1
|
Janković SM, Janković SV. Anti-Calcitonin Gene-Related Peptide Monoclonal Antibodies in Migraine: Focus on Drug Interactions. Eur J Drug Metab Pharmacokinet 2024; 49:263-275. [PMID: 38457093 DOI: 10.1007/s13318-024-00887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Calcitonin gene-related peptide neurotransmission was the target for recent development of monoclonal antibodies that effectively prevent attacks of both episodic and chronic migraine. The aim of this narrative review was to offer deeper insight into drug-drug, drug-food and drug-disease interactions of monoclonal antibodies approved for prevention of migraine attacks. For this narrative review, relevant literature was searched for in MEDLINE and Google Scholar databases, covering the 1966-2023 and 2006-2023 periods, respectively. The ClinicalTrials.gov database was also searched for relevant clinical studies whose results had not been published previously in medical journals, covering 2000-2023. Monoclonal antibodies (erenumab, fremanezumab, galcanezumab and eptinezumab) augment prophylactic action of gepants and onabotulinumtoxin A and somewhat increase efficacy of triptans used to abort migraine attacks; however, their adverse reactions may also be augmented. Pharmacokinetic interactions and interactions in general with drugs used for other indications except migraine are negligible, as are drug-food interactions. However, monoclonal antibodies may worsen diseases with already weakened CGRP neurotransmission, Raynaud phenomenon and constipation. Monoclonal antibodies used for prevention of migraine do not engage in significant pharmacokinetic interactions with other drugs; however, they do engage in pharmacodynamic interactions with other anti-migraine drugs, additively augmenting their prophylactic action, but also increasing frequency and severity of adverse reactions, which are a consequence of the CGRP neurotransmission interruption.
Collapse
Affiliation(s)
- Slobodan M Janković
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića Street, 69, 34000, Kragujevac, Serbia.
| | - Snežana V Janković
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića Street, 69, 34000, Kragujevac, Serbia
| |
Collapse
|
2
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. Proc Natl Acad Sci U S A 2024; 121:e2322574121. [PMID: 38451947 PMCID: PMC10945812 DOI: 10.1073/pnas.2322574121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.
Collapse
Affiliation(s)
- Warakorn Kulalert
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Alexandria C. Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Verena M. Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Motoyoshi Nagai
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Oliver J. Harrison
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Marc and Jennifer Lipschultz Precision Immunology Institute, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Unite Metaorganisme, Immunology Department, Pasteur Institute, 75015 Paris, France
| |
Collapse
|
3
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573358. [PMID: 38234748 PMCID: PMC10793430 DOI: 10.1101/2023.12.26.573358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a novel mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide Calcitonin Gene-Related Peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo . Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8 + T lymphocytes induced by skin commensal colonization. Neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology. Significance statement Multisystem coordination at barrier surfaces is critical for optimal tissue functions and integrity, in response to microbial and environmental cues. In this study, we identified a novel neuroimmune crosstalk mechanism between the sensory nervous system and the adaptive immune response to the microbiota, mediated by the neuropeptide CGRP and its receptor RAMP1 on skin microbiota-induced T lymphocytes. The neuroimmune CGPR-RAMP1 axis constrains adaptive immunity to the microbiota and overall limits the activation status of the skin epithelium, impacting tissue responses to wounding. Our study opens the door to a new avenue to modulate adaptive immunity to the microbiota utilizing neuromodulators, allowing for a more integrative and tailored approach to harnessing microbiota-induced T cells to promote barrier tissue protection and repair.
Collapse
|
4
|
Schoenen J, Van Dycke A, Versijpt J, Paemeleire K. Ten open questions in migraine prophylaxis with monoclonal antibodies blocking the calcitonin-gene related peptide pathway: a narrative review. J Headache Pain 2023; 24:99. [PMID: 37528353 PMCID: PMC10391994 DOI: 10.1186/s10194-023-01637-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
The monoclonal antibodies (mAbs) blocking the calcitonin-gene related peptide (CGRP) pathway, collectively called here "anti-CGRP/rec mAbs", have dramatically improved preventive migraine treatment. Although their efficacy and tolerability were proven in a number of randomized controlled trials (RCTs) and, maybe even more convincingly, in real world settings, a number of open questions remain. In this narrative review, we will analyze published data allowing insight in some of the uncertainties related to the use of anti-CGRP/rec mAbs in clinical practice: their differential efficacy in migraine subtypes, outcome predictors, switching between molecules, use in children and adolescents, long-term treatment adherence and persistence, effect persistence after discontinuation, combined treatment with botulinum toxin or gepants, added-value and cost effectiveness, effectiveness in other headache types, and potential contraindications based on known physiological effects of CGRP. While recent studies have already provided hints for some of these questions, many of them will not find reliable and definitive answers before larger studies, registries or dedicated RCTs are available.
Collapse
Affiliation(s)
- Jean Schoenen
- Headache Research Unit, Department of Neurology‑Citadelle Hospital, University of Liège, Boulevard du 12 ème de Ligne 1, Liège, 4000, Belgium.
| | - Annelies Van Dycke
- Department of Neurology, General Hospital Sint-Jan Bruges, Ruddershove 10, Bruges, 8000, Belgium
| | - Jan Versijpt
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Koen Paemeleire
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| |
Collapse
|
5
|
Pavelic AR, Wöber C, Riederer F, Zebenholzer K. Monoclonal Antibodies against Calcitonin Gene-Related Peptide for Migraine Prophylaxis: A Systematic Review of Real-World Data. Cells 2022; 12:cells12010143. [PMID: 36611935 PMCID: PMC9819019 DOI: 10.3390/cells12010143] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To perform a systematic review of real-world outcomes for anti-CGRP-mAbs. METHODS Following the PRISMA guidelines, we searched PubMed for real-world data of erenumab, galcanezumab, fremanezumab, or eptinezumab in patients with migraines. RESULTS We identified 134 publications (89 retrospective), comprising 10 pharmaco-epidemiologic and 83 clinic-based studies, 38 case reports, and 3 other articles. None of the clinic-based studies provided follow-up data over more than one year in more than 200 patients. Findings suggest that there are reductions in health insurance claims and days with sick-leave as well as better treatment adherence with anti-CGRP-mAbs. Effectiveness, reported in 77 clinic-based studies, was comparable to randomized controlled trials. A treatment pause was associated with an increase in migraine frequency, and switching to another antibody resulted in a better response in some of the patients. Adverse events and safety issues were addressed in 86 papers, including 24 single case reports. CONCLUSION Real-world data on anti-CGRP-mAbs are limited by retrospective data collection, small patient numbers, and short follow-up periods. The majority of papers seem to support good effectiveness and tolerability of anti-CGRP-mAbs in the real-world setting. There is an unmet need for large prospective real-world studies providing long-term follow-ups of patients treated with anti-CGRP-mAbs.
Collapse
Affiliation(s)
- Antun R. Pavelic
- Department of Neurology, Hietzing Hospital, 1130 Vienna, Austria
| | - Christian Wöber
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Franz Riederer
- Department of Neurology, Hietzing Hospital, 1130 Vienna, Austria
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences & Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|