1
|
van den Bosch AMR, van der Poel M, Fransen NL, Vincenten MCJ, Bobeldijk AM, Jongejan A, Engelenburg HJ, Moerland PD, Smolders J, Huitinga I, Hamann J. Profiling of microglia nodules in multiple sclerosis reveals propensity for lesion formation. Nat Commun 2024; 15:1667. [PMID: 38396116 PMCID: PMC10891081 DOI: 10.1038/s41467-024-46068-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Microglia nodules (HLA-DR+ cell clusters) are associated with brain pathology. In this post-mortem study, we investigated whether they represent the first stage of multiple sclerosis (MS) lesion formation. We show that microglia nodules are associated with more severe MS pathology. Compared to microglia nodules in stroke, those in MS show enhanced expression of genes previously found upregulated in MS lesions. Furthermore, genes associated with lipid metabolism, presence of T and B cells, production of immunoglobulins and cytokines, activation of the complement cascade, and metabolic stress are upregulated in microglia nodules in MS. Compared to stroke, they more frequently phagocytose oxidized phospholipids and possess a more tubular mitochondrial network. Strikingly, in MS, some microglia nodules encapsulate partially demyelinated axons. Taken together, we propose that activation of microglia nodules in MS by cytokines and immunoglobulins, together with phagocytosis of oxidized phospholipids, may lead to a microglia phenotype prone to MS lesion formation.
Collapse
Affiliation(s)
- Aletta M R van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | - Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nina L Fransen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Maria C J Vincenten
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Anneleen M Bobeldijk
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hendrik J Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Perry D Moerland
- Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- MS Center ErasMS, Department of Neurology and Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
van Noort JM, Baker D, Kipp M, Amor S. The pathogenesis of multiple sclerosis: a series of unfortunate events. Clin Exp Immunol 2023; 214:1-17. [PMID: 37410892 PMCID: PMC10711360 DOI: 10.1093/cei/uxad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/10/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Multiple sclerosis (MS) is characterized by the chronic inflammatory destruction of myelinated axons in the central nervous system. Several ideas have been put forward to clarify the roles of the peripheral immune system and neurodegenerative events in such destruction. Yet, none of the resulting models appears to be consistent with all the experimental evidence. They also do not answer the question of why MS is exclusively seen in humans, how Epstein-Barr virus contributes to its development but does not immediately trigger it, and why optic neuritis is such a frequent early manifestation in MS. Here we describe a scenario for the development of MS that unifies existing experimental evidence as well as answers the above questions. We propose that all manifestations of MS are caused by a series of unfortunate events that usually unfold over a longer period of time after a primary EBV infection and involve periodic weakening of the blood-brain barrier, antibody-mediated CNS disturbances, accumulation of the oligodendrocyte stress protein αB-crystallin and self-sustaining inflammatory damage.
Collapse
Affiliation(s)
- Johannes M van Noort
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
3
|
ENT-A010, a Novel Steroid Derivative, Displays Neuroprotective Functions and Modulates Microglial Responses. Biomolecules 2022; 12:biom12030424. [PMID: 35327616 PMCID: PMC8946810 DOI: 10.3390/biom12030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/17/2022] Open
Abstract
Tackling neurodegeneration and neuroinflammation is particularly challenging due to the complexity of central nervous system (CNS) disorders, as well as the limited drug accessibility to the brain. The activation of tropomyosin-related kinase A (TRKA) receptor signaling by the nerve growth factor (NGF) or the neurosteroid dehydroepiandrosterone (DHEA) may combat neurodegeneration and regulate microglial function. In the present study, we synthesized a C-17-spiro-cyclopropyl DHEA derivative (ENT-A010), which was capable of activating TRKA. ENT-A010 protected PC12 cells against serum starvation-induced cell death, dorsal root ganglia (DRG) neurons against NGF deprivation-induced apoptosis and hippocampal neurons against Aβ-induced apoptosis. In addition, ENT-A010 pretreatment partially restored homeostatic features of microglia in the hippocampus of lipopolysaccharide (LPS)-treated mice, enhanced Aβ phagocytosis, and increased Ngf expression in microglia in vitro. In conclusion, the small molecule ENT-A010 elicited neuroprotective effects and modulated microglial function, thereby emerging as an interesting compound, which merits further study in the treatment of CNS disorders.
Collapse
|
4
|
Mestre L, Carrillo-Salinas FJ, Mecha M, Feliú A, Espejo C, Álvarez-Cermeño JC, Villar LM, Guaza C. Manipulation of Gut Microbiota Influences Immune Responses, Axon Preservation, and Motor Disability in a Model of Progressive Multiple Sclerosis. Front Immunol 2019; 10:1374. [PMID: 31258540 PMCID: PMC6587398 DOI: 10.3389/fimmu.2019.01374] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota dysbiosis has been implicated in MS and other immune diseases, although it remains unclear how manipulating the gut microbiota may affect the disease course. Using a well-established model of progressive MS triggered by intracranial infection with Theiler's murine encephalomyelitis virus (TMEV), we sought to determine whether dysbiosis induced by oral antibiotics (ABX) administered on pre-symptomatic and symptomatic phases of the disease influences its course. We also addressed the effects of microbiota recolonization after ABX withdrawn in the presence or absence of probiotics. Central and peripheral immunity, plasma acetate and butyrate levels, axon damage and motor disability were evaluated. The cocktail of ABX prevented motor dysfunction and limited axon damage in mice, which had fewer CD4+ and CD8+ T cells in the CNS, while gut microbiota recolonization worsened motor function and axonal integrity. The underlying mechanisms of ABX protective effects seem to involve CD4+CD39+ T cells and CD5+CD1d+ B cells into the CNS. In addition, microglia adopted a round amoeboid morphology associated to an anti-inflammatory gene profile in the spinal cord of TMEV mice administered ABX. The immune changes in the spleen and mesenteric lymph nodes were modest, yet ABX treatment of mice limited IL-17 production ex vivo. Collectively, our results provide evidence of the functional relevance of gut microbiota manipulation on the neurodegenerative state and disease severity in a model of progressive MS and reinforce the role of gut microbiota as target for MS treatment.
Collapse
Affiliation(s)
- Leyre Mestre
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | | | - Miriam Mecha
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Ana Feliú
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| | - Carmen Espejo
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain.,Servei de Neurología-Neuroimmunología, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José Carlos Álvarez-Cermeño
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain.,Immunology Department, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luisa María Villar
- Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain.,Immunology Department, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain.,Red Española de Esclerosis Múltiple (REEM), Barcelona, Spain
| |
Collapse
|
5
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
6
|
Tröscher AR, Wimmer I, Quemada-Garrido L, Köck U, Gessl D, Verberk SGS, Martin B, Lassmann H, Bien CG, Bauer J. Microglial nodules provide the environment for pathogenic T cells in human encephalitis. Acta Neuropathol 2019; 137:619-635. [PMID: 30663001 PMCID: PMC6426829 DOI: 10.1007/s00401-019-01958-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
Microglia nodule formation is a common feature in inflammatory brain diseases mediated by T lymphocytes such as viral and paraneoplastic encephalitis, multiple sclerosis, and Rasmussen encephalitis (RE). However, its role has not been fully understood yet. We hypothesized that, in RE, microglial nodules provide an environment for the initiation of the later dominating T-cell cytotoxicity. In RE stage 0, small primary microglia nodules could be identified in the absence of T cells. These primary nodules showed inflammasome activation and endosomal Toll-like receptor upregulation. In stage 1, T cells migrate into the parenchyma and intermingle with microglial cells, thereby forming secondary nodules in which neurons are destroyed. Whole-genome transcriptome analysis at this point showed upregulation of several inflammatory pathways including interferon signaling and major histocompatibility complex-I signaling. Inflammatory profiles, like the ones observed in RE, could be induced upon TLR3 stimulation in neonatal microglial cell cultures. Taken together, our results point towards activation of endosomal TLRs, resulting in increased interferon signaling, inflammasome activation, and chemokine upregulation as early steps in RE pathogenesis. This activity sets the scene for subsequent infiltration of T cells and destruction of neurons. Similar to RE, this microglial microenvironment might be a crucial step in other T-cell-mediated inflammatory brain diseases.
Collapse
Affiliation(s)
- Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Isabella Wimmer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Lucía Quemada-Garrido
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Denise Gessl
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Sanne G S Verberk
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Bethany Martin
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Christian G Bien
- Epilepsy Center Bethel, Krankenhaus Mara, Bielefeld, Germany
- Laboratory Krone, Bad Salzuflen, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Ibañez Rodriguez MP, Galiana MD, Rásmussen JA, Freites CL, Noctor SC, Muñoz EM. Differential response of pineal microglia to surgical versus pharmacological stimuli. J Comp Neurol 2018; 526:2462-2481. [PMID: 30246867 DOI: 10.1002/cne.24505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Microglial cells are one of the interstitial elements of the pineal gland (PG). We recently reported the pattern of microglia colonization and activation, and microglia-Pax6+ cell interactions during normal pineal ontogeny. Here, we describe the dynamics of microglia-Pax6+ cell associations and interactions after surgical or pharmacological manipulation. In adult rats, the superior cervical ganglia (SCG) were exposed, and either bilaterally excised (SCGx) or decentralized (SCGd). In the SCGx PGs, the density of Iba1+ microglia increased after surgery and returned to sham baseline levels 13 days later. Pineal microglia also responded to SCGd, a more subtle denervation. The number of clustered Iba1+ /PCNA+ /ED1+ microglia was higher 4 days after both surgeries compared to the sham-operated group. However, the number of Pax6+ /PCNA- cells and the percentage of Pax6+ cells contacted by and/or phagocytosed by microglia increased significantly only after SCGx. Separate groups of rats were treated with either bacterial lipopolysaccharides (LPS) or doxycycline (DOX) to activate or inhibit pineal microglia, respectively. Peripheral LPS administration caused an increase in the number of clustered Iba1+ /PCNA+ /ED1+ microglial cells, and in the percentage of Pax6+ cells associated with and/or engulfed by microglia. In the LPS-treated PGs, we also noted an increase in the number of PCNA+ cells that were Iba1- within the microglial cell clusters. The density of Pax6+ cells did not change after LPS treatment. DOX administration did not influence the parameters analyzed. These data suggest that pineal microglia are highly receptive cells capable of rapidly responding in a differential manner to surgical and pharmacological stimuli.
Collapse
Affiliation(s)
- María P Ibañez Rodriguez
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - María D Galiana
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Jorge A Rásmussen
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Carlos L Freites
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, School of Medicine Sacramento, California
| | - Estela M Muñoz
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| |
Collapse
|
8
|
't Hart BA, Laman JD, Kap YS. Merits and complexities of modeling multiple sclerosis in non-human primates: implications for drug discovery. Expert Opin Drug Discov 2018; 13:387-397. [PMID: 29465302 DOI: 10.1080/17460441.2018.1443075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The translation of scientific discoveries made in animal models into effective treatments for patients often fails, indicating that currently used disease models in preclinical research are insufficiently predictive for clinical success. An often-used model in the preclinical research of autoimmune neurological diseases, multiple sclerosis in particular, is experimental autoimmune encephalomyelitis (EAE). Most EAE models are based on genetically susceptible inbred/SPF mouse strains used at adolescent age (10-12 weeks), which lack exposure to genetic and microbial factors which shape the human immune system. Areas covered: Herein, the authors ask whether an EAE model in adult non-human primates from an outbred conventionally-housed colony could help bridge the translational gap between rodent EAE models and MS patients. Particularly, the authors discuss a novel and translationally relevant EAE model in common marmosets (Callithrix jacchus) that shares remarkable pathological similarity with MS. Expert opinion: The MS-like pathology in this model is caused by the interaction of effector memory T cells with B cells infected with the γ1-herpesvirus (CalHV3), both present in the pathogen-educated marmoset immune repertoire. The authors postulate that depletion of only the small subset (<0.05%) of CalHV3-infected B cells may be sufficient to limit chronic inflammatory demyelination.
Collapse
Affiliation(s)
- Bert A 't Hart
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands.,b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jon D Laman
- b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Yolanda S Kap
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| |
Collapse
|
9
|
Gerhauser I, Li L, Li D, Klein S, Elmarabet SA, Deschl U, Kalkuhl A, Baumgärtner W, Ulrich R, Beineke A. Dynamic changes and molecular analysis of cell death in the spinal cord of SJL mice infected with the BeAn strain of Theiler’s murine encephalomyelitis virus. Apoptosis 2018; 23:170-186. [DOI: 10.1007/s10495-018-1448-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
't Hart BA, Dunham J, Faber BW, Laman JD, van Horssen J, Bauer J, Kap YS. A B Cell-Driven Autoimmune Pathway Leading to Pathological Hallmarks of Progressive Multiple Sclerosis in the Marmoset Experimental Autoimmune Encephalomyelitis Model. Front Immunol 2017; 8:804. [PMID: 28744286 PMCID: PMC5504154 DOI: 10.3389/fimmu.2017.00804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
The absence of pathological hallmarks of progressive multiple sclerosis (MS) in commonly used rodent models of experimental autoimmune encephalomyelitis (EAE) hinders the development of adequate treatments for progressive disease. Work reviewed here shows that such hallmarks are present in the EAE model in marmoset monkeys (Callithrix jacchus). The minimal requirement for induction of progressive MS pathology is immunization with a synthetic peptide representing residues 34–56 from human myelin oligodendrocyte glycoprotein (MOG) formulated with a mineral oil [incomplete Freund’s adjuvant (IFA)]. Pathological aspects include demyelination of cortical gray matter with microglia activation, oxidative stress, and redistribution of iron. When the peptide is formulated in complete Freund’s adjuvant, which contains mycobacteria that relay strong activation signals to myeloid cells, oxidative damage pathways are strongly boosted leading to more intensive pathology. The proven absence of immune potentiating danger signals in the MOG34–56/IFA formulation implies that a narrow population of antigen-experienced T cells present in the monkey’s immune repertoire is activated. This novel pathway involves the interplay of lymphocryptovirus-infected B cells with MHC class Ib/Caja-E restricted CD8+ CD56+ cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands.,Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands
| | - Bart W Faber
- Department of Parasitology, Biomedical Primate Research Center, Rijswijk, Netherlands
| | - Jon D Laman
- Department of Neuroscience, University of Groningen, University Medical Center, Groningen, Netherlands.,MS Center Noord-Nederland, Groningen, Netherlands
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Brain Research Institute, Medical University Vienna, Vienna, Austria
| | - Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Center, Rijswijk, Netherlands
| |
Collapse
|
11
|
Xiao J, Yang R, Biswas S, Zhu Y, Qin X, Zhang M, Zhai L, Luo Y, He X, Mao C, Deng W. Neural Stem Cell-Based Regenerative Approaches for the Treatment of Multiple Sclerosis. Mol Neurobiol 2017; 55:3152-3171. [PMID: 28466274 DOI: 10.1007/s12035-017-0566-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 02/08/2023]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory, and demyelinating disorder of the central nervous system (CNS), which ultimately leads to axonal loss and permanent neurological disability. Current treatments for MS are largely comprised of medications that are either immunomodulatory or immunosuppressive and are aimed at reducing the frequency and intensity of relapses. Neural stem cells (NSCs) in the adult brain can differentiate into oligodendrocytes in a context-specific manner and are shown to be involved in the remyelination in these patients. NSCs may exert their beneficial effects not only through oligodendrocyte replacement but also by providing trophic support and immunomodulation, a phenomenon now known as "therapeutic plasticity." In this review, we first provided an update on the current knowledge regarding MS pathogenesis and the role of immune cells, microglia, and oligodendrocytes in MS disease progression. Next, we reviewed the current progress on research aimed toward stimulating endogenous NSC proliferation and differentiation to oligodendrocytes in vivo and in animal models of demyelination. In addition, we explored the neuroprotective and immunomodulatory effects of transplanted exogenous NSCs on T cell activation, microglial activation, and endogenous remyelination and their effects on the pathological process and prognosis in animal models of MS. Finally, we examined various protocols to generate genetically engineered NSCs as a potential therapy for MS. Overall, this review highlights the studies involving the immunomodulatory, neurotrophic, and regenerative effects of NSCs and novel methods aiming at stimulating the potential of NSCs for the treatment of MS.
Collapse
Affiliation(s)
- Juan Xiao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China.,Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Rongbing Yang
- Department of Biological Treatment, Handan Central Hospital, Handan, Hebei, China
| | - Sangita Biswas
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| | - Yunhua Zhu
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xin Qin
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Min Zhang
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Lihong Zhai
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yi Luo
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Xiaoming He
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Chun Mao
- Department of Neurology, Xiang Yang Central Hospital, Medical College of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Shenzhen, Guangdong, China. .,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, 2425 Stockton Boulevard, Sacramento, CA, 95817, USA.
| |
Collapse
|
12
|
Mohamed Koriem KM. Corrigendum to ‘Multiple sclerosis: New insights and trends’. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Dulamea AO. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:91-127. [PMID: 28093710 DOI: 10.1007/978-3-319-47861-6_7] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS) during development and throughout adulthood. They result from a complex and well controlled process of activation, proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs) from the germinative niches of the CNS. In multiple sclerosis (MS), the complex pathological process produces dysfunction and apoptosis of OLs leading to demyelination and neurodegeneration. This review attempts to describe the patterns of demyelination in MS, the steps involved in oligodendrogenesis and myelination in healthy CNS, the different pathways leading to OLs and myelin loss in MS, as well as principles involved in restoration of myelin sheaths. Environmental factors and their impact on OLs and pathological mechanisms of MS are also discussed. Finally, we will present evidence about the potential therapeutic targets in re-myelination processes that can be accessed in order to develop regenerative therapies for MS.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Neurology Clinic, University of Medicine and Pharmacy "Carol Davila", Fundeni Clinical Institute, Building A, Neurology Clinic, Room 201, 022328, Bucharest, Romania.
| |
Collapse
|
14
|
Primate autoimmune disease models; lost for translation? Clin Transl Immunology 2016; 5:e122. [PMID: 28435673 PMCID: PMC5384286 DOI: 10.1038/cti.2016.82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/06/2023] Open
Abstract
Replacement, reduction and refinement (the 3R's) are the leading principles in translational research with animals. To be useful a model should also be clinically Relevant (the 4th R). Work in a non-human primate model of multiple sclerosis, the experimental autoimmune encephalomyelitis model, reveals an inherent conflict among these 4R principles. The impossibility to harmonize all 4R's forms a major challenge when the model is applied in preclinical drug development.
Collapse
|
15
|
Tsunoda I, Sato F, Omura S, Fujita M, Sakiyama N, Park AM. Three immune-mediated disease models induced by Theiler's virus: Multiple sclerosis, seizures and myocarditis. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2016; 7:330-345. [PMID: 28603559 PMCID: PMC5464738 DOI: 10.1111/cen3.12341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection has been used as a viral model for multiple sclerosis (MS), as TMEV can induce chronic inflammatory demyelinating lesions with viral persistence in the spinal cord of SJL/J mice. In contrast, when C57BL/6 mice are infected with TMEV, the mice can clear the virus from the central nervous system (CNS), without viral persistence or demyelination, but develop seizures and hippocampal sclerosis, which has been used as a viral model for seizures/epilepsy. In the two TMEV-induced CNS disease models, not only viral infection, but also immune responses contribute to the pathogenesis. Interestingly, acquired immunity plays an effector role in the MS model, whereas innate immunity appears to contribute to the development of seizures. Recently, we have established the third TMEV-induced disease model, a mouse model for viral myocarditis, using C3H mice. TMEV-induced myocarditis is a triphasic disease, which mimics human myocarditis; phase I, mediated by viral replication in the heart and innate immunity; phase II, mediated by acquired immunity; and phase III, resulted from cardiac fibrosis. The genetic susceptibility to the aforementioned three models (MS, seizures and myocarditis) differs among mouse strains. We have compared and contrasted the three models induced by one single pathogen, TMEV, particularly in regard to the roles of T helper cells and natural killer T cells, which will give an insight into how interactions between the immune system and the host's genetic background determine the tissue tropism of virus and the development of virus-induced organ-specific immunopathology.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Namie Sakiyama
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| |
Collapse
|
16
|
|