important risk factor for adverse drug reactions. Women report significantly more adverse drug reactions than men. There is a growing consensus that gender differences in drug PK is a main contributor to higher drug toxicity in women. These differences stem from physiological differences (body composition, plasma protein concentrations, and liver and kidney function), drug interactions, and comorbidities. Contrast agents are widely used to enhance diagnostic performance in computed tomography and magnetic resonance imaging. Despite their broad use, these contrast agents can lead to important adverse reactions including hypersensitivity reactions, nephropathy, and hyperthyroidism. Importantly, female gender is one of the main risk factors for contrast agent toxicity. As these adverse reactions may be related to gender differences in PK, this perspective aims to describe distribution and elimination pathways of commonly used contrast agents and to critically discuss gender differences in these processes.
Collapse
Affiliation(s)
- Myriam Courchesne
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Gabriela Manrique
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Laurie Bernier
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Leen Moussa
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| | - Jeanne Cresson
- Clinical
Research Group, Klus Apotheke Zurich, 8032 Zurich, Switzerland
| | - Andreas Gutzeit
- Department
of Health Sciences and Medicine, University
of Lucerne, Frohburgstaße 3, 6002 Luzern, Switzerland
- Institute
of Radiology and Nuclear Medicine and Breast Center St. Anna, Hirslanden Klinik St. Anna, 6006 Lucerne, Switzerland
- Department
of Radiology, Paracelsus Medical University, 5020 Salzburg, Austria
| | | | - Dow-Mu Koh
- Cancer Research
UK Clinical Magnetic Resonance Research Group, Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom
| | - Carl Chartrand-Lefebvre
- Radiology
Department, Centre Hospitalier de l’Université
de Montréal (CHUM), Montreal, Quebec H2X 3E4, Canada
- Centre
de Recherche du Centre Hospitalier de l’Université de
Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Simon Matoori
- Faculté
de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
3
|
Mahalwar G, Mathew RO, Rangaswami J. Sodium-glucose cotransporter 2 inhibitors and cardiorenal outcomes in kidney transplantation. Curr Opin Nephrol Hypertens 2024; 33:53-60. [PMID: 38014999 DOI: 10.1097/mnh.0000000000000948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the current evidence regarding cardiovascular and kidney outcomes in patients who undergo treatment with sodium-glucose cotransporter 2 inhibitors (SGLT2i) post kidney transplantation. RECENT FINDINGS Summary findings from individual studies included in this review showed largely favorable results in the kidney transplant recipients (KTRs) being treated with SGLT2i.These outcomes included parameters such as allograft function, glycemic control, proteinuria, blood pressure, weight loss and safety profile, among others. Almost all the studies reported an initial 'dip' in eGFR, followed by recovery, after the initiation of SGLT2i treatment. None of the studies reported significant interaction of SGLT2i with immunosuppressive medications. The most common adverse effects noted in these studies were infection-related including UTI and genital mycosis. None of the studies reported acute graft rejection attributable to SGLT2i therapy. SUMMARY SGLT2i can play a significant role in improving health outcomes in KTRs. However, clinical trials with larger representation of KTRs longer follow-up period are needed to draw more substantial conclusions.
Collapse
Affiliation(s)
- Gauranga Mahalwar
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Roy O Mathew
- Department of Nephrology, Loma Linda VA Healthcare System, Loma Linda
- Loma Linda University School of Medicine, Loma Linda, California
| | - Janani Rangaswami
- Department of Nephrology, Washington DC Veterans Affairs Medical Center
- George Washington University School of Medicine and Health Sciences, Washington DC, USA
| |
Collapse
|
4
|
Fiala A, Breitkopf R, Sinner B, Mathis S, Martini J. [Anesthesia for organ transplant patients]. DIE ANAESTHESIOLOGIE 2023; 72:773-783. [PMID: 37874343 PMCID: PMC10615924 DOI: 10.1007/s00101-023-01332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 10/25/2023]
Abstract
Organ transplant patients who must undergo nontransplant surgical interventions can be challenging for the anesthesiologists in charge. On the one hand, it is important to carefully monitor the graft function in the perioperative period with respect to the occurrence of a possible rejection reaction. On the other hand, the ongoing immunosuppression may have to be adapted to the perioperative requirements in terms of the active substance and the route of administration, the resulting increased risk of infection and possible side effects (e.g., myelosuppression, nephrotoxicity and impairment of wound healing) must be included in the perioperative treatment concept. Furthermore, possible persistent comorbidities of the underlying disease and physiological peculiarities as a result of the organ transplantation must be taken into account. Support can be obtained from the expertise of the respective transplantation center.
Collapse
Affiliation(s)
- Anna Fiala
- Universitätsklinik für Anästhesie und Intensivmedizin, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Robert Breitkopf
- Universitätsklinik für Anästhesie und Intensivmedizin, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich.
| | - Barbara Sinner
- Universitätsklinik für Anästhesie und Intensivmedizin, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Simon Mathis
- Universitätsklinik für Anästhesie und Intensivmedizin, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| | - Judith Martini
- Universitätsklinik für Anästhesie und Intensivmedizin, Medizinische Universität Innsbruck, Anichstraße 35, 6020, Innsbruck, Österreich
| |
Collapse
|
5
|
Päivärinta J, Anastasiou IA, Koivuviita N, Sharma K, Nuutila P, Ferrannini E, Solini A, Rebelos E. Renal Perfusion, Oxygenation and Metabolism: The Role of Imaging. J Clin Med 2023; 12:5141. [PMID: 37568543 PMCID: PMC10420088 DOI: 10.3390/jcm12155141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Thanks to technical advances in the field of medical imaging, it is now possible to study key features of renal anatomy and physiology, but so far poorly explored due to the inherent difficulties in studying both the metabolism and vasculature of the human kidney. In this narrative review, we provide an overview of recent research findings on renal perfusion, oxygenation, and substrate uptake. Most studies evaluating renal perfusion with positron emission tomography (PET) have been performed in healthy controls, and specific target populations like obese individuals or patients with renovascular disease and chronic kidney disease (CKD) have rarely been assessed. Functional magnetic resonance (fMRI) has also been used to study renal perfusion in CKD patients, and recent studies have addressed the kidney hemodynamic effects of therapeutic agents such as glucagon-like receptor agonists (GLP-1RA) and sodium-glucose co-transporter 2 inhibitors (SGLT2-i) in an attempt to characterise the mechanisms leading to their nephroprotective effects. The few available studies on renal substrate uptake are discussed. In the near future, these imaging modalities will hopefully become widely available with researchers more acquainted with them, gaining insights into the complex renal pathophysiology in acute and chronic diseases.
Collapse
Affiliation(s)
- Johanna Päivärinta
- Department of Medicine, Division of Nephrology, Turku University Hospital, 20521 Turku, Finland; (J.P.); (N.K.)
| | - Ioanna A. Anastasiou
- 1st Department of Propaedeutic and Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Niina Koivuviita
- Department of Medicine, Division of Nephrology, Turku University Hospital, 20521 Turku, Finland; (J.P.); (N.K.)
| | - Kanishka Sharma
- Department of Imaging, Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK;
| | - Pirjo Nuutila
- Turku PET Centre, 20521 Turku, Finland;
- Department of Endocrinology, Turku University Hospital, 20521 Turku, Finland
| | - Ele Ferrannini
- CNR, Institute of Clinical Physiology, 56124 Pisa, Italy;
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, 56124 Pisa, Italy;
| | - Eleni Rebelos
- Turku PET Centre, 20521 Turku, Finland;
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
6
|
Yao Q, Wang C, Wang Y, Xiang W, Chen Y, Zhou Q, Chen J, Jiang H, Chen D. STXBP3 and GOT2 predict immunological activity in acute allograft rejection. Front Immunol 2022; 13:1025681. [PMID: 36532048 PMCID: PMC9751189 DOI: 10.3389/fimmu.2022.1025681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Background Acute allograft rejection (AR) following renal transplantation contributes to chronic rejection and allograft dysfunction. The current diagnosis of AR remains dependent on renal allograft biopsy which cannot immediately detect renal allograft injury in the presence of AR. In this study, sensitive biomarkers for AR diagnosis were investigated and developed to protect renal function. Methods We analyzed pre- and postoperative data from five databases combined with our own data to identify the key differently expressed genes (DEGs). Furthermore, we performed a bioinformatics analysis to determine the immune characteristics of DEGs. The expression of key DEGs was further confirmed using the real-time quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and immunohistochemical (IHC) staining in patients with AR. ROC curves analysis was used to estimate the performance of key DEGs in the early diagnosis of AR. Results We identified glutamic-oxaloacetic transaminase 2 (GOT2) and syntaxin binding protein 3 (STXBP3) as key DEGs. The higher expression of STXBP3 and GOT2 in patients with AR was confirmed using RT-qPCR, ELISA, and IHC staining. ROC curve analysis also showed favorable values of STXBP3 and GOT2 for the diagnosis of early stage AR. Conclusions STXBP3 and GOT2 could reflect the immunological status of patients with AR and have strong potential for the diagnosis of early-stage AR.
Collapse
Affiliation(s)
- Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenyu Xiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Yin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China,*Correspondence: Dajin Chen, ; Hong Jiang,
| | - Dajin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Institute of Nephropathy, Zhejiang University, Hangzhou, China,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China,*Correspondence: Dajin Chen, ; Hong Jiang,
| |
Collapse
|
7
|
The utilization of positron emission tomography in the evaluation of renal health and disease. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00469-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Abstract
Purpose
Positron emission tomography (PET) is a nuclear imaging technique that uses radiotracers to visualize metabolic processes of interest across different organs, to diagnose and manage diseases, and monitor therapeutic response. This systematic review aimed to characterize the value of PET for the assessment of renal metabolism and function in subjects with non-oncological metabolic disorders.
Methods
This review was conducted and reported in accordance with the PRISMA statement. Research articles reporting “kidney” or “renal” metabolism evaluated with PET imaging between 1980 and 2021 were systematically searched in Medline/PubMed, Science Direct, and the Cochrane Library. Search results were exported and stored in RefWorks, the duplicates were removed, and eligible studies were identified, evaluated, and summarized.
Results
Thirty reports met the inclusion criteria. The majority of the studies were prospective (73.33%, n = 22) in nature. The most utilized PET radiotracers were 15O-labeled radio water (H215O, n = 14) and 18F-fluorodeoxyglucose (18F-FDG, n = 8). Other radiotracers used in at least one study were 14(R,S)-(18)F-fluoro-6-thia-heptadecanoic acid (18F-FTHA), 18F-Sodium Fluoride (18F-NaF), 11C-acetate, 68-Gallium (68Ga), 13N-ammonia (13N-NH3), Rubidium-82 (82Rb), radiolabeled cationic ferritin (RadioCF), 11C‐para-aminobenzoic acid (11C-PABA), Gallium-68 pentixafor (68Ga-Pentixafor), 2-deoxy-2-F-fluoro-d-sorbitol (F-FDS) and 55Co-ethylene diamine tetra acetic acid (55Co-EDTA).
Conclusion
PET imaging provides an effective modality for evaluating a range of metabolic functions including glucose and fatty acid uptake, oxygen consumption and renal perfusion. Multiple positron emitting radiolabeled racers can be used for renal imaging in clinical settings. PET imaging thus holds the potential to improve the diagnosis of renal disorders, and to monitor disease progression and treatment response.
Collapse
|