1
|
Caparali EB, De Gregorio V, Barua M. Genetic Causes of Nephrotic Syndrome and Focal and Segmental Glomerulosclerosis. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:309-316. [PMID: 39084756 DOI: 10.1053/j.akdh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024]
Abstract
The field of nephrology has a long-standing interest in deciphering the genetic basis of nephrotic syndrome (NS), motivated by the mechanistic insights it provides in chronic kidney disease. The initial era of genetic studies solidified NS and the focal segmental glomerulosclerosis lesion as podocyte disorders. The likelihood of identifying a single gene (called monogenic) cause is higher if certain factors are present such as positive family history. Obtaining a monogenic diagnosis enables reproductive counseling and screening of family members. Now, with a new era of genomic studies facilitated by technological advances and the emergence of large genetically characterized cohorts, more insights are apparent. This includes the phenotypic breadth associated with disease genes, as evidenced in Alport syndrome and congenital NS of the Finnish type. Moreover, the underlying genetic architecture is more complex than previously appreciated, as shown by genome-wide association studies, suggesting that variants in multiple genes collectively influence risk. Achieving molecularly informed diagnoses also holds substantial potential for personalizing medicine, including the development of targeted therapeutics. Illustrative examples include coenzyme Q10 for ADCK4-associated NS and inaxaplin, a small molecule that inhibits apolipoprotein L1 channel activity, though larger studies are required to confirm benefit.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa De Gregorio
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Moumita Barua
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada; Division of Nephrology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
He X, Chen H, Liao M, Zhao X, Zhang D, Jiang M, Jiang Z. The role of CoQ10 in embryonic development. J Assist Reprod Genet 2024; 41:767-779. [PMID: 38372883 PMCID: PMC10957822 DOI: 10.1007/s10815-024-03052-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is a natural component widely present in the inner membrane of mitochondria. CoQ10 functions as a key cofactor for adenosine triphosphate (ATP) production and exhibits antioxidant properties in vivo. Mitochondria, as the energy supply center of cells, play a crucial role in germ cell maturation and embryonic development, a complicated process of cell division and cellular differentiation that transforms from a single cell (zygote) to a multicellular organism (fetus). Here, we discuss the effects of CoQ10 on oocyte maturation and the important role of CoQ10 in the growth of various organs during different stages of fetal development. These allowed us to gain a deeper understanding of the pathophysiology of embryonic development and the potential role of CoQ10 in improving fertility quality. They also provide a reference for further developing its application in clinical treatments.
Collapse
Affiliation(s)
- Xueke He
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Minjun Liao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaomei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, China
| | - Dawei Zhang
- Group On the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Miao Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhisheng Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Postdoctoral Research Station of Basic Medicine, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, China
| |
Collapse
|
3
|
Neuroimaging in Primary Coenzyme-Q10-Deficiency Disorders. Antioxidants (Basel) 2023; 12:antiox12030718. [PMID: 36978966 PMCID: PMC10045115 DOI: 10.3390/antiox12030718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Coenzyme Q10 (CoQ10) is an endogenously synthesized lipid molecule. It is best known for its role as a cofactor within the mitochondrial respiratory chain where it functions in electron transfer and ATP synthesis. However, there are many other cellular pathways that also depend on the CoQ10 supply (redox homeostasis, ferroptosis and sulfide oxidation). The CoQ10 biosynthesis pathway consists of several enzymes, which are encoded by the nuclear DNA. The majority of these enzymes are responsible for modifications of the CoQ-head group (benzoquinone ring). Only three enzymes (PDSS1, PDSS2 and COQ2) are required for assembly and attachment of the polyisoprenoid side chain. The head-modifying enzymes may assemble into resolvable domains, representing COQ complexes. During the last two decades, numerous inborn errors in CoQ10 biosynthesis enzymes have been identified. Thus far, 11 disease genes are known (PDSS1, PDSS2, COQ2, COQ4, COQ5, COQ6, COQ7, COQ8A, COQ8B, COQ9 and HPDL). Disease onset is highly variable and ranges from the neonatal period to late adulthood. CoQ10 deficiency exerts detrimental effects on the nervous system. Potential consequences are neuronal death, neuroinflammation and cerebral gliosis. Clinical features include encephalopathy, regression, movement disorders, epilepsy and intellectual disability. Brain magnetic resonance imaging (MRI) is the most important tool for diagnostic evaluation of neurological damage in individuals with CoQ10 deficiency. However, due to the rarity of the different gene defects, information on disease manifestations within the central nervous system is scarce. This review aims to provide an overview of brain MRI patterns observed in primary CoQ10 biosynthesis disorders and to highlight disease-specific findings.
Collapse
|
4
|
Liang R, Chen X, Zhang Y, Law CF, Yu S, Jiao J, Yang Q, Wu D, Zhang G, Chen H, Wang M, Yang H, Wang A. Clinical features and gene variation analysis of COQ8B nephropathy: Report of seven cases. Front Pediatr 2022; 10:1030191. [PMID: 36843884 PMCID: PMC9948246 DOI: 10.3389/fped.2022.1030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/02/2022] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE COQ8B nephropathy is a relatively rare autosomal recessive kidney disease characterized by proteinuria and a progressive deterioration of renal function, eventually leading to end-stage renal disease (ESRD). The objective is to study the characteristics and correlation between the genotype and the clinical phenotype of COQ8B nephropathy. METHODS This is a retrospective study focusing on the clinical characteristics of seven COQ8B nephropathy patients diagnosed by gene sequencing. Basic clinical information, clinical manifestations, examinations, imaging, genomes, pathology, treatments, and prognosis of the patients were reviewed. RESULTS Of the seven patients, two were male children and five were female children. The median age at the disease onset was 5 years and 3 months. The initial main clinical manifestations were proteinuria and renal insufficiency. Four patients had severe proteinuria, four had focal segmental glomerulosclerosis (FSGS) diagnosed by a renal biopsy, and two had nephrocalcinosis after an ultrasound was performed on them. There were no other clinical manifestations such as neuropathy, muscle atrophy, and so on in all of them. Their gene mutations were all exon variants, which were classified as heterozygous or homozygous variants by performing family verification analysis. Compound heterozygous variants were predominant in all, and all gene variants were inherited from their parents. One novel mutation, c.1465c>t, was found in this study. This gene mutation resulted from changes in the amino acid sequence, thus leading to an abnormal protein structure. Two patients with early diagnosis of COQ8B nephropathy presented with no renal insufficiency and were treated with oral coenzyme Q10 (CoQ10), and they maintained normal renal function. For the remaining five who were treated with CoQ10 following renal insufficiency, the deterioration of renal function could not be reversed, and they progressed to ESRD within a short time (median time: 7 months). A follow-up of these patients showed normal renal function with a CoQ10 supplement. CONCLUSION For unexplained proteinuria, renal insufficiency, or steroid-resistant nephrotic syndrome, gene sequencing should be considered, in addition to renal biopsy, as early as possible. Timely diagnosis of COQ8B nephropathy and early supplementation of sufficient CoQ10 can help control the progression of the disease and significantly improve the prognosis.
Collapse
Affiliation(s)
- Rui Liang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xuelan Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ying Zhang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Chak-Fun Law
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University Science and Technology, Taipa, China
| | - Sijie Yu
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jia Jiao
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qin Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Daoqi Wu
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Han Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mo Wang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Haiping Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Anshuo Wang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
5
|
Zeng S, Xu Y, Cheng C, Yu N, Liu L, Mo Y, Chen L, Jiang X. COQ8B glomerular nephropathy: Outcomes after kidney transplantation and analysis of characteristics in Chinese population. Front Pediatr 2022; 10:938863. [PMID: 36034551 PMCID: PMC9399612 DOI: 10.3389/fped.2022.938863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mutation in the COQ8B gene can cause COQ8B glomerular nephropathy (COQ8B-GN), which is rare and associated with steroid-resistant nephrotic syndrome (SRNS) as well as rapid progression to end-stage renal disease (ESRD). The aim of this study was to analyze the prognosis and recurrence risk of COQ8B-GN in patients after kidney transplantation (KTx) and summarize the characteristics of the Chinese population. METHODS A retrospective study included four cases treated in our hospital with a diagnosis of COQ8B-GN. Chinese and foreign studies were searched from database inception to February 2022. RESULTS A total of four cases were included, with the age of onset ranging from 4 to 9 years. The initial presentations were SRNS and asymptomatic proteinuria. Only one had an extrarenal manifestation (thyroid cyst). All patients progressed to ESRD at a mean time of 42 months after onset. With a total follow-up time ranging from 12 to 87 months, three of them had received transplantation. While one case needed a second KTx due to graft failure caused by chronic rejection, two recipients had excellent graft function. No recurrence in allograft was observed. There have been 18 cases of KTx recipients reported globally with follow-up information. Except for two cases of graft failure caused by hyperacute rejection and chronic rejection, respectively, the rest all had good graft function without recurrence. In addition, 44 cases of COQ8B-GN in the Chinese population were identified. At the onset, 75% of the patients were aged ≤10 years with initial symptoms of asymptomatic proteinuria, nephrotic syndrome (NS), or SRNS. By the time of literature publication, 59% of patients had progressed to ESRD (mean age of 10.3 ± 3.6 years). The median time from onset to ESRD was 21 months. Renal pathology mainly showed focal segmental glomerulosclerosis (FSGS), accounting for 61.8% of all biopsies, followed by mesangial proliferative glomerulonephritis (20.6%). The first three prevalent mutations in the COQ8B gene among the Chinese population were c. 748G>C, c. 737G>A, and c. 532C>T. CONCLUSION COQ8B-GN in the Chinese population may present with asymptomatic proteinuria, NS, or SRNS initially, with most onsets before the age of 10 years. A lot of patients progress to ESRD in early adolescence. FSGS on biopsy and c. 748G>C in the genetic test are the most frequently seen in Chinese COQ8B-GN patients. KTx is feasible for patients with ESRD due to the low risk of recurrence, but we should pay attention to graft rejection.
Collapse
Affiliation(s)
- Shuhan Zeng
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Xu
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cheng Cheng
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nannan Yu
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Mo
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lizhi Chen
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Fareed M, Makkar V, Angral R, Afzal M, Singh G. Whole-exome sequencing reveals a novel homozygous mutation in the COQ8B gene associated with nephrotic syndrome. Sci Rep 2021; 11:13337. [PMID: 34172776 PMCID: PMC8233304 DOI: 10.1038/s41598-021-92023-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
Nephrotic syndrome arising from monogenic mutations differs substantially from acquired ones in their clinical prognosis, progression, and disease management. Several pathogenic mutations in the COQ8B gene are known to cause nephrotic syndrome. Here, we used the whole-exome sequencing (WES) technology to decipher the genetic cause of nephrotic syndrome (CKD stage-V) in a large affected consanguineous family. Our study exposed a novel missense homozygous mutation NC_000019.9:g.41209497C > T; NM_024876.4:c.748G > A; NP_079152.3:p.(Asp250Asn) in the 9th exon of the COQ8B gene, co-segregated well with the disease phenotype. Our study provides the first insight into this homozygous condition, which has not been previously reported in 1000Genome, ClinVar, ExAC, and genomAD databases. In addition to the pathogenic COQ8B variant, the WES data also revealed some novel and recurrent mutations in the GLA, NUP107, COQ2, COQ6, COQ7 and COQ9 genes. The novel variants observed in this study have been submitted to the ClinVar database and are publicly available online with the accessions: SCV001451361.1, SCV001451725.1 and SCV001451724.1. Based on the patient's clinical history and genomic data with in silico validation, we conclude that pathogenic mutation in the COQ8B gene was causing kidney failure in an autosomal recessive manner. We recommend WES technology for genetic testing in such a consanguineous family to not only prevent the future generation, but early detection can help in disease management and therapeutic interventions.
Collapse
Affiliation(s)
- Mohd Fareed
- PK-PD Formulation and Toxicology Division, CSIR Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India. .,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Vikas Makkar
- Department of Nephrology, Dayanand Medical College and Hospital, Ludhiana, Punjab, 141001, India
| | - Ravi Angral
- Visiting Consultant Renal Transplant, Dayanand Medical College and Hospital, Ludhiana, Punjab, 141001, India
| | - Mohammad Afzal
- Human Genetics & Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Gurdarshan Singh
- PK-PD Formulation and Toxicology Division, CSIR Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
7
|
Alcázar-Fabra M, Rodríguez-Sánchez F, Trevisson E, Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med 2021; 167:141-180. [PMID: 33677064 DOI: 10.1016/j.freeradbiomed.2021.02.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Primary Coenzyme Q (CoQ) deficiencies are clinically heterogeneous conditions and lack clear genotype-phenotype correlations, complicating diagnosis and prognostic assessment. Here we present a compilation of all the symptoms and patients with primary CoQ deficiency described in the literature so far and analyse the most common clinical manifestations associated with pathogenic variants identified in the different COQ genes. In addition, we identified new associations between the age of onset of symptoms and different pathogenic variants, which could help to a better diagnosis and guided treatment. To make these results useable for clinicians, we created an online platform (https://coenzymeQbiology.github.io/clinic-CoQ-deficiency) about clinical manifestations of primary CoQ deficiency that will be periodically updated to incorporate new information published in the literature. Since CoQ primary deficiency is a rare disease, the available data are still limited, but as new patients are added over time, this tool could become a key resource for a more efficient diagnosis of this pathology.
Collapse
Affiliation(s)
- María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain
| | | | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, 35128, Italy; Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, 35128, Italy.
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain.
| |
Collapse
|