1
|
Finsterer J. Carriers of the m.3243A>G variant should not be labelled with an acronym before they have been systematically screened for multisystem disease. Afr J Lab Med 2024; 13:2527. [PMID: 39364031 PMCID: PMC11447612 DOI: 10.4102/ajlm.v13i1.2527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/09/2024] [Indexed: 10/05/2024] Open
Abstract
No abstract available.
Collapse
|
2
|
Finsterer J. Cortical atrophy is a common phenotypic feature in MELAS patients. Asian J Surg 2024:S1015-9584(24)01748-2. [PMID: 39191585 DOI: 10.1016/j.asjsur.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Affiliation(s)
- Josef Finsterer
- Neurology Dpt., Neurology & Neurophysiology Center, Vienna, Austria.
| |
Collapse
|
3
|
Olkhova EA, Bradshaw C, Blain A, Alvim D, Turnbull DM, LeBeau FEN, Ng YS, Gorman GS, Lax NZ. A novel mouse model of mitochondrial disease exhibits juvenile-onset severe neurological impairment due to parvalbumin cell mitochondrial dysfunction. Commun Biol 2023; 6:1078. [PMID: 37872380 PMCID: PMC10593770 DOI: 10.1038/s42003-023-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/10/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondrial diseases comprise a common group of neurometabolic disorders resulting from OXPHOS defects, that may manifest with neurological impairments, for which there are currently no disease-modifying therapies. Previous studies suggest inhibitory interneuron susceptibility to mitochondrial impairment, especially of parvalbumin-expressing interneurons (PV+). We have developed a mouse model of mitochondrial dysfunction specifically in PV+ cells via conditional Tfam knockout, that exhibited a juvenile-onset progressive phenotype characterised by cognitive deficits, anxiety-like behaviour, head-nodding, stargazing, ataxia, and reduced lifespan. A brain region-dependent decrease of OXPHOS complexes I and IV in PV+ neurons was detected, with Purkinje neurons being most affected. We validated these findings in a neuropathological study of patients with pathogenic mtDNA and POLG variants showing PV+ interneuron loss and deficiencies in complexes I and IV. This mouse model offers a drug screening platform to propel the discovery of therapeutics to treat severe neurological impairment due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elizaveta A Olkhova
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Debora Alvim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Fiona E N LeBeau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Gráinne S Gorman
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4HH, UK.
- NIHR Newcastle Biomedical Research Centre, Biomedical Research Building, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| | - Nichola Z Lax
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
4
|
Li W, Hou D, Gu W, Tan H. Cerebellar stroke-like lesions combined with symmetrical multiple intracranial calcifications in MELAS. Acta Neurol Belg 2023; 123:1965-1968. [PMID: 35752746 DOI: 10.1007/s13760-022-02000-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Affiliation(s)
- Wei Li
- Department of Nerve Medical Center, The First Hospital of Changsha, Changsha, China
| | - Deren Hou
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenping Gu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Tan
- Department of Nerve Medical Center, The First Hospital of Changsha, Changsha, China.
| |
Collapse
|
5
|
Wang Y, Zhang E, Ye C, Wu B. Refractory Hypotension in a Late-Onset Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS) Male with m.3243 A>G Mutation: A Case Report. Brain Sci 2023; 13:1080. [PMID: 37509011 PMCID: PMC10377322 DOI: 10.3390/brainsci13071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Introduction: Symptom spectrum can be of great diversity and heterogeneity in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) patients in clinical practice. Here, we report a case of MELAS presenting asymptomatic refractory hypotension with m.3243 A>G mutation. (2) Case representation: A 51-year-old male patient presented with a headache, vertigo, and difficulty in expression and understanding. The magnetic resonance imaging of the brain revealed an acute stroke-like lesion involving the left temporoparietal lobe. A definitive diagnosis of MELAS was given after the genetic test identified the chrM-3243 A>G mutation. The patient suffered recurrent stroke-like episodes in the 1-year follow-up. Notably, refractory hypotension was observed during hospitalizations, and no significant improvement in blood pressure was found after continuous use of vasopressor drugs and fluid infusion therapy. (3) Conclusions: We report a case of refractory hypotension which was unresponsive to fluid infusion therapy found in a patient with MELAS. Our case suggests that comprehensive management should be paid attention to during treatment. A further study on the pathological mechanism of the multisystem symptoms in MELAS would be beneficial to the treatment of patients.
Collapse
Affiliation(s)
- Youjie Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Enhui Zhang
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
| | - Chen Ye
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Wu
- Department of Neurology, West China Hospital, Sichuan University, Guo Xue Xiang 37, Chengdu 610041, China
- Center of Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Kitamura T, Shijo M, Yokoi M, Maruyama T, Osaki M, Nakamura U, Arakawa S. Stroke-like lesions confined to the cerebellum in MELAS and a possible association with neuronal hyperexcitability. J Neurol 2023; 270:565-568. [PMID: 36152051 DOI: 10.1007/s00415-022-11397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Taisuke Kitamura
- Department of Cerebrovascular Medicine and Neurology, Steel Memorial Yawata Hospital, Kitakyushu, Japan.
| | - Masahiro Shijo
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Mio Yokoi
- Department of Cerebrovascular Medicine and Neurology, Steel Memorial Yawata Hospital, Kitakyushu, Japan
| | - Takako Maruyama
- Department of Cerebrovascular Medicine and Neurology, Steel Memorial Yawata Hospital, Kitakyushu, Japan
| | - Masato Osaki
- Department of Cerebrovascular Medicine and Neurology, Steel Memorial Yawata Hospital, Kitakyushu, Japan
| | - Udai Nakamura
- Diabetes Center, Steel Memorial Yawata Hospital, Kitakyushu, Japan
| | - Shuji Arakawa
- Department of Cerebrovascular Medicine and Neurology, Steel Memorial Yawata Hospital, Kitakyushu, Japan
| |
Collapse
|
7
|
Camacho-Caballero K, Malaga M, Peixoto de Barcelos I, Prentice AF, Berkowitz AL. A 47-Year-Old Man Presenting With Seizures and Prior Stroke. Neurohospitalist 2023; 13:74-77. [PMID: 36531844 PMCID: PMC9755623 DOI: 10.1177/19418744221122877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
A 47-year-old man presented to his local hospital in Peru after a generalized tonic-clonic seizure. His family reported a history of prior stroke of unclear etiology. This case report discusses the approach to a first seizure (including in tropical regions like Peru), the relationship between stroke and seizures, the approach to stroke in the young, and how to diagnose rare diseases in resource-limited settings.
Collapse
Affiliation(s)
- Kiara Camacho-Caballero
- Facultad de Ciencias de la Salud, CHANGE Research Working Group Lima, Universidad Científica del Sur, Lima, Perú
- Grupo Estudiantil de Investigación en Neurociencias, SOCIEM-USMP, Lima, Perú
| | - Marco Malaga
- Grupo Estudiantil de Investigación en Neurociencias, SOCIEM-USMP, Lima, Perú
- Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima, Perú
| | - Isabella Peixoto de Barcelos
- Center for Applied Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | | | | |
Collapse
|
8
|
Nouduri S, Padmanabhan R, Hicks R, Abbott MA, O'Brien D, Schlaug G. Case report: MELAS and concomitant presumed antiphospholipid antibody syndrome in an adult woman. Front Neurol 2022; 13:1043695. [PMID: 36588908 PMCID: PMC9794603 DOI: 10.3389/fneur.2022.1043695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes, and other features (short stature, headaches, seizures, and sensorineural hearing loss) constitute characteristics of MELAS syndrome. MELAS is a rare condition due to mutations in maternally inherited mitochondrial DNA with levels of heteroplasmy possibly related to late adulthood presentation. A previously reported MELAS case coexisted with presumed Antiphospholipid Antibody Syndrome (APLAS), but the connection between MELAS and a potential APLAS is unclear. A 29-year-old woman presented with mild right-sided sensorimotor symptoms and mixed aphasia in November 2021. She presented again in May 2022 for unrelenting headaches and was found to have a new right hemisphere syndrome with mild left-sided sensorimotor symptoms, hemineglect, and anosognosia. Characteristic lab and imaging studies were obtained. During the first presentation (October 2021), the discovery of anticardiolipin IgM antibodies (aCL) (and their replication 3 months later) led to a diagnosis of APLAS, and Warfarin was initiated. During the second admission (May 2022), a new stroke-like lesion on the right hemisphere with characteristic features not suggestive of ischemia was detected, which led to a diagnosis of MELAS (m3243A > G mutation). Although MELAS and APLAS could co-exist, alternatively, it is possible that antiphospholipid antibodies might be generated when the strongly anionic Cardiolipin-Hydroperoxide from the inner mitochondrial membrane is exposed to immune component cells upon cell lysis. Thus, the presence of aCL in patients with stroke-like lesions might masquerade as an APLAS, but should probably be questioned if only aCL are repeatedly found and imaging findings are not characteristic for ischemic lesions.
Collapse
Affiliation(s)
- Sirisha Nouduri
- Department of Neurology, Baystate Medical Center, University of Massachusetts Chan Medical School—Baystate, Springfield, MA, United States
| | - Rajiv Padmanabhan
- Department of Neurology, Baystate Medical Center, University of Massachusetts Chan Medical School—Baystate, Springfield, MA, United States
| | - Richard Hicks
- Department of Radiology, Baystate Medical Center, University of Massachusetts Chan Medical School—Baystate, Springfield, MA, United States
| | - Mary-Alice Abbott
- Department of Pediatrics, Baystate Medical Center, University of Massachusetts Chan Medical School—Baystate, Springfield, MA, United States
| | - Dennis O'Brien
- Department of Neurology, Baystate Medical Center, University of Massachusetts Chan Medical School—Baystate, Springfield, MA, United States
| | - Gottfried Schlaug
- Department of Neurology, Baystate Medical Center, University of Massachusetts Chan Medical School—Baystate, Springfield, MA, United States,*Correspondence: Gottfried Schlaug
| |
Collapse
|
9
|
Yang F, Peng S, Peng Q. Diagnosis of adult‑onset MELAS with suspected recurrent strokes: A case report. Exp Ther Med 2022; 24:466. [PMID: 35747150 PMCID: PMC9204559 DOI: 10.3892/etm.2022.11393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/13/2022] [Indexed: 11/05/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is caused by mutations in mitochondrial DNA and is one of the most common syndromes among the mitochondrial diseases. Clinical manifestations typically occur before the age of 40 years. The present study reports a case of MELAS with a mutation in the adenine to guanine conversion at mitochondrial genome 3243 in a 48-year-old woman who was suspected of suffering from recurrent strokes. Finally, the genomic analysis confirmed the diagnosis of MELAS. This case highlights the importance of considering MELAS as a potential cause of recurrent stroke-like events if imaging findings are atypical for cerebral infarction, even among middle-aged patients with vascular risk factors.
Collapse
Affiliation(s)
- Fei Yang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shan Peng
- Department of Medical Rehabilitation, The Second Clinical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, P.R. China
| | - Qiaojun Peng
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
10
|
Stefanetti R, Ng Y, Errington L, Blain A, McFarland R, Gorman GS. L-arginine in Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes: A Systematic Review. Neurology 2022; 98:e2318-e2328. [PMID: 35428733 PMCID: PMC9202525 DOI: 10.1212/wnl.0000000000200299] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Objectives Stroke management in the context of primary mitochondrial disease is clinically challenging, and the best treatment options for patients with stroke-like episodes remain uncertain. We sought to perform a systematic review of the safety and efficacy of l-arginine use in the acute and prophylactic management of stroke-like episodes in patients with mitochondrial disease. Methods The systematic review was registered in PROSPERO (CRD42020181230). We searched 6 databases from inception to January 15, 2021: MEDLINE, Embase, Scopus, Web of Science, CINAHL, and ClinicalTrials.gov. Original articles and registered trials available, in English, reporting l-arginine use in the acute or prophylactic management of stroke-like episodes in patients with genetically confirmed mitochondrial disease were eligible for inclusion. Data on safety and treatment response were extracted and summarized by multiple observers. Risk of bias was assessed by the methodologic quality of case reports, case series, and a risk-of-bias checklist for nonrandomized studies. Quality of evidence was synthesized with the Oxford Centre for Evidence-Based Medicine Levels of Evidence and Grade of Recommendations. The predetermined main outcome measures were clinical response to l-arginine treatment, adverse events, withdrawals, and deaths (on treatment and/or during follow-up), as defined by the author. Results Thirty-seven articles met inclusion criteria (0 randomized controlled trials; 3 open-label; 1 retrospective cohort; 33 case reports/case series) (N = 91 patients; 86% m.3243A>G). In the case reports, 54% of patients reported a positive clinical response to acute l-arginine, of which 40% were concomitantly treated with antiepileptic drugs. Improved headache at 24 hours was the greatest reported benefit in response to IV l-arginine in the open-label trials (31 of 39, 79%). In 15 of 48 patients (31%) who positively responded to prophylactic l-arginine, antiepileptic drugs were either used (7 of 15) or unreported (8 of 15). Moderate adverse events were reported in the follow-up of both IV and oral l-arginine treatment, and 11 patients (12%) died during follow-up or while on prophylactic treatment. Discussion The available evidence is of poor methodologic quality and classified as Level 5. IV and oral l-arginine confers no demonstrable clinical benefit in either the acute or prophylactic treatment of mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes, with more robust controlled trials required to assess its efficacy and safety profile.
Collapse
|
11
|
Suga H, Yanagida A, Kanazawa N, Ohara H, Kitagawa T, Hayashi M, Onozawa Y, Nagata N, Kaneko J, Kitamura E, Nishiyama K, Iizuka T. Status epilepticus suspected autoimmune: Neuronal surface antibodies and main clinical features. Epilepsia 2021; 62:2719-2731. [PMID: 34462918 DOI: 10.1111/epi.17055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Status epilepticus (SE) can be associated with neuronal surface antibodies (NS-Abs) but NS-Ab detection rate remains unknown in patients with SE of unclear etiology at symptom presentation but suspected of having an autoimmune etiology (SE suspected autoimmune). We aimed to determine the NS-Ab detection rate and the clinical features that predict the presence of NS-Abs in patients with SE suspected autoimmune. METHODS We retrospectively reviewed the clinical information of 137 patients with SE suspected autoimmune who underwent testing for NS-Abs between January 2007 and September 2020. NS-Abs were examined in both serum and cerebrospinal fluid (CSF) obtained at symptom onset with established assays. We classified brain magnetic resonance imaging (MRI) findings into unremarkable, autoimmune limbic encephalitis (ALE) (bilateral abnormalities highly restricted to the medial temporal lobes), ALE-Plus (ALE pattern and additional extramedial temporal lobe abnormalities), multifocal cortico-subcortical (MCS), or other pattern. We compared the clinical features between patients with and without NS-Abs. RESULTS Forty-four patients (32.1%) had NS-Abs, including 35 N-methyl-d-aspartate receptor (NMDAR) (one with concurrent γ-aminobutyric acid B receptor [GABAbR] and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor [AMPAR]), 5 γ-aminobutyric acid A receptor (GABAaR), 2 leucine-rich glioma-inactivated 1(LGI1), 1 GABAbR, and 1 unknown antigens. Compared with NS-Ab-negative patients, NS-Ab-positive patients were more likely to have a preceding headache (56.8% vs 26.7%), preceding psychobehavioral or memory alterations (65.9% vs 20.4%), involuntary movements (79.5% vs 16.1%), CSF pleocytosis (81.8% vs 62.0%), elevated immunoglobulin G (IgG) index (45.2% vs 15.6%), oligoclonal bands (51.5% vs 9.5%), tumor (47.7% vs 8.6%), and higher APE2 score (median of 9 vs 7), and they were less likely to have an ALE-Plus pattern (2.3% vs 23.7%). However, preceding fever and ALE or MCS pattern were not different between the two groups of patients. SIGNIFICANCE When an autoimmune etiology was suspected, there was a relatively high likelihood (one of three patients) of identifying NS-Abs. Some clinical features (preceding symptoms, inflammatory CSF) predict a higher likelihood of finding NS-Ab positivity, but the ALE-Plus MRI pattern is more likely suggestive of NS-Ab negativity.
Collapse
Affiliation(s)
- Hiroki Suga
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Atsuko Yanagida
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Naomi Kanazawa
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hiroya Ohara
- Department of Neurology, Minami-Nara General Medical Center, Nara, Japan.,Department of Neurology, Nara Medical University School of Medicine, Nara, Japan
| | - Tadashi Kitagawa
- Department of Neurology, Japanese Red Cross Otsu Hospital, Otsu, Japan
| | - Masahiro Hayashi
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Yuya Onozawa
- Department of Clinical Laboratory, Kitasato University Hospital, Sagamihara, Japan
| | - Naomi Nagata
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Juntaro Kaneko
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kazutoshi Nishiyama
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takahiro Iizuka
- Department of Neurology, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
12
|
Two Mn(II)-Organic Frameworks: Selective Detection of Fe3+ Ion and Treatment Activity on Alcohol-Induced Cerebellar Atrophy By Reducing ROS Accumulation in Brain. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Loos MA, Gomez G, Mayorga L, Caraballo RH, Eiroa HD, Obregon MG, Rugilo C, Lubieniecki F, Taratuto AL, Saccoliti M, Alonso CN, Aráoz HV. Clinical and molecular characterization of mitochondrial DNA disorders in a group of Argentinian pediatric patients. Mol Genet Metab Rep 2021; 27:100733. [PMID: 33717984 PMCID: PMC7933530 DOI: 10.1016/j.ymgmr.2021.100733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/02/2022] Open
Abstract
Objective To describe the clinical and molecular features of a group of Argentinian pediatric patients with mitochondrial DNA (mtDNA) disorders, and to evaluate the results of the implementation of a classical approach for the molecular diagnosis of mitochondrial diseases. Methods Clinical data from 27 patients with confirmed mtDNA pathogenic variants were obtained from a database of 89 patients with suspected mitochondrial disease, registered from 2014 to 2020. Clinical data, biochemical analysis, neuroimaging findings, muscle biopsy and molecular studies were analyzed. Results Patients were 18 females and 9 males, with ages at onset ranging from 1 week to 14 years (median = 4 years). The clinical phenotypes were: mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome (n = 11), Leigh syndrome (n = 5), Kearns-Sayre syndrome (n = 3), Chronic Progressive External Ophthalmoplegia (n = 2), Leber hereditary optic neuropathy (n = 2), myoclonic epilepsy associated with ragged-red fibers (n = 1) and reversible infantile myopathy with cytochrome-C oxidase deficiency (n = 3). Most of the patients harbored pathogenic single nucleotide variants, mainly involving mt-tRNA genes, such as MT-TL1, MT-TE and MT-TK. Other point variants were found in complex I subunits, like MT-ND6, MT-ND4, MT-ND5; or in MT-ATP6. The m.13513G > A variant in MT-ND5 and the m.9185 T > C variant in MT-ATP6 were apparently de novo. The rest of the patients presented large scale-rearrangements, either the "common" deletion or a larger deletion. Conclusions This study highlights the clinical and genetic heterogeneity of pediatric mtDNA disorders. All the cases presented with classical phenotypes, being MELAS the most frequent. Applying classical molecular methods, it was possible to achieve a genetic diagnosis in 30% of the cases, suggesting that this is an effective first approach, especially for those centers from low-middle income countries, leaving NGS studies for those patients with inconclusive results.
Collapse
Affiliation(s)
- Mariana Amina Loos
- Department of Neurology, Hospital de Pediatría "Juan P. Garrahan", Combate de los Pozos 1881, Buenos Aires 1245, Argentina
| | - Gimena Gomez
- Genomics Laboratory, Hospital de Pediatría "Juan P. Garrahan", Combate de los Pozos 1881, Buenos Aires 1245, Argentina
| | - Lía Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET), Centro Universitario UNCuyo, 5500 Mendoza, Argentina
| | - Roberto Horacio Caraballo
- Department of Neurology, Hospital de Pediatría "Juan P. Garrahan", Combate de los Pozos 1881, Buenos Aires 1245, Argentina
| | - Hernán Diego Eiroa
- Department of Inborn Errors of Metabolism, Hospital de Pediatría "Juan P. Garrahan", Combate de los Pozos 1881, Buenos Aires, 1245, Argentina
| | - María Gabriela Obregon
- Department of Medical Genetics, Hospital de Pediatría "Juan P. Garrahan", Combate de los Pozos 1881, Buenos Aires 1245, Argentina
| | - Carlos Rugilo
- Department of DiagnosticImaging, Hospital de Pediatría "Juan P. Garrahan", Combate de los Pozos 1881, Buenos Aires 1245, Argentina
| | - Fabiana Lubieniecki
- Department of Pathology, Hospital de Pediatría "Juan P. Garrahan", Combate de los Pozos 1881, Buenos Aires 1245, Argentina
| | - Ana Lía Taratuto
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - María Saccoliti
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - Cristina Noemi Alonso
- Genomics Laboratory, Hospital de Pediatría "Juan P. Garrahan", Combate de los Pozos 1881, Buenos Aires 1245, Argentina
| | - Hilda Verónica Aráoz
- Department of Medical Genetics, Hospital de Pediatría "Juan P. Garrahan", Combate de los Pozos 1881, Buenos Aires 1245, Argentina
| |
Collapse
|
14
|
Montano V, Gruosso F, Simoncini C, Siciliano G, Mancuso M. Clinical features of mtDNA-related syndromes in adulthood. Arch Biochem Biophys 2020; 697:108689. [PMID: 33227288 DOI: 10.1016/j.abb.2020.108689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
Mitochondrial diseases are the most common inheritable metabolic diseases, due to defects in oxidative phosphorylation. They are caused by mutations of nuclear or mitochondrial DNA in genes involved in mitochondrial function. The peculiarity of "mitochondrial DNA genetics rules" in part explains the marked phenotypic variability, the complexity of genotype-phenotype correlations and the challenge of genetic counseling. The new massive genetic sequencing technologies have changed the diagnostic approach, enhancing mitochondrial DNA-related syndromes diagnosis and often avoiding the need of a tissue biopsy. Here we present the most common phenotypes associated with a mitochondrial DNA mutation with the recent advances in diagnosis and in therapeutic perspectives.
Collapse
Affiliation(s)
- V Montano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - F Gruosso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - C Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - G Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - M Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy.
| |
Collapse
|