1
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
2
|
Oliveira Santos M, Swash M, de Carvalho M. Current challenges in primary lateral sclerosis diagnosis. Expert Rev Neurother 2024; 24:45-53. [PMID: 38093670 DOI: 10.1080/14737175.2023.2295010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024]
Abstract
INTRODUCTION Primary lateral sclerosis (PLS) is a rare, adult-onset and slowly progressive motor neuron disorder whose clinical core is characterized by upper motor neuron (UMN) dysfunction. Its formal diagnosis is clinically based and disease duration-dependent. Differentiating PLS from other disorders involving UMN can be challenging, particularly in the early stages. AREAS COVERED Our review covers and discusses different aspects of the PLS field, including the diagnostic criteria and its limitations, its differential diagnosis and their major pitfalls, and the actual role of neurophysiology, neuroimaging, genetics, and molecular biomarkers. Symptomatic treatment of the different manifestations is also addressed. The authors searched MEDLINE and Scopus. They also searched the reference lists of articles identified by our search strategy and reviewed and selected those deemed relevant. They selected papers and studies based on the quality of the report, significance of the findings, and on the author's critical appraise and expertise. EXPERT OPINION It is important to investigate novel molecular biomarkers and plan multicenter clinical trials for PLS. However, this will require a large international project to recruit enough patients, particularly given the diagnostic uncertainty of the current clinical criteria. A better understanding of PLS pathophysiology is crucial for designing disease-targeted therapies.
Collapse
Affiliation(s)
- Miguel Oliveira Santos
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Michael Swash
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Departments of Neurology and Neuroscience, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Mamede de Carvalho
- Institute of Physiology, Instituto de Medicina Molecular João Lobo Antunes, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
3
|
Chang C, Zhao Q, Liu P, Yuan Y, Liu Z, Hu Y, Li W, Hou X, Tang X, Jiao B, Guo J, Shen L, Jiang H, Tang B, Zhang X, Wang J. ALS-plus related clinical and genetic study from China. Neurol Sci 2023; 44:3557-3566. [PMID: 37204564 DOI: 10.1007/s10072-023-06843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. An increasing number of researchers have found extra motor features in ALS, which are also called ALS-plus syndromes. Besides, a great majority of ALS patients also have cognitive impairment. However, clinical surveys of the frequency and genetic background of ALS-plus syndromes are rare, especially in China. METHODS We investigated a large cohort of 1015 patients with ALS, classifying them into six groups according to different extramotor symptoms and documenting their clinical manifestations. Meanwhile, based on their cognitive function, we divided these patients into two groups and compared demographic characteristics. Genetic screening for rare damage variants (RDVs) was also performed on 847 patients. RESULTS As a result, 16.75% of patients were identified with ALS-plus syndrome, and 49.5% of patients suffered cognitive impairment. ALS-plus group had lower ALSFRS-R scores, longer diagnostic delay time, and longer survival times, compared to ALS pure group. RDVs occurred less frequently in ALS-plus patients than in ALS-pure patients (P = 0.042) but showed no difference between ALS-cognitive impairment patients and ALS-cognitive normal patients. Besides, ALS-cognitive impairment group tends to harbour more ALS-plus symptoms than ALS-cognitive normal group (P = 0.001). CONCLUSION In summary, ALS-plus patients in China are not rare and show multiple differences from ALS-pure patients in clinical and genetic features. Besides, ALS-cognitive impairment group tends to harbour more ALS-plus syndrome than ALS-cognitive normal group. Our observations correspond with the theory that ALS involves several diseases with different mechanisms and provide clinical validation.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Qianqian Zhao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Pan Liu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Yiting Hu
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Xuxiong Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- School of Basic Medical Science, Central South University, Changsha, Hunan, People's Republic of China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Rd, Changsha, Hunan, People's Republic of China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, People's Republic of China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
4
|
Cortés Mancera EA, Sinisterra Solis FA, Romero-Castellanos FR, Diaz-Meneses IE, Kerik-Rotenberg NE. 18F-FDG PET/CT as a molecular biomarker in the diagnosis of amyotrophic lateral sclerosis associated with prostate cancer and progressive supranuclear palsy: A case report. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1137875. [PMID: 39355053 PMCID: PMC11440934 DOI: 10.3389/fnume.2023.1137875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/23/2023] [Indexed: 10/03/2024]
Abstract
Introduction Amyotrophic lateral sclerosis (ALS) is a neurodegenerative, multisystem disorder. Its clinical presentation typically consists of progressive focal muscle atrophy and weakness. In addition to motor disorders, the association between ALS and cancer has been researched, such as frontotemporal dementia and progressive supranuclear palsy. The diagnosis is based primarily on the clinical history, physical examination, electrodiagnostic tests (with an EMG needle), and neuroimaging, such as MRI and 18F-FDG PET/CT. Presentation of the case A 67-year-old male patient was diagnosed with prostate adenocarcinoma with a clinical picture of muscle weakness in the lower limbs that caused falls and was associated with fasciculations in the thighs and arms, alterations in the tone of voice, poor memory, and difficulty articulating words. In the neurological assessment, he described walking supported by a walker with decreased strength in both lower limbs and sensitivity without alterations. The diagnoses of upper and lower motor neuron disease and probable ALS were integrated. Furthermore, the probable coexistence of frontotemporal dementia/disorder (FDD) with ALS was considered. The main findings in the 18F-FDG PET/CT study was hypometabolism in the cortex of the bilateral motor and premotor areas, the anterior cingulate, both caudate and putamen, a metabolic pattern compatible with ALS, and progressive supranuclear palsy. Conclusion Through the PET/CT studies, we demonstrated a case in which ALS, prostate cancer and progressive supranuclear palsy coexisted molecularly; it was clinically difficult to diagnose. Molecular imaging has potential in the diagnostic and prognostic evaluation of ALS. It is crucial to identify the disease early and reliably through metabolic patterns that allow us to confirm the disease or differentiate it from other pathologies.
Collapse
Affiliation(s)
- Emilly A Cortés Mancera
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Fabio A Sinisterra Solis
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | - Ivan E Diaz-Meneses
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Nora E Kerik-Rotenberg
- PET/CT Molecular Imaging Unit. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| |
Collapse
|
5
|
Riku Y, Yoshida M, Iwasaki Y, Sobue G, Katsuno M, Ishigaki S. TDP-43 Proteinopathy and Tauopathy: Do They Have Pathomechanistic Links? Int J Mol Sci 2022; 23:ijms232415755. [PMID: 36555399 PMCID: PMC9779029 DOI: 10.3390/ijms232415755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Transactivation response DNA binding protein 43 kDa (TDP-43) and tau are major pathological proteins of neurodegenerative disorders, of which neuronal and glial aggregates are pathological hallmarks. Interestingly, accumulating evidence from neuropathological studies has shown that comorbid TDP-43 pathology is observed in a subset of patients with tauopathies, and vice versa. The concomitant pathology often spreads in a disease-specific manner and has morphological characteristics in each primary disorder. The findings from translational studies have suggested that comorbid TDP-43 or tau pathology has clinical impacts and that the comorbid pathology is not a bystander, but a part of the disease process. Shared genetic risk factors or molecular abnormalities between TDP-43 proteinopathies and tauopathies, and direct interactions between TDP-43 and tau aggregates, have been reported. Further investigations to clarify the pathogenetic factors that are shared by a broad spectrum of neurodegenerative disorders will establish key therapeutic targets.
Collapse
Affiliation(s)
- Yuichi Riku
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
- Correspondence: or
| | - Mari Yoshida
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yasushi Iwasaki
- Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Japan
| | - Gen Sobue
- Graduate School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya 744-8550, Japan
| | - Shinsuke Ishigaki
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
6
|
Temp AGM, Naumann M, Hermann A, Glaß H. Applied Bayesian Approaches for Research in Motor Neuron Disease. Front Neurol 2022; 13:796777. [PMID: 35401404 PMCID: PMC8987707 DOI: 10.3389/fneur.2022.796777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Statistical evaluation of empirical data is the basis of the modern scientific method. Available tools include various hypothesis tests for specific data structures, as well as methods that are used to quantify the uncertainty of an obtained result. Statistics are pivotal, but many misconceptions arise due to their complexity and difficult-to-acquire mathematical background. Even though most studies rely on a frequentist interpretation of statistical readouts, the application of Bayesian statistics has increased due to the availability of easy-to-use software suites and an increased outreach favouring this topic in the scientific community. Bayesian statistics take our prior knowledge together with the obtained data to express a degree of belief how likely a certain event is. Bayes factor hypothesis testing (BFHT) provides a straightforward method to evaluate multiple hypotheses at the same time and provides evidence that favors the null hypothesis or alternative hypothesis. In the present perspective, we show the merits of BFHT for three different use cases, including a clinical trial, basic research as well as a single case study. Here we show that Bayesian statistics is a viable addition of a scientist's statistical toolset, which can help to interpret data.
Collapse
Affiliation(s)
- Anna G. M. Temp
- Translational Neurodegeneration Section “Albrecht Kossel,” Department of Neurology, University Medical Centre, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock, Germany
- Neurozentrum, Berufsgenossenschaftliches Klinikum Hamburg, Hamburg, Germany
- *Correspondence: Anna G. M. Temp ; orcid.org/0000-0003-0671-121X
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht Kossel,” Department of Neurology, University Medical Centre, Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel,” Department of Neurology, University Medical Centre, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Centre, Rostock, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section “Albrecht Kossel,” Department of Neurology, University Medical Centre, Rostock, Germany
| |
Collapse
|
7
|
Kubo SI, Matsubara T, Taguchi T, Sengoku R, Takeuchi A, Saito Y. Parkinson's disease with a typical clinical course of 17 years overlapped by Creutzfeldt-Jakob disease: an autopsy case report. BMC Neurol 2021; 21:480. [PMID: 34893033 PMCID: PMC8662831 DOI: 10.1186/s12883-021-02504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Late-stage Parkinson's disease (PD) often presents with neuropsychiatric symptoms such as dementia, psychosis, excessive daytime sleepiness, apathy, depression, and anxiety. However, neuropsychiatric symptoms are the cardinal features of Creutzfeldt-Jakob disease (CJD), raising the possibility that CJD may be an overlooked condition when it accompanies late-stage PD. CASE PRESENTATION We describe a female autopsy case of PD with a typical clinical course of 17 years, in which CJD overlapped with PD during the final year of the patient's life. The patient died aged 85 years. Neuropathological features included widespread Lewy body-related α-synucleinopathy predominantly in the brainstem and limbic system, as well as the typical pathology of methionine/methionine type 1 CJD in the brain. CONCLUSIONS Our case demonstrates the clinicopathological co-occurrence of PD and CJD in a sporadic patient. The possibility of mixed pathology, including prion pathology, should be taken into account when neuropsychiatric symptoms are noted during the disease course of PD.
Collapse
Affiliation(s)
- Shin-Ichiro Kubo
- Department of Neurology, Eisei Hospital, 583-15 Kunugidamachi, Hachioji, Tokyo, 193-0942, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Takeshi Taguchi
- Department of Neurology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan
| | - Renpei Sengoku
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.,Department of Neurology, Daisan Hospital, The Jikei University School of Medicine, 4-11-1 Izumihoncho, Komae, Tokyo, 201-8601, Japan
| | - Atsuko Takeuchi
- Department of Neurological Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| |
Collapse
|
8
|
Oda S, Sano T, Nishikawa N, Mikasa M, Takahashi Y, Takao M. [Amyotrophic lateral sclerosis with muscle weakness and dropped head during the course of Parkinson's disease: an autopsy case]. Rinsho Shinkeigaku 2021; 61:373-377. [PMID: 34011808 DOI: 10.5692/clinicalneurol.cn-001546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A 64-year-old female developed Parkinson's disease at the age of 52 years. She experienced muscle weakness in the upper right extremities and dropped head at 62 and 63 years, respectively; both symptoms were considered to be associated with Parkinson's disease (PD). The dosage of L-DOPA was increased from 200 mg/day to 900 mg/day; however, her neurological symptoms did not improve. Eventually, she was diagnosed with amyotrophic lateral sclerosis (ALS) at 64 years. She was placed under palliative care, and died of respiratory failure and malnutrition. Neuropathologic findings were consistent with the coexistence of PD and ALS. In fact, there were α-synuclein immunoreactive Lewy bodies (Braak stage 4) as well as TDP-43 immunoreactive deposits in the motor nuclei at the level of brainstem and spinal cord. Therefore, coexisting pathologies must be taken into account in a patient showing multi-system symptoms.
Collapse
Affiliation(s)
- Shinji Oda
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| | - Terunori Sano
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry
| | - Noriko Nishikawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| | - Michita Mikasa
- Department of Neurology, Tokyo Metropolitan Hiroo Hospital
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry
| | - Masaki Takao
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry
| |
Collapse
|
9
|
Does a hypoxic injury from a non-fatal overdose lead to an Alzheimer Disease? Neurochem Int 2020; 143:104936. [PMID: 33309980 DOI: 10.1016/j.neuint.2020.104936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Long term consequence of non-fatal overdose in people who use opioids are not well understood. The intermittent exposure to non-fatal overdose leads to a tauopathy that is often accompanied by abrogated neuroprotective response, abnormal amyloid processing and other pathologies. The scope and limitations of available literature are discussed including neuropathologies associated with opioid and overdose exposures, contributing comorbidities and proteinopathies. Contrasting postmortem data of overdose victims with animal models of opioid neuropathologies and hypoxic injury paints a picture distinct from other proteinopathies as well as effects of moderate opioid exposure. Furthermore the reported biochemical changes and potential targets for therapeutic intervention were mapped pointing to underlying imbalance between tau kinases and phosphatases that is characteristic of Alzheimer Disease.
Collapse
|
10
|
Liu AJ, Chang JE, Naasan G, Boxer AL, Miller BL, Spina S. Progressive supranuclear palsy and primary lateral sclerosis secondary to globular glial tauopathy: a case report and a practical theoretical framework for the clinical prediction of this rare pathological entity. Neurocase 2020; 26:91-97. [PMID: 32090696 PMCID: PMC7197509 DOI: 10.1080/13554794.2020.1732427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Globular glial tauopathy (GGT) is a rare 4-repeat tauopathy characterized by the accumulation of tau globular inclusions in astrocytes and oligodendrocytes. Several clinical phenotypes have been associated with GGT, making the prediction of this rare pathological entity difficult. We report the case of a patient with eye-movement abnormalities and gait instability, reminiscent of progressive supranuclear palsy-Richardson's syndrome (PSP-RS), who later developed upper motor neuron symptoms suggestive of primary lateral sclerosis (PLS). Neuropathological assessment revealed GGT type III pathology. A theoretical framework is proposed to help clinicians predict GGT in subjects with coexistent features of PSP-RS and PLS.
Collapse
Affiliation(s)
- Andy J Liu
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Jessica E Chang
- Department of Psychological Services, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Georges Naasan
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Abstract
Frontotemporal dementia is a clinically and pathologically heterogeneous group of neurodegenerative disorders, with progressive impairment of behavior and language. They can be closely related to amyotrophic lateral sclerosis, clinically and through shared genetics and similar pathology. Approximately 40% of people with frontotemporal dementia report a family history of dementia, motor neuron disease or parkinsonism, and half of these familial cases are attributed to mutations in three genes (C9orf72, MAPT and PGRN). Akinetic-rigidity is a common feature in several types of frontotemporal dementia, particularly the behavioral variant and the non-fluent agrammatic variant of primary progressive aphasia, and the familial dementias. The majority of patients develop a degree of parkinsonism during the course of the illness, and signs may be present at the time of initial diagnosis. However, the parkinsonism of frontotemporal dementia is very different from that observed in idiopathic Parkinson's disease: it may be symmetric, axial, and poorly responsive to levodopa. Tremor is uncommon, and may be postural, action or occasionally rest tremor. The emergence of parkinsonism is often part of an evolving phenotype, in which frontotemporal dementia comes to resemble corticobasal syndrome or progressive supranuclear palsy. This chapter describes the prevalence and phenomenology of parkinsonism in each of the major syndromes, and according to the common genetic forms of frontotemporal dementia. We discuss the changing nosology and terminology surrounding the diagnoses, and the significance of parkinsonism as a core feature of frontotemporal dementia, relevant to clinical management and the design of future clinical trials.
Collapse
Affiliation(s)
- James B Rowe
- Cambridge University Centre for Frontotemporal Dementia and Cambridge University Centre for Parkinson-plus, Cambridge University, Cambridge, United Kingdom
| |
Collapse
|