1
|
Adly ME, Taher AT, Ahmed FM, Mahmoud AM, Salem MA, El-Masry RM. New series of fluoroquinolone derivatives as potential anticancer Agents: Design, Synthesis, in vitro biological Evaluation, and Topoisomerase II Inhibition. Bioorg Chem 2025; 156:108163. [PMID: 39827653 DOI: 10.1016/j.bioorg.2025.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
A series of fluoroquinolone analogs (II, IIIa-g) derived from Ciprofloxacin hydrazide were designed, and synthesized. The NCI-60 Human Tumor Cell Line Screening assay indicated that compounds II, IIIb, and IIIf are the most potent among the series and were further selected for five-dose evaluation, where they exhibited potent cytotoxicity with mean GI50 values of 3.30, 2.45, and 9.06 µM, respectively, where they reduced the cell proliferation of most of the tested cell lines with IC50 values significantly lower than the reference drug Etoposide. A selectivity study demonstrated the high selective cytotoxicity of IIIf towards cancerous cells over normal mammalian Vero cells, presenting it as a potent and selective antitumor agent. Cell cycle analysis revealed that treatment with II, IIIb, or IIIf induced cell cycle arrest at the G2/M phase in MCF-7 cells. Topoisomerase II enzyme inhibition assay showed that the three tested compounds are potent topo II inhibitors where compound II (IC50 = 51.66 µM) displayed more potent inhibitory activity compared to the well-known topo II inhibitor Etoposide (IC50 = 58.96 µM), while compounds IIIb and IIIf showed comparable activity to the reference drug. Molecular modeling study suggested that the topoisomerase inhibitory activity may be attributed to the binding to the Merbarone binding site and chelation with Mg2+.
Collapse
Affiliation(s)
- Mina E Adly
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11565, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11565, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Fakher M Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Mohamed A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, October 6 University (O6U), October 6 City 12585, Egypt
| | - Rana M El-Masry
- Department of Organic Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), October 6 City 12451, Egypt.
| |
Collapse
|
2
|
Nardo G, Pantziarka P, Conti M. Synergistic Potential of Antibiotics with Cancer Treatments. Cancers (Basel) 2024; 17:59. [PMID: 39796688 PMCID: PMC11718857 DOI: 10.3390/cancers17010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Intratumoral microbiota, the diverse community of microorganisms residing within tumor tissues, represent an emerging and intriguing field in cancer biology. These microbial populations are distinct from the well-studied gut microbiota, offering novel insights into tumor biology, cancer progression, and potential therapeutic interventions. Recent studies have explored the use of certain antibiotics to modulate intratumoral microbiota and enhance the efficacy of cancer therapies, showing promising results. Antibiotics can alter intratumoral microbiota's composition, which may have a major role in promoting cancer progression and immune evasion. Certain bacteria within tumors can promote immunosuppression and resistance to therapies. By targeting these bacteria, antibiotics can help create a more favorable environment for chemotherapy, targeted therapy, and immunotherapy to act effectively. Some bacteria within the tumor microenvironment produce immunosuppressive molecules that inhibit the activity of immune cells. The combination of antibiotics and other cancer therapies holds significant promise for creating a synergistic effect and enhancing the immune response against cancer. In this review, we analyze several preclinical studies that have been conducted to demonstrate the synergy between antibiotics and other cancer therapies and discuss possible clinical implications.
Collapse
Affiliation(s)
- Giuseppe Nardo
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Pan Pantziarka
- Anticancer Fund, 1860 Meise, Belgium;
- George Pantziarka TP53 Trust, London E1 8FA, UK
| | - Matteo Conti
- Dipartimento Sanità Pubblica, AUSL Imola, Viale Amendola 8, 40026 Imola, Italy;
| |
Collapse
|
3
|
Oancea OL, Gâz ȘA, Marc G, Lungu IA, Rusu A. In Silico Evaluation of Some Computer-Designed Fluoroquinolone-Glutamic Acid Hybrids as Potential Topoisomerase II Inhibitors with Anti-Cancer Effect. Pharmaceuticals (Basel) 2024; 17:1593. [PMID: 39770435 PMCID: PMC11679884 DOI: 10.3390/ph17121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Fluoroquinolones (FQs) are topoisomerase II inhibitors with antibacterial activity, repositioned recently as anti-cancer agents. Glutamic acid (GLA) is an amino acid that affects human metabolism. Since an anti-cancer mechanism of FQs is human topoisomerase II inhibition, it is expected that FQ-GLA hybrids can act similarly. Methods: We designed 27 hypothetical hybrids of 6 FQs and GLA through amide bonds at the 3- and 7-position groups of FQs or via ethylenediamine/ethanolamine linkers at the carboxyl group of the FQ. Hydroxamic acid derivatives were also theoretically formulated. Computational methods were used to predict their physicochemical, pharmacokinetic, or toxicological properties and their anti-cancer activity. For comparison, etoposide was used as an anti-cancer agent inhibiting topoisomerase II. Molecular docking assessed whether the hybrids could interact with the human topoisomerase II beta in the same binding site and interaction sites as etoposide. Results: All the hybrids acted as potential topoisomerase II inhibitors, demonstrating possible anti-cancer activity on several cancer cell lines. Among all the proposed hybrids, MF-7-GLA would be the ideal candidate as a lead compound. The hybrid OF-3-EDA-GLA and the hydroxamic acid derivatives also stood out. Conclusions: Both FQs and GLA have advantageous structures for obtaining hybrids with favourable properties. Improvements in the hybrids' structure could lead to promising results.
Collapse
Affiliation(s)
- Octavia-Laura Oancea
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Șerban Andrei Gâz
- Organic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Gabriel Marc
- Organic Chemistry Department, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ioana-Andreea Lungu
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
4
|
Kassab AE, Gomaa RM, Gedawy EM. Drug repurposing of fluoroquinolones as anticancer agents in 2023. RSC Adv 2024; 14:37114-37130. [PMID: 39569131 PMCID: PMC11578043 DOI: 10.1039/d4ra03571b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Drug developers are currently focusing on investigating alternative strategies, such as "drug repositioning", to address issues associated with productivity, regulatory obstacles, and the steadily rising cost of pharmaceuticals. Repositioning is the best strategy to stop searching for new drugs because it takes less time and money to investigate new indications for already approved or unsuccessful drugs. Although there are several potent Topo II inhibitors available on the market as important drugs used in the therapy of many types of cancer, more may be required in the future. The current inhibitors have drawbacks including acquired resistance and unfavorable side effects such as cardiotoxicity and subsequent malignancy. A substantial body of research documented the cytotoxic potential of experimental fluoroquinolones (FQs) on tumor cell lines and their remarkable efficacy against eukaryotic Topo II in addition to optimized physical and metabolic characteristics. The FQ scaffold has a unique ability to potentially resolve every major issue associated with traditional Topo II inhibitors while maintaining a highly desirable profile in crucial drug-likeness parameters; therefore, there is a significant chance that FQs will be repositioned as anticancer candidates. This review offers a summary of the most recent research on the anticancer potential of FQs that was published in 2023. Along with discussing structural activity relationship studies and the mechanism underlying their antiproliferative activity, this review aims to provide up-to-date information that will spur the development of more potent FQs as viable cancer treatment candidates.
Collapse
Affiliation(s)
- Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University P. O. Box 35516 Mansoura Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC) Badr City, P. O. Box 11829 Cairo Egypt +2023635140 +2023639307
| | - Ehab M Gedawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University Kasr El-Aini Street, P. O. Box 11562 Cairo Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC) Badr City, P. O. Box 11829 Cairo Egypt +2023635140 +2023639307
| |
Collapse
|
5
|
Ali DME, Aziz HA, Bräse S, Al Bahir A, Alkhammash A, Abuo-Rahma GEDA, Elshamsy AM, Hashem H, Abdelmagid WM. Unveiling the Anticancer Potential of a New Ciprofloxacin-Chalcone Hybrid as an Inhibitor of Topoisomerases I & II and Apoptotic Inducer. Molecules 2024; 29:5382. [PMID: 39598770 PMCID: PMC11596536 DOI: 10.3390/molecules29225382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The current study has yielded promising results in the evaluation of a new ciprofloxacin-chalcone hybrid (CP derivative) for its anticancer activity as potential Topoisomerases (Topo) I and II inhibitors. The in vitro results showed that the CP derivative significantly suppressed the growth of HCT-116 and LOX IMVI cells, with IC50 values of 5.0 μM and 1.3 μM, respectively, outperforming Staurosporine, which had IC50 values of 8.4 μM and 1.6 μM, respectively. Flow cytometry analysis revealed that the new CP derivative triggered apoptosis and cell cycle arrest at the G2/M phase, associated with the up-regulation of pro-apoptotic genes (Bax and Caspase 9) and downregulation of the anti-apoptotic gene (Bcl-2). Further investigations showed that the CP derivative inhibited Topo I and II enzymes, as expected molecular targets; docking studies further supported its dual inhibitory action on Topo I and II. These findings suggest that the ciprofloxacin-chalcone hybrid could be a promising lead compound for developing new anticancer therapy.
Collapse
Affiliation(s)
| | - Hossameldin A. Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley 72511, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Areej Al Bahir
- Chemistry Department, Faculty of Science, King Khalid University, Abha 64734, Saudi Arabia
| | - Abdullah Alkhammash
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Gamal El-Din A. Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City 61768, Egypt
| | - Ali M. Elshamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia City 61768, Egypt
| | - Hamada Hashem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Walid M. Abdelmagid
- Medicinal Chemistry and Drug Discovery Research Centre, Swenam College, 210-6125 Sussex Avenue, Burnaby, BC V5H 4G1, Canada;
| |
Collapse
|
6
|
Shayanfard AH, Salehi Z, Mashayekhi F, Zahiri Z. Modulation of Long Non-coding RNA FAS-AS1/FAS/Caspase3 Axis in Endometriosis: A Cross-sectional Study. J Hum Reprod Sci 2024; 17:246-254. [PMID: 39831096 PMCID: PMC11741121 DOI: 10.4103/jhrs.jhrs_92_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 01/22/2025] Open
Abstract
Background An increasing number of studies have demonstrated that excessive proliferation and apoptosis play a pivotal role in the development of endometriosis. Aim The aim of the study was to evaluate the expression of long non-coding RNA (lncRNA) FAS-AS1, FAS, soluble Fas (sFas) and caspase-3 in patients with different stages of endometriosis. Setting and Design The design of the study was a cross-sectional study. Materials and Methods The relative expression of lncRNA FAS-AS1 and FAs gene was evaluated by the quantitative real-time polymerase chain reaction in 60 ectopic endometrial samples from women with endometriosis in relation to 85 normal endometrial tissues from healthy women, whereas the protein level of sFAs in the peritoneal fluid samples and cleaved caspase-3 in ectopic and normal endometrial tissue samples were determined using the enzyme-linked immunosorbent assay and western blot, respectively. Furthermore, in silico analyses were performed to investigate protein-protein interactions as well as molecular function and cellular location of selected proteins. Statistical Analysis Used The student's t-test was used to analyse the difference between the means of the two groups. Results The expression of FAS and sFas increased in endometriosis tissues as compared to the control group (P < 0.05). However, lncRNA FAS-AS1 and cleaved caspase-3 decreased in ectopic endometrial tissues compared to normal endometrial tissues and low lncRNA FAS-AS1 expression was correlated with disease stages. In addition, the in silico analysis revealed the importance of FAS/caspase3 in the biological processes involved in the development of endometriosis. Conclusion The current study suggests that lncRNA FAS-AS1 may function as an ectopic endometriotic suppressor. Moreover, the results showed that severity of endometriosis is also closely correlated with the expression of lncRNA FAS-AS1 and sFAS.
Collapse
Affiliation(s)
| | - Zivar Salehi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Ziba Zahiri
- Department of Obstetrics and Gynaecology, Reproductive Health Research Centre, Alzahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Zeng W, Liang Y, Huang S, Zhang J, Mai C, He B, Shi L, Liu B, Li W, Huang X, Li X. Ciprofloxacin Accelerates Angiotensin-II-Induced Vascular Smooth Muscle Cells Senescence Through Modulating AMPK/ROS pathway in Aortic Aneurysm and Dissection. Cardiovasc Toxicol 2024; 24:889-903. [PMID: 39138741 PMCID: PMC11335803 DOI: 10.1007/s12012-024-09892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
Aortic aneurysm and dissection (AAD) is a cardiovascular disease that poses a severe threat to life and has high morbidity and mortality rates. Clinical and animal-based studies have irrefutably shown that fluoroquinolones, a commonly prescribed antibiotic for treating infections, significantly increase the risk of AAD. Despite this, the precise mechanism by which fluoroquinolones cause AAD remains unclear. Therefore, this study aims to investigate the molecular mechanism and role of Ciprofloxacin definitively-a type of fluoroquinolone antibiotic-in the progression of AAD. Aortic transcriptome data were collected from GEO datasets to detect the genes and pathways expressed differently between healthy donors and AAD patients. Human primary Vascular Smooth Muscle Cells (VSMCs) were isolated from the aorta. After 72 h of exposure to 110ug/ml Ciprofloxacin or 100 nmol/L AngII, either or combined, the senescent cells were identified through SA-β-gal staining. MitoTracker staining was used to examine the morphology of mitochondria in each group. Cellular Reactive Oxygen Species (ROS) levels were measured using MitoSox and DCFH-DA staining. Western blot assay was performed to detect the protein expression level. We conducted an analysis of transcriptome data from both healthy donors and patients with AAD and found that there were significant changes in cellular senescence-related signaling pathways in the latter group. We then isolated and identified human primary VSMCs from healthy donors (control-VSMCs) and patients' (AAD-VSMCs) aortic tissue, respectively. We found that VSMCs from patients exhibited senescent phenotype as compared to control-VSMCs. The higher levels of p21 and p16 and elevated SA-β-gal activity demonstrated this. We also found that pretreatment with Ciprofloxacin promoted angiotensin-II-induced cellular senescence in control-VSMCs. This was evidenced by increased SA-β-gal activity, decreased cell proliferation, and elevation of p21 and p16 protein levels. Additionally, we found that Angiotensin-II (AngII) induced VSMC senescence by promoting ROS generation. We used DCFH-DA and mitoSOX staining to identify that Ciprofloxacin and AngII pretreatment further elevated ROS levels than the vehicle or alone group. Furthermore, JC-1 staining showed that mitochondrial membrane potential significantly declined in the Ciprofloxacin and AngII combination group compared to others. Compared to the other three groups, pretreatment of Ciprofloxacin plus AngII could further induce mitochondrial fission, demonstrated by mitoTracker staining and western blotting assay. Mechanistically, we found that Ciprofloxacin impaired the balance of mitochondrial fission and fusion dynamics in VSMCs by suppressing the phosphorylation of AMPK signaling. This caused mitochondrial dysfunction and ROS generation, thereby elevating AngII-induced cellular senescence. However, treatment with the AMPK activator partially alleviated those effects. Our data indicate that Ciprofloxacin may accelerate AngII-induced VSMC senescence through modulating AMPK/ROS signaling and, subsequently, hasten the progression of AAD.
Collapse
MESH Headings
- Humans
- Cellular Senescence/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/enzymology
- Aortic Dissection/chemically induced
- Aortic Dissection/pathology
- Aortic Dissection/enzymology
- Aortic Dissection/metabolism
- Signal Transduction/drug effects
- Reactive Oxygen Species/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Angiotensin II/toxicity
- Cells, Cultured
- Ciprofloxacin/pharmacology
- AMP-Activated Protein Kinases/metabolism
- Case-Control Studies
- Aortic Aneurysm/chemically induced
- Aortic Aneurysm/pathology
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/enzymology
- Male
- Middle Aged
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Weiyue Zeng
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaowen Liang
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Shangjun Huang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiarui Zhang
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cong Mai
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Binbin He
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Linli Shi
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Baojuan Liu
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weifeng Li
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xiaoran Huang
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Xin Li
- School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Emergency Medicine, China-Algeria Joint Laboratory On Emergeney Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Zhang Y, Wang L, Dong C, Zhuang Y, Hao G, Wang F. Licochalcone D exhibits cytotoxicity in breast cancer cells and enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis through upregulation of death receptor 5. J Biochem Mol Toxicol 2024; 38:e23757. [PMID: 38937960 DOI: 10.1002/jbt.23757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/15/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Anticancer strategies using natural products or derivatives are promising alternatives for cancer treatment. Here, we showed that licochalcone D (LCD), a natural flavonoid extracted from Glycyrrhiza uralensis Fisch, suppressed the growth of breast cancer cells, and was less toxic to MCF-10A normal breast cells. LCD-induced DNA damage, cell cycle arrest, and apoptosis in breast cancer cells. Furthermore, LCD potentiated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. Mechanistically, LCD was revealed to reduce survival protein expression and to upregulate death receptor 5 (DR5) expressions. Silencing DR5 blocked the ability of LCD to sensitize cells to TRAIL-mediated apoptosis. LCD increased CCAAT/enhancer-binding protein homologous protein (CHOP) expression in breast cancer cells. Knockdown of CHOP attenuated DR5 upregulation and apoptosis triggered by cotreatment with LCD and TRAIL. Furthermore, LCD suppressed the phosphorylation of extracellular signal-regulated kinase and promoted the phosphorylation of c-Jun amino-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Pretreatment with JNK inhibitor SP600125 or p38 MAPK inhibitor SB203580 abolished the upregulation of DR5 and CHOP, and also attenuated LCD plus TRAIL-induced cleavage of poly(ADP-ribose) polymerase. Overall, our results show that LCD exerts cytotoxic effects on breast cancer cells and arguments TRAIL-mediated apoptosis by inhibiting survival protein expression and upregulating DR5 in a JNK/p38 MAPK-CHOP-dependent manner.
Collapse
Affiliation(s)
- Yunyun Zhang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Linlin Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Chuxuan Dong
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yahui Zhuang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Gangping Hao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Fengze Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
- Center Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
9
|
Xu M, Chen Y, Li P, Ye Q, Feng S, Yan B. Antibiotic use during radical surgery in stage I-III colorectal cancer: correlation with outcomes? BMC Cancer 2024; 24:769. [PMID: 38926655 PMCID: PMC11210026 DOI: 10.1186/s12885-024-12550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
AIMS Accumulating evidence indicates that the use of antibiotics (ATBs) in cancer patients is potentially correlated with patient prognosis. Interestingly, the use of these agents is not uncommon in colorectal cancer (CRC) patients during surgery; however, their prognostic value in the clinic has never been addressed. MATERIALS AND METHODS Data on ATB use during surgery, including the cumulative defined daily dose (cDDD) and the number of categories, were collected. Differences in the clinical data between the low and high cDDD subgroups and between subgroups with ≤ 4 and >4 categories. Additionally, the disease-free survival (DFS) and overall survival (OS) among these subgroups and the specific categories were compared. Finally, a Cox proportional hazard model was used to validate the risk factors for the outcome. RESULTS The number of categories, rather than the cDDD, was a significant predictor of both DFS (P = 0.043) and OS (P = 0.039). Patients with obstruction are more likely to have a high cDDD, whereas older patients are more likely to have multiple categories. There were no significant differences in the DFS (log rank = 1.36, P = 0.244) or OS (log rank = 0.40, P = 0.528) between patients in the low- and high-cDDD subgroups, whereas patients with ≤ 4 categories had superior DFS (log rank = 9.92, P = 0.002) and OS (log rank = 8.30, P = 0.004) compared with those with >4 categories. Specifically, the use of quinolones was harmful to survival (DFS: log rank = 3.67, P = 0.055; OS: log rank = 5.10, P = 0.024), whereas the use of macrolides was beneficial to survival (DFS: log rank = 12.26, P < 0.001; OS: log rank = 9.77, P = 0.002). Finally, the number of categories was identified as an independent risk factor for both DFS (HR = 2.05, 95% CI: 1.35-3.11, P = 0.001) and OS (HR = 1.82, 95% CI: 1.14-2.90, P = 0.012). CONCLUSIONS The cDDD of ATBs during surgery in stage I-III CRC patients did not correlate with outcome; however, patients in multiple categories or a specific category are likely to have inferior survival. These results suggest that particular caution should be taken when selecting ATBs for these patients in the clinic.
Collapse
Affiliation(s)
- Mingyue Xu
- Department of General Surgery, Hainan Hospital of PLA General Hospital, Sanya City, 572000, Hainan Province, P.R. China
| | - Yuanyuan Chen
- Department of General Medicine, Hainan Hospital of PLA General Hospital, Sanya City, 572000, Hainan Province, P.R. China
| | - Panhua Li
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, 572000, Hainan Province, P.R. China
| | - Qianwen Ye
- Department of General Surgery, Hainan Hospital of PLA General Hospital, Sanya City, 572000, Hainan Province, P.R. China
| | - Shouhan Feng
- Department of Oncology, Huzhou Traditional Chinese Medicine Hospital affiliated to Zhejiang Chinese Medical University, No. 315 of South Street, Huzhou City, 313000, Zhejiang Province, P.R. China.
| | - Bing Yan
- Department of Oncology, Hainan Hospital of Chinese PLA General Hospital, No. 80 of Jianglin Road, Haitang District, Sanya City, 572000, Hainan Province, P.R. China.
| |
Collapse
|
10
|
Wang M, Wu H, Jiang W, Ren Y, Yuan X, Wang Y, Zhou J, Feng W, Wang Y, Xu T, Zhang D, Fang Y, He C, Li W. Differences in nature killer cell response and interference with mitochondrial DNA induced apoptosis in moxifloxacin environment. Int Immunopharmacol 2024; 132:111970. [PMID: 38608472 DOI: 10.1016/j.intimp.2024.111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVES As antibiotics become more prevalent, accuracy and safety are critical. Moxifloxacin (MXF) have been reported to have immunomodulatory effects on a variety of immune cells and even anti-proliferative and pro-apoptotic effects, but the mechanism of action is not fully clear. METHODS Peripheral blood mononuclear cells (PBMC) from experimental groups of healthy adults (n = 3) were treated with MXF (10ug/ml) in vitro for 24 h. Single-cell sequencing was performed to investigate differences in the response of each immune cell to MXF. Flow cytometry determined differential gene expression in subsets of most damaged NK cells. Pseudo-time analysis identified drivers that influence MXF-stimulated cell differentiation. Detection of mitochondrial DNA and its involvement in the mitochondrial respiratory chain pathway clarifies the origin of MXF-induced stress injury. RESULTS Moxifloxacin-environmental NK cells are markedly reduced: a new subset of NK cells emerges, and immediate-early-response genes in this subset indicate the presence of an early activation response. The inhibitory receptor-dominant subset shows enhanced activation, leading to increased expression of cytokines and chemokines. The near-mature subset showed greater cytotoxicity and the most pronounced cellular damage. CD56bright cells responded by antagonizing the regulation of activation and inhibitory signals, demonstrating a strong cleavage capacity. The severe depletion of mitochondrial genes was focused on apoptosis induced by the mitochondrial respiratory chain complex. CONCLUSION NK cells exhibit heightened sensitivity to the MXF environment. Different NK subsets upregulate the expression of cytokines and chemokines through different activation pathways. Concurrently, MXF induces impairment of the mitochondrial oxidative phosphorylation system, culminating in apoptosis.
Collapse
Affiliation(s)
- Mengqing Wang
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Hao Wu
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Weiwei Jiang
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yunfei Ren
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xiaowei Yuan
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yanan Wang
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Jian Zhou
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wei Feng
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yusen Wang
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Tianpeng Xu
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Danying Zhang
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Yunhao Fang
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Chao He
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Wenfang Li
- Department of Emergency and Critical Care, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
11
|
Olowofolahan A, Fatunsin O, Olorunsogo O. Modulatory effect of ciprofloxacin, a broad spectrum antibacterial drug, on mPT pore using rat model with estradiol benzoate-induced endometrial hyperplasia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3331-3341. [PMID: 37943297 DOI: 10.1007/s00210-023-02824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Mitochondrial permeability transition (mPT) pore has become a motive for drug evolvement pertinent to dysregulated apoptosis situations. Some chemical compounds impede tumor/cancer via the inception of mPT pore opening. Ciprofloxacin has been demonstrated to hinder growth and effect apoptosis in some cancer cells. However, using a rat model, this study investigated its effect on mitochondrial-mediated cell death via mPT pore opening and estradiol benzoate (EB)-induced endometrial hyperplasia. Mitochondria were isolated using differential centrifugation. The opening of the pore, cytochrome c release (CCR), mitochondrial ATPase (mATPase) activity, mitochondrial lipid peroxidation (mLPO), caspases 3 and 9 levels, and hepatic DNA fragmentation were determined. Histological evaluation of hepatic and uterine sections and immunoexpression levels of Bax, caspase 3, and anti-apoptotic Bcl-2 levels were quantified. The results show that ciprofloxacin caused mPT pore opening, CCR, mATPase activity, effected mLPO, caspases 3 and 9 activations, and hepatic DNA fragmentation. The histology of the liver section showed moderate to marked disseminated congestion at 100 mg/kg, while higher doses showed severe hepatic damage. Severe EH was detected in the EB-treated rats which was attenuated by ciprofloxacin in the treatment group. The Bax and caspase expressions were upregulated by ciprofloxacin while anti-apoptotic Bcl-2 was downregulated. Ciprofloxacin induces mitochondrial-mediated cell death via mPT pore opening and mitigates EB-induced EH in rat models via Bax/caspase/Bcl-2 signaling pathway.
Collapse
Affiliation(s)
- Adeola Olowofolahan
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Omowumi Fatunsin
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunso Olorunsogo
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
12
|
Mendes I, Vale N. Overcoming Microbiome-Acquired Gemcitabine Resistance in Pancreatic Ductal Adenocarcinoma. Biomedicines 2024; 12:227. [PMID: 38275398 PMCID: PMC10813061 DOI: 10.3390/biomedicines12010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Gastrointestinal cancers (GICs) are one of the most recurrent diseases in the world. Among all GICs, pancreatic cancer (PC) is one of the deadliest and continues to disrupt people's lives worldwide. The most frequent pancreatic cancer type is pancreatic ductal adenocarcinoma (PDAC), representing 90 to 95% of all pancreatic malignancies. PC is one of the cancers with the worst prognoses due to its non-specific symptoms that lead to a late diagnosis, but also due to the high resistance it develops to anticancer drugs. Gemcitabine is a standard treatment option for PDAC, however, resistance to this anticancer drug develops very fast. The microbiome was recently classified as a cancer hallmark and has emerged in several studies detailing how it promotes drug resistance. However, this area of study still has seen very little development, and more answers will help in developing personalized medicine. PC is one of the cancers with the highest mortality rates; therefore, it is crucial to explore how the microbiome may mold the response to reference drugs used in PDAC, such as gemcitabine. In this article, we provide a review of what has already been investigated regarding the impact that the microbiome has on the development of PDAC in terms of its effect on the gemcitabine pathway, which may influence the response to gemcitabine. Therapeutic advances in this type of GIC could bring innovative solutions and more effective therapeutic strategies for other types of GIC, such as colorectal cancer (CRC), due to its close relation with the microbiome.
Collapse
Affiliation(s)
- Inês Mendes
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Edifício de Geociências, 5000-801 Vila Real, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
13
|
Peter S, Aderibigbe BA. Ciprofloxacin and Norfloxacin Hybrid Compounds: Potential Anticancer Agents. Curr Top Med Chem 2024; 24:644-665. [PMID: 38357952 DOI: 10.2174/0115680266288319240206052223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND The concept of utilizing drug repurposing/repositioning in the development of hybrid molecules is an important strategy in drug discovery. Fluoroquinolones, a class of antibiotics, have been reported to exhibit anticancer activities. Although anticancer drug development is achieving some positive outcomes, there is still a need to develop new and effective anticancer drugs. Some limitations associated with most of the available anticancer drugs are drug resistance and toxicity, poor bio-distribution, poor solubility, and lack of specificity, thereby reducing their therapeutic outcomes. OBJECTIVES Fluoroquinolones, a known class of antibiotics, have been explored by hybridizing them with other pharmacophores and evaluating their anticancer activity in silico and in vitro. Hence, this review provides an update on new anticancer drugs containing fluoroquinolones moiety, Ciprofloxacin and Norfloxacin between 2020 and 2023, their structural relationship activity, and the future strategies to develop potent chemotherapeutic agents. METHODS Fluoroquinolones were mostly hybridized via the N-4 of the piperazine ring on position C-7 with known pharmacophores characterized, followed by biological studies to evaluate their anticancer activity. RESULTS The hybrid molecules displayed promising and interesting anticancer activities. Factors such as the nature of the linker, the presence of electron-withdrawing groups, nature, and position of the substituents influenced the anticancer activity of the synthesized compounds. CONCLUSION The hybrids were selective towards some cancer cells. However, further in vivo studies are needed to fully understand their mode of action.
Collapse
Affiliation(s)
- Sijongesonke Peter
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape, South Africa
| | - Blessing A Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Private Bag X1314, Alice, Eastern Cape, South Africa
| |
Collapse
|
14
|
Akhlaq A, Ashraf M, Omer MO, Altaf I. Carvacrol-Fabricated Chitosan Nanoparticle Synergistic Potential with Topoisomerase Inhibitors on Breast and Cervical Cancer Cells. ACS OMEGA 2023; 8:31826-31838. [PMID: 37692253 PMCID: PMC10483689 DOI: 10.1021/acsomega.3c03337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Breast and cervical cancers are the most common heterogeneous malignancies in women. Chemotherapy with conventional drug delivery systems having several limitations along with development of multidrug resistance compelled us to seek out targeted therapeutics. Nanoparticles are suitable substitutes to circumvent multidrug resistance for the targeted treatment of cancer. The current study was aimed to investigate the anticancer effect of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors. The average size of carvacrol-loaded chitosan nanoparticles was found to be 80 nm with 24.7 mV ζ-potential, and maximum absorbance was observed at 275 nm. Among all drug combinations, the carvacrol nanoparticles with the doxorubicin combination group exerted greater dose-dependent growth inhibition of both MCF-7 and HeLa cells as compared to single carvacrol nanoparticles and doxorubicin. Combination index values of carvacrol nanoparticles and the doxorubicin combination group showed a strong synergistic effect as they were found to be between 0.2 and 0.4, 0.31 for MCF-7 and 0.34 for HeLa cells. The carvacrol nanoparticles in combination with doxorubicin on MCF-7 cells reduced the dose 16.32-fold for carvacrol nanoparticles and 4.09-fold for doxorubicin at 6.23 μg/mL IC50, while on HeLa cells, this combination reduced the dose 13.18-fold for carvacrol nanoparticles and 3.83-fold for doxorubicin at 9.33 μg/mL IC50. As the dose reduction values were greater than 1, they indicated favorable dose reduction. It was concluded that the combination of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors may represent an innovative and promising strategy to improve the efficacy, resistance, and targeted delivery of chemotherapeutics in cancer.
Collapse
Affiliation(s)
- Amina Akhlaq
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ashraf
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ovais Omer
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Imran Altaf
- Institute
of Microbiology, University of Veterinary
and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
15
|
Yadav S, Shah D, Dalai P, Agrawal-Rajput R. The tale of antibiotics beyond antimicrobials: Expanding horizons. Cytokine 2023; 169:156285. [PMID: 37393846 DOI: 10.1016/j.cyto.2023.156285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Antibiotics had proved to be a godsend for mankind since their discovery. They were once the magical solution to the vexing problem of infection-related deaths. German scientist Paul Ehrlich had termed salvarsan as the silver bullet to treatsyphilis.As time passed, the magic of newly discovered silver bullets got tarnished with raging antibiotic resistance among bacteria and associated side-effects. Still, antibiotics remain the primary line of treatment for bacterial infections. Our understanding of their chemical and biological activities has increased immensely with advancement in the research field. Non-antibacterial effects of antibiotics are studied extensively to optimise their safer, broad-range use. These non-antibacterial effects could be both useful and harmful to us. Various researchers across the globe including our lab are studying the direct/indirect effects and molecular mechanisms behind these non-antibacterial effects of antibiotics. So, it is interesting for us to sum up the available literature. In this review, we have briefed the possible reason behind the non-antibacterial effects of antibiotics, owing to the endosymbiotic origin of host mitochondria. We further discuss the physiological and immunomodulatory effects of antibiotics. We then extend the review to discuss molecular mechanisms behind the plausible use of antibiotics as anticancer agents.
Collapse
Affiliation(s)
- Shivani Yadav
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Dhruvi Shah
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Department of Biotechnology and Bioengineering, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
16
|
Kloskowski T, Fekner Z, Szeliski K, Paradowska M, Balcerczyk D, Rasmus M, Dąbrowski P, Kaźmierski Ł, Drewa T, Pokrywczyńska M. Effect of four fluoroquinolones on the viability of bladder cancer cells in 2D and 3D cultures. Front Oncol 2023; 13:1222411. [PMID: 37534254 PMCID: PMC10390741 DOI: 10.3389/fonc.2023.1222411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The anticancer properties of fluoroquinolones and the high concentrations they achieve in urine may help in bladder cancer therapy. This study aimed to analyze the properties of 4 fluoroquinolones as potential candidates for supportive treatment of bladder cancer. Methods Comparative analyses were performed on the cytotoxic effects of norfloxacin, enrofloxacin, moxifloxacin, and ofloxacin on normal and cancer urothelial cell lines. In 2D culture, the cytotoxic properties of fluoroquinolones were evaluated using MTT assay, real-time cell growth analysis, fluorescence and light microscopy, flow cytometry, and molecular analysis. In 3D culture, the properties of fluoroquinolones were tested using luminescence assays and confocal microscopy. Results and Discussion All tested fluoroquinolones in 2D culture decreased the viability of both tested cell lines in a dose- and timedependent manner. Lower concentrations did not influence cell morphology and cytoskeletal organization. In higher concentrations, destruction of the actin cytoskeleton and shrinkage of the nucleus was visible. Flow cytometry analysis showed cell cycle inhibition of bladder cancer cell lines in the G2/M phase. This influence was minimal in the case of normal urothelium cells. In both tested cell lines, increases in the number of late apoptotic cells were observed. Molecular analysis showed variable expression of studied genes depending on the drug and concentration. In 3D culture, tested drugs were effective only in the highest tested concentrations which was accompanied by caspase 3/7 activation and cytoskeleton degradation. This effect was hardly visible in non-cancer cell lines. According to the data, norfloxacin and enrofloxacin had the most promising properties. These two fluoroquinolones exhibited the highest cytotoxic properties against both tested cell lines. In the case of norfloxacin, almost all calculated LC values for bladder cancer cell lines were achievable in the urine. Enrofloxacin and norfloxacin can be used to support chemotherapy in bladder cancer patients.
Collapse
Affiliation(s)
- Tomasz Kloskowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Zuzanna Fekner
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Michelle Paradowska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Daria Balcerczyk
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Paweł Dąbrowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Łukasz Kaźmierski
- Chair of Urology and Andrology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- Chair of Urology and Andrology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
17
|
Song QQ, Lin LP, Chen YL, Qian JC, Wei K, Su JW, Ding JH, Lu M, Liu Y, Tan RX, Hu G. Characterization of LTr1 derived from cruciferous vegetables as a novel anti-glioma agent via inhibiting TrkA/PI3K/AKT pathway. Acta Pharmacol Sin 2023; 44:1262-1276. [PMID: 36482085 PMCID: PMC10203337 DOI: 10.1038/s41401-022-01033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Malignant glioma is the most fatal, invasive brain cancer with limited treatment options. Our previous studies show that 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (LTr1), a major metabolite of indole-3-carbinol (I3C) derived from cruciferous vegetables, produces anti-tumour effect against various tumour cell lines. In this study we characterized LTr1 as a novel anti-glioma agent. Based on screening 134 natural compounds and comparing the candidates' efficacy and toxicity, LTr1 was selected as the lead compound. We showed that LTr1 potently inhibited the viability of human glioma cell lines (SHG-44, U87, and U251) with IC50 values of 1.97, 1.84, and 2.03 μM, respectively. Furthermore, administration of LTr1 (100,300 mg· kg-1 ·d-1, i.g. for 18 days) dose-dependently suppressed the tumour growth in a U87 xenograft nude mouse model. We demonstrated that LTr1 directly bound with TrkA to inhibit its kinase activity and the downstream PI3K/AKT pathway thus inducing significant S-phase cell cycle arrest and apoptosis in SHG-44 and U87 cells by activating the mitochondrial pathway and inducing the production of reactive oxygen species (ROS). Importantly, LTr1 could cross the blood-brain barrier to achieve the therapeutic concentration in the brain. Taken together, LTr1 is a safe and promising therapeutic agent against glioma through inhibiting TrkA/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qi-Qi Song
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li-Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ya-Li Chen
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Cheng Qian
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Wei
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Wei Su
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian-Hua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211100, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211100, China
| | - Yang Liu
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Ren-Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, 210023, China.
| | - Gang Hu
- Departments of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211100, China.
| |
Collapse
|
18
|
Struga M, Roszkowski P, Bielenica A, Otto-Ślusarczyk D, Stępień K, Stefańska J, Zabost A, Augustynowicz-Kopeć E, Koliński M, Kmiecik S, Myslovska A, Wrzosek M. N-Acylated Ciprofloxacin Derivatives: Synthesis and In Vitro Biological Evaluation as Antibacterial and Anticancer Agents. ACS OMEGA 2023; 8:18663-18684. [PMID: 37273589 PMCID: PMC10233829 DOI: 10.1021/acsomega.3c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
A novel series of N-acylated ciprofloxacin (CP) conjugates 1-21 were synthesized and screened as potential antimicrobial agents. Conjugates 1 and 2 were 1.25-10-fold more potent than CP toward all Staphylococci (minimal inhibitory concentration 0.05-0.4 μg/mL). Most of the chloro- (3-7), bromo- (8-11), and CF3-alkanoyl (14-16) derivatives expressed higher or comparable activity to CP against selected Gram-positive strains. A few CP analogues (5, 10, and 11) were also more effective toward the chosen clinical Gram-negative rods. Conjugates 5, 10, and 11 considerably influenced the phases of the bacterial growth cycle over 18 h. Additionally, compounds 2, 4-7, 9-12, and 21 exerted stronger tuberculostatic action against three Mycobacterium tuberculosis isolates than the first-line antitubercular drugs. Amides 1, 2, 5, 6, 10, and 11 targeted gyrase and topoisomerase IV at 2.7-10.0 μg/mL, which suggests a mechanism of antibacterial action related to CP. These findings were confirmed by molecular docking studies. In addition, compounds 3 and 15 showed high antiproliferative activities against prostate PC3 cells (IC50 2.02-4.8 μM), up to 6.5-2.75 stronger than cisplatin. They almost completely reduced the growth and proliferation rates in these cells, without a cytotoxic action against normal HaCaT cell lines. Furthermore, derivatives 3 and 21 induced apoptosis/necrosis in PC3 cells, probably by increasing the intracellular ROS amount, as well as they diminished the IL-6 level in tumor cells.
Collapse
Affiliation(s)
- Marta Struga
- Chair
and Department of Biochemistry, Medical
University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Roszkowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Bielenica
- Chair
and Department of Biochemistry, Medical
University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Dagmara Otto-Ślusarczyk
- Chair
and Department of Biochemistry, Medical
University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland
| | - Karolina Stępień
- Department
of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Stefańska
- Department
of Pharmaceutical Microbiology, Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Zabost
- Department
of Microbiology, National Tuberculosis and
Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department
of Microbiology, National Tuberculosis and
Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Michał Koliński
- Bioinformatics
Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Sebastian Kmiecik
- Biological
and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Alina Myslovska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Małgorzata Wrzosek
- Department
of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
19
|
Elanany MA, Osman EEA, Gedawy EM, Abou-Seri SM. Design and synthesis of novel cytotoxic fluoroquinolone analogs through topoisomerase inhibition, cell cycle arrest, and apoptosis. Sci Rep 2023; 13:4144. [PMID: 36914702 PMCID: PMC10011602 DOI: 10.1038/s41598-023-30885-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
To exploit the advantageous properties of approved drugs to hasten anticancer drug discovery, we designed and synthesized a series of fluoroquinolone (FQ) analogs via functionalization of the acid hydrazides of moxifloxacin, ofloxacin, and ciprofloxacin. Under the NCI-60 Human Tumor Cell Line Screening Assay, (IIIf) was the most potent among moxifloxacin derivatives, whereas (VIb) was the only ofloxacin derivative with significant effects and ciprofloxacin derivatives were devoid of activity. (IIIf) and (VIb) were further selected for five-dose evaluation, where they showed potent growth inhibition with a mean GI50 of 1.78 and 1.45 µM, respectively. (VIb) elicited a more potent effect reaching sub-micromolar level on many cell lines, including MDA-MB-468 and MCF-7 breast cancer cell lines (GI50 = 0.41 and 0.42 µM, respectively), NSCLC cell line HOP-92 (GI50 = 0.50 µM) and CNS cell lines SNB-19 and U-251 (GI50 = 0.51 and 0.61 µM, respectively). (IIIf) and (VIb) arrested MCF-7 cells at G1/S and G1, respectively, and induced apoptosis mainly through the intrinsic pathway as shown by the increased ratio of Bax/Bcl-2 and caspase-9 with a lesser activation of the extrinsic pathway through caspase-8. Both compounds inhibited topoisomerase (Topo) with preferential activity on type II over type I and (VIb) was marginally more potent than (IIIf). Docking study suggests that (IIIf) and (VIb) bind differently to Topo II compared to etoposide. (IIIf) and (VIb) possess high potential for oral absorption, low CNS permeability and low binding to plasma proteins as suggested by in silico ADME calculations. Collectively, (IIIf) and (VIb) represent excellent lead molecules for the development of cytotoxic agents from quinolone scaffolds.
Collapse
Affiliation(s)
- Mohamed A Elanany
- Department of Pharmaceutical Chemistry, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
| | - Essam Eldin A Osman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ehab Mohamed Gedawy
- Department of Pharmaceutical Chemistry, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
20
|
Chrzanowska A, Kurpios-Piec D, Żyżyńska-Granica B, Kiernozek-Kalińska E, Lay WX, Ciechanowicz AK, Struga M. Anticancer activity and metabolic alteration in colon and prostate cancer cells by novel moxifloxacin conjugates with fatty acids. Eur J Pharmacol 2023; 940:175481. [PMID: 36566005 DOI: 10.1016/j.ejphar.2022.175481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The positive and pro-economic trend in the management of cancer treatment is the search for the antineoplastic potential of known, widely used and safe drugs with a different clinical purpose. A good candidate seems to be moxifloxacin with broad-spectrum antibacterial activity, which as the member of the fourth generation fluoroquinolone is known to affect not only bacterial but also eukaryotic DNA topoisomerases, however at high concentration. Due to the fact that the modification of parent drug with lipid component can improve anticancer potential by increasing of bioavailability, selectivity, and cytotoxic efficiency, we evaluated the mechanisms of cytotoxic activity of novel moxifloxacin conjugates with fatty acids and verified metabolic profile in SW480, SW620 and PC3 cell lines. Our study revealed that cytotoxic potential of moxifloxacin conjugates was stronger than free moxifloxacin, moreover, they remained non-toxic to normal HaCaT cells. PC3 were more sensitive to MXF conjugates than colon cancer cells. The most promising cytotoxic activity exhibited conjugate 4m and 16m with oleic and stearic acid reducing viability of PC3 and SW620 cells. Tested conjugates activated caspases 3/7 and induced late-apoptosis, mainly in PC3 and SW620 cells. However, the most pronounced inhibition of NF-κB activation and IL-6 secretion was observed in SW480. Metabolomic analysis indicated influence of the moxifloxacin conjugates on intensity of lipid derivatives with the most successful metabolite profile in PC3. Our findings suggested the cytotoxic potential of moxifloxacin conjugates, especially with oleic and stearic acid can be beneficial in oncological therapy, including their possible anti-inflammatory and known antibacterial effect.
Collapse
Affiliation(s)
- Alicja Chrzanowska
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Dagmara Kurpios-Piec
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | - Barbara Żyżyńska-Granica
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| | | | - Wen Xin Lay
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Andrzej K Ciechanowicz
- Laboratory of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, ul. Banacha 1, 02-097, Warsaw, Poland.
| |
Collapse
|
21
|
Xiang B, Abudupataer M, Liu G, Zhou X, Liu D, Zhu S, Ming Y, Yin X, Yan S, Sun Y, Lai H, Wang C, Li J, Zhu K. Ciprofloxacin exacerbates dysfunction of smooth muscle cells in a microphysiological model of thoracic aortic aneurysm. JCI Insight 2023; 8:161729. [PMID: 36472912 PMCID: PMC9977303 DOI: 10.1172/jci.insight.161729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Ciprofloxacin use may be associated with adverse aortic events. However, the mechanism underlying the effect of ciprofloxacin on the progression of thoracic aortic aneurysm (TAA) is not well understood. Using an in vitro microphysiological model, we treated human aortic smooth muscle cells (HASMCs) derived from patients with bicuspid aortic valve- or tricuspid aortic valve-associated (BAV- or TAV-associated) TAAs with ciprofloxacin. TAA C57BL/6 mouse models were utilized to verify the effects of ciprofloxacin exposure. In the microphysiological model, real-time PCR, Western blotting, and RNA sequencing showed that ciprofloxacin exposure was associated with a downregulated contractile phenotype, an upregulated inflammatory reaction, and extracellular matrix (ECM) degradation in the normal HASMCs derived from the nondiseased aorta. Ciprofloxacin induced mitochondrial dysfunction in the HASMCs and further increased apoptosis by activating the ERK1/2 and P38 mitogen-activated protein kinase pathways. These adverse effects appeared to be more severe in the HASMCs derived from BAV- and TAV-associated TAAs than in the normal HASMCs when the ciprofloxacin concentration exceeded 100 μg/mL. In the aortic walls of the TAA-induced mice, ECM degradation and apoptosis were aggravated after ciprofloxacin exposure. Therefore, ciprofloxacin should be used with caution in patients with BAV- or TAV-associated TAAs.
Collapse
Affiliation(s)
- Bitao Xiang
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mieradilijiang Abudupataer
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Liu
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaonan Zhou
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dingqian Liu
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shichao Zhu
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Ming
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiujie Yin
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiqiang Yan
- Institutes of Biomedical Sciences and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, and,The State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Yongxin Sun
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Zhu
- Department of Cardiac Surgery, and,Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
22
|
In Vitro Anticancer Activity of Novel Ciprofloxacin Mannich Base in Lung Adenocarcinoma and High-Grade Serous Ovarian Cancer Cell Lines via Attenuating MAPK Signaling Pathway. Molecules 2023; 28:molecules28031137. [PMID: 36770806 PMCID: PMC9921546 DOI: 10.3390/molecules28031137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Novel drugs are desperately needed in order to combat a significant challenge due to chemo-therapeutic resistance and bad prognosis. This research aimed to assess the anticancer activity of a newly synthesized ciprofloxacin Mannich base (CMB) on ovarian cancer (OVCAR-3) and lung cancer (A-549) cell lines and to investigate probable involved molecular mechanisms. The cytotoxic and pro-apoptotic impact of CMB on both cell lines was investigated using MTT assay, Annexin V assay, and cell cycle analysis, as well as caspase-3 activation. Western blotting was carried out to evaluate downstream targets of the MAPK pathway, while qRT PCR was used to evaluate the gene expression pattern of the p53/Bax/Bcl2 pathway. CMB treatment showed significantly reduced cell proliferation in both OVCAR-3 and A-549 cells with half maximum inhibitory concentration (IC50) = 11.60 and 16.22 µg/mL, respectively. CMB also induced apoptosis, S phase cell cycle arrest, and up-regulated expression of p53, p21, and Bax while down-regulated Bcl2 expression. CMB also halted cell proliferation by deactivating the MAPK pathway. In conclusion, CMB may be regarded as a potential antiproliferative agent for lung and ovarian cancers due to anti-proliferative and pro-apoptotic actions via inhibition of the MAPK pathway and p53/Bax/Bcl2.
Collapse
|
23
|
Koirala N, Butnariu M, Panthi M, Gurung R, Adhikari S, Subba RK, Acharya Z, Popović-Djordjević J. Antibiotics in the management of tuberculosis and cancer. ANTIBIOTICS - THERAPEUTIC SPECTRUM AND LIMITATIONS 2023:251-294. [DOI: 10.1016/b978-0-323-95388-7.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Swedan HK, Kassab AE, Gedawy EM, Elmeligie SE. Design, synthesis, and biological evaluation of novel ciprofloxacin derivatives as potential anticancer agents targeting topoisomerase II enzyme. J Enzyme Inhib Med Chem 2023; 38:118-137. [PMID: 36305290 PMCID: PMC9635472 DOI: 10.1080/14756366.2022.2136172] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A series of novel ciprofloxacin (CP) derivatives substituted at the N-4 position with biologically active moieties were designed and synthesised. 14 compounds were 1.02- to 8.66-fold more potent than doxorubicin against T-24 cancer cells. Ten compounds were 1.2- to 7.1-fold more potent than doxorubicin against PC-3 cancer cells. The most potent compounds 6, 7a, 7b, 8a, 9a, and 10c showed significant Topo II inhibitory activity (83-90% at 100 μM concentration). Compounds 6, 8a, and 10c were 1.01- to 2.32-fold more potent than doxorubicin. Compounds 6 and 8a induced apoptosis in T-24 (16.8- and 20.1-fold, respectively compared to control). This evidence was supported by an increase in the level of apoptotic caspase-3 (5.23- and 7.6-fold, sequentially). Both compounds arrested the cell cycle in the S phase in T-24 cancer cells while in PC-3 cancer cells the two compounds arrested the cell cycle in the G1 phase. Molecular docking simulations of compounds 6 and 8a into the Topo II active site rationalised their remarkable Topo II inhibitory activity.
Collapse
Affiliation(s)
- Hadeer K. Swedan
- Central Administration of Research and Health Development, Ministry of Health, and Population (MoHP), Cairo, Egypt
| | - Asmaa E. Kassab
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| | - Ehab M. Gedawy
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
- Faculty of Pharmacy and Pharmaceutical Industries, Department of Pharmaceutical Chemistry, Badr University in Cairo (BUC), Badr City, Egypt
| | - Salwa E. Elmeligie
- Faculty of Pharmacy, Department of Pharmaceutical Organic Chemistry, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Yadav V, Jobe N, Satapathy SR, Mohapatra P, Andersson T. Increased MARCKS Activity in BRAF Inhibitor-Resistant Melanoma Cells Is Essential for Their Enhanced Metastatic Behavior Independent of Elevated WNT5A and IL-6 Signaling. Cancers (Basel) 2022; 14:cancers14246077. [PMID: 36551563 PMCID: PMC9775662 DOI: 10.3390/cancers14246077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Treatment of melanoma with a BRAF inhibitor (BRAFi) frequently initiates development of BRAFi resistance, leading to increased tumor progression and metastasis. Previously, we showed that combined inhibition of elevated WNT5A and IL-6 signaling reduced the invasion and migration of BRAFi-resistant (BRAFi-R) melanoma cells. However, the use of a combined approach per se and the need for high inhibitor concentrations to achieve this effect indicate a need for an alternative and single target. One such target could be myristoylated alanine-rich C-kinase substrate (MARCKS), a downstream target of WNT5A in BRAFi-sensitive melanoma cells. Our results revealed that MARCKS protein expression and activity are significantly elevated in PLX4032 and PLX4720 BRAFi-R A375 and HTB63 melanoma cells. Surprisingly, neither WNT5A nor IL-6 contributed to the increases in MARCKS expression and activity in BRAFi-R melanoma cells, unlike in BRAFi-sensitive melanoma cells. However, despite the above findings, our functional validation experiments revealed that MARCKS is essential for the increased metastatic behavior of BRAFi-R melanoma cells. Knockdown of MARCKS in BRAFi-R melanoma cells caused reductions in the F-actin content and the number of filopodia-like protrusions, explaining the impaired migration, invasion and metastasis of these cells observed in vitro and in an in vivo zebrafish model. In our search for an alternative explanation for the increased activity of MARCKS in BRAFi-R melanoma cells, we found elevated basal activities of PKCα, PKCε, PKCι, and RhoA. Interestingly, combined inhibition of basal PKC and RhoA effectively impaired MARCKS activity in BRAFi-R melanoma cells. Our results reveal that MARCKS is an attractive single antimetastatic target in BRAFi-R melanoma cells.
Collapse
Affiliation(s)
- Vikas Yadav
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
- Correspondence: (V.Y.); (T.A.); Tel.: +46-40-391167 (V.Y. & T.A.)
| | - Njainday Jobe
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
| | - Shakti Ranjan Satapathy
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
| | - Purusottam Mohapatra
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati 781101, Assam, India
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, SE 20213 Malmö, Sweden
- Correspondence: (V.Y.); (T.A.); Tel.: +46-40-391167 (V.Y. & T.A.)
| |
Collapse
|
26
|
Yadav V, Sharma K, Bhattacharya S, Talwar P, Purohit PK, Saini N. RETRACTED: hsa-miR-23a~27a~24-2 cluster members inhibit aggressiveness of breast cancer cells by commonly targeting NCOA1, NLK and RAP1B. Life Sci 2022; 307:120906. [PMID: 36007610 DOI: 10.1016/j.lfs.2022.120906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The corresponding author notified the journal of three examples of image duplication within the published article (two in Figure 3D and one in Figure 4A), and requested a corrigendum. As per journal policy when considering corrigendum requests, the journal requested the authors to provide source data relating to these affected figures. The editorial team noticed 12 additional suspected image duplications within the supplied source data and the corresponding author was informed. Upon submission of revised source data, the editorial team noticed two new suspected image duplications. The editorial team have concerns about the provenance of the data and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Vikas Yadav
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India
| | - Kritika Sharma
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India
| | - Sushant Bhattacharya
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India
| | - Puneet Talwar
- Institute of Human Behaviour & Allied Sciences (IHBAS), Delhi, India
| | - Paresh Kumar Purohit
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeru Saini
- Functional Genomics Unit, CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, 110007, Delhi, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Yadav V. Computational evidence based perspective on the plausible repositioning of fluoroquinolones for COVID-19 treatment. Curr Comput Aided Drug Des 2022; 18:CAD-EPUB-126248. [PMID: 36093826 DOI: 10.2174/1573409918666220909094645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022]
Abstract
The coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a serious global healthcare crisis, so there is an emergence of identifying efficacious therapeutic options. In a setting where there is an unavailability of definitive medication along with the constant eruption of vaccine-related controversies, the drug-repositioning approach seems to be an ideal step for the management of COVID-19 patients. Fluoroquinolones (FQs) are commonly prescribed antibiotics for the treatment of genitourinary tract and upper respiratory tract infections, including severe community-acquired pneumonia. Research over the years has postulated multifaceted implications of FQs in various pathological conditions. Previously, it has been reported that few, but not all FQs, possess strong antiviral activity with an unknown mechanism of action. Herein, an interesting perspective is discussed on repositioning possibilities of FQs for the SARS-CoV-2 infections based on the recent in silico evidential support. Noteworthy, FQs possess immunomodulatory and bactericidal activity which could be valuable for patients dealing with COVID-19 related complications. Conclusively, the current perspective could pave the way to initiate pre-clinical testing of FQs against several strains of SARS-CoV-2.
Collapse
Affiliation(s)
- Vikas Yadav
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Sart-Tilman, 4000, Liège, Belgium
- Department of Translational Medicine, Skane University Hospital, Clinical Research Centre, Lund University, Malmö, Sweden
| |
Collapse
|
28
|
Beberok A, Rok J, Rzepka Z, Marciniec K, Boryczka S, Wrześniok D. Interaction between moxifloxacin and Mcl-1 and MITF proteins: the effect on growth inhibition and apoptosis in MDA-MB-231 human triple-negative breast cancer cells. Pharmacol Rep 2022; 74:1025-1040. [PMID: 36045272 PMCID: PMC9585003 DOI: 10.1007/s43440-022-00407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 12/24/2022]
Abstract
Background Microphthalmia-associated transcription factor (MITF) activates the expression of genes involved in cellular proliferation, DNA replication, and repair, whereas Mcl-1 is a member of the Bcl-2 family of proteins that promotes cell survival by preventing apoptosis. The objective of the present study was to verify whether the interaction between moxifloxacin (MFLX), one of the fluoroquinolones, and MITF/Mcl-1 protein, could affect the viability, proliferation, and apoptosis in human breast cancer using both in silico and in vitro models. Methods Molecular docking analysis (in silico), fluorescence image cytometry, and Western blot (in vitro) techniques were applied to assess the contribution of MITF and Mcl-1 proteins in the MFLX-induced anti-proliferative and pro-apoptotic effects on the MDA-MB-231 breast cancer cells. Results We indicated the ability of MFLX to form complexes with MITF and Mcl-1 as well as the drug’s capacity to affect the expression of the tested proteins. We also showed that MFLX decreased the viability and proliferation of MDA-MB-231 cells and induced apoptosis via the intrinsic death pathway. Moreover, the analysis of the cell cycle progression revealed that MFLX caused a block in the S and G2/M phases. Conclusions We demonstrated for the first time that the observed effects of MFLX on MDA-MB-231 breast cancer cells (growth inhibition and apoptosis induction) could be related to the drug’s ability to interact with MITF and Mcl-1 proteins. Furthermore, the presented results suggest that MITF and Mcl-1 proteins could be considered as the target in the therapy of breast cancer. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s43440-022-00407-7.
Collapse
Affiliation(s)
- Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| |
Collapse
|
29
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
30
|
Kloskowski T, Frąckowiak S, Adamowicz J, Szeliski K, Rasmus M, Drewa T, Pokrywczyńska M. Quinolones as a Potential Drug in Genitourinary Cancer Treatment-A Literature Review. Front Oncol 2022; 12:890337. [PMID: 35756639 PMCID: PMC9213725 DOI: 10.3389/fonc.2022.890337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Quinolones, broad-spectrum antibiotics, are frequently prescribed by urologists for many urological disorders. The mechanism of their bactericidal activity is based on the inhibition of topoisomerase II or IV complex with DNA, which consequently leads to cell death. It has been observed that these antibiotics also act against the analogous enzymes present in eukaryotic cells. Due to their higher accumulation in urine and prostate tissue than in serum, these drugs seem to be ideal candidates for application in genitourinary cancer treatment. In this study, an extensive literature review has been performed to collect information about concentrations achievable in urine and prostate tissue together with information about anticancer properties of 15 quinolones. Special attention was paid to the application of cytotoxic properties of quinolones for bladder and prostate cancer cell lines. Data available in the literature showed promising properties of quinolones, especially in the case of urinary bladder cancer treatment. In the case of prostate cancer, due to low concentrations of quinolones achievable in prostate tissue, combination therapy with other chemotherapeutics or another method of drug administration is necessary.
Collapse
Affiliation(s)
- Tomasz Kloskowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Sylwia Frąckowiak
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Jan Adamowicz
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
31
|
Mohammed HHH, Abd El-Hafeez AA, Ebeid K, Mekkawy AI, Abourehab MAS, Wafa EI, Alhaj-Suliman SO, Salem AK, Ghosh P, Abuo-Rahma GEDA, Hayallah AM, Abbas SH. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I& II and tubulin polymerization. J Enzyme Inhib Med Chem 2022; 37:1346-1363. [PMID: 35548854 PMCID: PMC9116245 DOI: 10.1080/14756366.2022.2072308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67-62.47 µM, and 4.19-24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Cancer Biology Department, Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Kareem Ebeid
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA.,Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
32
|
Ciprofloxacin/Topoisomerase-II complex as a promising dual UV–Vis/fluorescent probe: accomplishments and opportunities for the cancer diagnosis. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Pfab C, Abgaryan A, Danzer B, Mourtada F, Ali W, Gessner A, El-Najjar N. Ceftazidime and cefepime antagonize 5-fluorouracil's effect in colon cancer cells. BMC Cancer 2022; 22:125. [PMID: 35100987 PMCID: PMC8802503 DOI: 10.1186/s12885-021-09125-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/18/2021] [Indexed: 11/19/2022] Open
Abstract
Background Drug-drug interaction (DDI), which can occur at the pharmacokinetics and/or the pharmacodynamics (PD) levels, can increase or decrease the therapeutic or adverse response of a drug itself or a combination of drugs. Cancer patients often receive, along their antineoplastic agents, antibiotics such as ß-lactams to treat or prevent infection. Despite the narrow therapeutic indices of antibiotics and antineoplastic agents, data about their potential interaction are insufficient. 5-fluorouracil (5-FU), widely used against colon cancer, is known for its toxicity and large intra- and inter- individual variability. Therefore, knowledge about its interaction with antibiotics is crucial. Methods In this study, we evaluated at the PD levels, against HCT-116 colon cancer cells, DDI between 5-FU and several ß-lactams (ampicillin, benzypenicillin, piperacillin, meropenem, flucloxacillin, ceftazidime (CFT), and cefepime (CFP)), widely used in intensive care units. All drugs were tested at clinically achieved concentrations. MTT assay was used to measure the metabolic activity of the cells. Cell cycle profile and apoptosis induction were monitored, in HCT-116 and DLD-1 cells, using propidium iodide staining and Caspase-3/7 activity assay. The uptake of CFT and CFP by the cells was measured using LC-MS/MS method. Results Our data indicate that despite their limited uptake by the cells, CFT and CFP (two cephalosporins) antagonized significantly 5-FU-induced S-phase arrest (DLD-1 cells) and apoptosis induction (HCT-116 cells). Remarkably, while CFP did not affect the proliferation of colon cancer cells, CFT inhibited, at clinically relevant concentrations, the proliferation of DLD-1 cells via apoptosis induction, as evidenced by an increase in caspase 3/7 activation. Unexpectedly, 5-FU also antagonized CFT’s induced cell death in DLD-1 cells. Conclusion This study shows that CFP and CFT have adverse effects on 5-FU’s action while CFT is a potent anticancer agent that inhibits DLD-1 cells by inducing apoptotic cell death. Further studies are needed to decipher the mechanism(s) responsible for CFT’s effects against colon cancer as well as the observed antagonism between CFT, CFP, and 5-FU with the ultimate aim of translating the findings to the clinical settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09125-4.
Collapse
Affiliation(s)
- Christina Pfab
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Anush Abgaryan
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Barbara Danzer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Fatme Mourtada
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Weaam Ali
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
34
|
Fallica A, Barbaraci C, Amata E, Pasquinucci L, Turnaturi R, Dichiara M, Intagliata S, Gariboldi MB, Marras E, Orlandi VT, Ferroni C, Martini C, Rescifina A, Gentile D, Varchi G, Marrazzo A. Nitric Oxide Photo-Donor Hybrids of Ciprofloxacin and Norfloxacin: A Shift in Activity from Antimicrobial to Anticancer Agents. J Med Chem 2021; 64:11597-11613. [PMID: 34319100 PMCID: PMC8389907 DOI: 10.1021/acs.jmedchem.1c00917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 12/11/2022]
Abstract
The potential anticancer effect of fluoroquinolone antibiotics has been recently unveiled and related to their ability to interfere with DNA topoisomerase II. We herein envisioned the design and synthesis of novel Ciprofloxacin and Norfloxacin nitric oxide (NO) photo-donor hybrids to explore the potential synergistic antitumor effect exerted by the fluoroquinolone scaffold and NO eventually produced upon light irradiation. Anticancer activity, evaluated on a panel of tumor cell lines, showed encouraging results with IC50 values in the low micromolar range. Some compounds displayed intense antiproliferative activity on triple-negative and doxorubicin-resistant breast cancer cell lines, paving the way for their potential use to treat aggressive, refractory and multidrug-resistant breast cancer. No significant additive effect was observed on PC3 and DU145 cells following NO release. Conversely, antimicrobial photodynamic experiments on both Gram-negative and Gram-positive microorganisms displayed a significant killing rate in Staphylococcus aureus, accounting for their potential effectiveness as selective antimicrobial photosensitizers.
Collapse
Affiliation(s)
- Antonino
Nicolò Fallica
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Carla Barbaraci
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Lorella Pasquinucci
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Marzia Bruna Gariboldi
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Emanuela Marras
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Viviana Teresa Orlandi
- Department
of Biotechnology and Life Sciences (DBSV), University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Claudia Ferroni
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Cecilia Martini
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Antonio Rescifina
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Davide Gentile
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Greta Varchi
- Institute
for the Organic Synthesis and Photoreactivity − ISOF, Via Piero Gobetti, 101, 40129 Bologna, Italy
| | - Agostino Marrazzo
- Department
of Drug and Health Sciences (DSFS), University
of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| |
Collapse
|
35
|
Alaaeldin R, Mustafa M, Abuo-Rahma GEDA, Fathy M. In vitro inhibition and molecular docking of a new ciprofloxacin-chalcone against SARS-CoV-2 main protease. Fundam Clin Pharmacol 2021; 36:160-170. [PMID: 34268806 PMCID: PMC8444764 DOI: 10.1111/fcp.12708] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Background/Aim SARS‐CoV‐2 is one of the coronavirus families that emerged at the end of 2019. It infected the respiratory system and caused a pandemic worldwide. Fluoroquinolones (FQs) have been safely used as antibacterial agents for decades. The antiviral activity of FQs was observed. Moreover, substitution on the C‐7 position of ciprofloxacin enhanced its antiviral activity. Therefore, this study aims to investigate the antiviral activity of 7‐(4‐(N‐substituted‐carbamoyl‐methyl)piperazin‐1yl)‐chalcone in comparison with ciprofloxacin against SARS‐CoV‐2 main protease (Mpro). Materials and methods Vero cells were infected with SARS‐CoV‐2. After treatment with ciprofloxacin and the chalcone at the concentrations of 1.6, 16, 160 nmol/L for 48 h, SARS‐CoV‐2 viral load was detected using real‐time qPCR, SARS‐CoV‐2 infectivity was determined using plaque assay, and the main protease enzyme activity was detected using in vitro 3CL‐protease inhibition assay. The activity of the chalcone was justified through molecular docking within SARS‐CoV‐2 Mpro, in comparison with ciprofloxacin. Results The new chalcone significantly inhibited viral load replication where the EC50 was 3.93 nmol/L, the plaque formation ability of the virus was inhibited to 86.8% ± 2.47. The chalcone exhibited a significant inhibitory effect against SARS‐CoV‐2 Mpro in vitro in a dose‐dependent manner. The docking study into SARS‐CoV‐2 Mpro active site justified the importance of adding a substitution to the parent drug. Additionally, the assessment of the drug‐likeness properties indicated that the chalcone might have acceptable ADMET properties. Conclusion The new chalcone might be useful and has new insights for the inhibition of SARS‐CoV‐2 Mpro.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Muhamad Mustafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt.,Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
36
|
Lee SG, Lee DG, Joo YH, Chung N. Synergistic inhibitory effects of the oxyresveratrol and dacarbazine combination against melanoma cells. Oncol Lett 2021; 22:667. [PMID: 34386089 PMCID: PMC8299023 DOI: 10.3892/ol.2021.12928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Various therapies have been developed to target malignant melanoma, which is associated with a high mortality rate worldwide. Although dacarbazine (DTIC) is employed for treating melanoma, it is associated with several side effects. Hence, patients with melanoma are co-treated with additional drugs to mitigate the side effects of DTIC. In the present study, synergistic therapeutic effects of the DTIC/oxyresveratrol (ORT) combination were examined using the human malignant melanoma WM-266-4 cell line. Treatment with ORT and DTIC inhibited the proliferation of WM-266-4 cells. Compared with those in the ORT- and DTIC-treated groups, the proportion of cells arrested at the S phase, as well as apoptotic rates, were increased in the ORT and DTIC co-treatment group. In WM-266-4 cells, synergistic proliferation-inhibitory activities of the ORT/DTIC combination were assessed based on cell viability and migration, antioxidant capacity, cytokine production, cell cycle arrest, apoptotic rate and protein expression through WST-1 assay, wound healing assay, flow cytometry and western blotting. Furthermore, the expression levels of proteins, including NOTCH, involved in the pathogenesis of solid cancers, such as melanoma, were examined. Overall, the ORT/DTIC combination synergistically promoted cell cycle arrest at the S phase and the apoptosis of WM-266-4 cells. Thus, this combination treatment may serve as a novel therapeutic strategy for treating malignant melanoma.
Collapse
Affiliation(s)
- Sang Gyu Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dong Gun Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yong Hoon Joo
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Namhyun Chung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
37
|
Khaleel S, Al-Hiari Y, Kasabri V, Haddadin R, Albashiti R, Al-Zweri M, Bustanji Y. Antiproliferative properties of 7,8-Ethylene Diamine Chelator-Lipophilic Fluoroquinolone Derivatives Against colorectal cancer Cell Lines. Anticancer Agents Med Chem 2021; 22:1012-1028. [PMID: 34165411 DOI: 10.2174/1871520621666210623111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the most overwhelming diseases nowadays. It is considered the second cause of death after cardiovascular diseases. Due to the diversity of its types, stages, and genetic origin, there is no available drug to treat all cancers. Serious side effects and resistance to existing drugs are other problems in this struggle against cancer. In such quest, fluoroquinolones (FQs) offer a future promise as antiproliferative compounds due to safety, low cost, and lack of resistance. OBJECTIVES Therefore, this work aims at developing lipophilic FQs and screening their antiproliferative activity against colorectal cancer. METHODS Nine prepared FQs were investigated for antiproliferative activity utilizing in vitro SRB method. In comparison to the antiproliferative agent cisplatin, the assessment of antiproliferative activities of these novel FQs in a panel of colorectal cancer cell (crc) lines (HT29, HCT116, SW620, CACO2, SW480) and normal periodontal ligament fibroblasts for safety examination was performed. Antibacterial activity (MIC) was conducted against Staphylococcus aureus and Escherichia coli standard strains using the broth double dilution method. Antioxidant properties were suspected as the mechanism of antiproliferative activity; thus, a DPPH test was performed to analyze the radical scavenging potency of FQs compared to ascorbic acid as a reference agent. FQs compounds 3-5(a-c) were prepared, characterized and their structure was confirmed using spectroscopy techniques. RESULTS All compounds manifested good to excellent antiproliferative activity on HT29, HCT116, and SW620 with high safety index. The reduced series 4a, 4b, and 4c exerted excellent micro to nanomolar antiproliferative activities on HT29, HCT116, and SW620, which were stronger than the reference cisplatin against all cells. The reduced group of compounds 4(a-c) revealed higher potency vs. both nitro and triazolo groups. On cell lines HT29, HCT116, and SW620 reduced 4a with 7,8-ethylene diamine substitution revealed the highest antiproliferative efficacy (IC50 value) approaching nanomolar affinity with higher safety vs. cisplatin. The most active compound, 4a, exhibited significant potency against HCT116 and SW620 with IC50 0.6 and 0.16 µM, respectively. Novel FQs (4a, 4b, and 4c) also showed strong radical scavenging activity with IC50 values (µM) 0.06, 23, and 7.99, respectively. Exquisitely 4a revealed a similar pattern of activity to doxorubicin, indicating a similar mechanism of action. Strong antiproliferative and weak antibacterial activities of series 4 endorse that their mechanism involves eukaryotic topoisomerase II inhibition. This work has revealed novel FQs with excellent anticancer activity against 5 colorectal cancer (HT29, HCT116, SW620, CACO2, SW480) cell lines with a potential chelation mechanism due to 7,8-ethylene diamine chelator bridge. CONCLUSIONS The new FQs have confirmed that more lipophilic compounds could be more active as hypothesized. The p-halogenated aniline, N1-Butyl group in addition to 3-COOH, 8-NH2 are all essential requirements for strong antiproliferative FQ of our FQ scaffold. This work emphasizes the role of C-8 amino as part of ethylene diamine group as an essential requirement for antiproliferative FQs for the first time in the literature, entailing its role toward potential antneoplastic FQs.
Collapse
Affiliation(s)
| | - Yusuf Al-Hiari
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Violet Kasabri
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Randa Haddadin
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Rabab Albashiti
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Muhammad Al-Zweri
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| | - Yasser Bustanji
- School of Pharmacy, University of Jordan, Queen Rania Street, Amman 11942, Jordan
| |
Collapse
|
38
|
Dalhoff A. Selective toxicity of antibacterial agents-still a valid concept or do we miss chances and ignore risks? Infection 2021; 49:29-56. [PMID: 33367978 PMCID: PMC7851017 DOI: 10.1007/s15010-020-01536-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Selective toxicity antibacteribiotics is considered to be due to interactions with targets either being unique to bacteria or being characterized by a dichotomy between pro- and eukaryotic pathways with high affinities of agents to bacterial- rather than eukaryotic targets. However, the theory of selective toxicity oversimplifies the complex modes of action of antibiotics in pro- and eukaryotes. METHODS AND OBJECTIVE This review summarizes data describing multiple modes of action of antibiotics in eukaryotes. RESULTS Aminoglycosides, macrolides, oxazolidinones, chloramphenicol, clindamycin, tetracyclines, glycylcyclines, fluoroquinolones, rifampicin, bedaquillin, ß-lactams inhibited mitochondrial translation either due to binding to mitosomes, inhibition of mitochondrial RNA-polymerase-, topoisomerase 2ß-, ATP-synthesis, transporter activities. Oxazolidinones, tetracyclines, vancomycin, ß-lactams, bacitracin, isoniazid, nitroxoline inhibited matrix-metalloproteinases (MMP) due to chelation with zinc and calcium, whereas fluoroquinols fluoroquinolones and chloramphenicol chelated with these cations, too, but increased MMP activities. MMP-inhibition supported clinical efficacies of ß-lactams and daptomycin in skin-infections, and of macrolides, tetracyclines in respiratory-diseases. Chelation may have contributed to neuroprotection by ß-lactams and fluoroquinolones. Aminoglycosides, macrolides, chloramphenicol, oxazolidins oxazolidinones, tetracyclines caused read-through of premature stop codons. Several additional targets for antibiotics in human cells have been identified like interaction of fluoroquinolones with DNA damage repair in eukaryotes, or inhibition of mucin overproduction by oxazolidinones. CONCLUSION The effects of antibiotics on eukaryotes are due to identical mechanisms as their antibacterial activities because of structural and functional homologies of pro- and eukaryotic targets, so that the effects of antibiotics on mammals are integral parts of their overall mechanisms of action.
Collapse
Affiliation(s)
- Axel Dalhoff
- Christian-Albrechts-University of Kiel, Institue for Infection Medicine, Brunswiker Str. 4, D-24105, Kiel, Germany.
| |
Collapse
|
39
|
Eslami F, Mahdavi M, Babaei E, Hussen BM, Mostafavi H, Shahbazi A, Hidayat HJ. Down-regulation of Survivin and Bcl-2 concomitant with the activation of caspase-3 as a mechanism of apoptotic death in KG1a and K562 cells upon exposure to a derivative from ciprofloxacin family. Toxicol Appl Pharmacol 2020; 409:115331. [PMID: 33171188 DOI: 10.1016/j.taap.2020.115331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
Ciprofloxacin derivatives belong to a family of antibiotics called fluoroquinolones. Recently, these compounds have been recommended for the treatment of cancer. In the present study, we assessed the cytotoxicity of several new synthetic ciprofloxacin derivatives and the apoptosis-inducing activity of the most efficient derivative in two human myeloid leukemia K562 and KG1-a cell lines. Among the prepared ciprofloxacin derivatives, 1-cyclopropyl-7-(4-(2-((3,7-dimethyloct-6-en-1-yl)oxy)-2-oxoethyl)piperazin-1-yl)-6-fluoro-4-oxo-1,4dihydroquinoline-3-carboxylic acid (4-DMOCP) was more active compound with IC50 of 19.56 and 22.13 μM for K562 and KG1-a, respectively. Apoptotic activity of the 4-DMOCP was examined morphologically through Hoechst 33258 staining, Annexin V/PI double staining, and caspase-3 activity assays. Changes in the expression level of some apoptosis-related genes and protein, including Bcl-2, Bax, Survivin, p53, Caspase-8 and Caspase-9 were evaluated by the real-time quantitative PCR (qRT PCR) and western blotting. The qRT PCR analysis showed that 4-DMOCP induces apoptosis in both cell lines via the down-regulation of Survivin and Bcl2, up-regulation of caspase-8 and -9, as well as a time-dependent increase in the Bax/Bcl2 transcripts. The mRNA level of p53 was also increased in both cell lines. In addition, western blot analysis revealed that treatment with the compound, down-regulated the protein expression levels of Bcl2 and Survivin and up-regulated the protein level of Bax in both cell lines. These findings suggest that these new compounds can be good candidates for the treatment of acute and chronic myeloid leukemia.
Collapse
Affiliation(s)
- Farhad Eslami
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Bashdar Mahmud Hussen
- Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hossein Mostafavi
- Department of Organic Chemistry & Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ahmad Shahbazi
- Department of Organic Chemistry & Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
40
|
Mohammed HHH, Abbas SH, Hayallah AM, Abuo-Rahma GEDA, Mostafa YA. Novel urea linked ciprofloxacin-chalcone hybrids having antiproliferative topoisomerases I/II inhibitory activities and caspases-mediated apoptosis. Bioorg Chem 2020; 106:104422. [PMID: 33248713 DOI: 10.1016/j.bioorg.2020.104422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
A novel series of urea-linked ciprofloxacin (CP)-chalcone hybrids 3a-j were synthesized and screened by NCI-60 cancer cell lines as potential cytotoxic agents. Interestingly, compounds 3c and 3j showed remarkable antiproliferative activities against both colon HCT-116 and leukemia SR cancer cells compared to camptothecin, topotecan and staurosporine with IC50 = 2.53, 2.01, 17.36, 12.23 and 3.1 μM for HCT-116 cells, respectively and IC50 = 0.73, 0.64, 3.32, 13.72 and 1.17 μM for leukemia SR cells, respectively. Also, compounds 3c and 3j exhibited inhibitory activities against Topoisomerase (Topo) I with % inhibition = 51.19% and 56.72%, respectively, compared to camptothecin (% inhibition = 60.05%) and Topo IIβ with % inhibition = 60.81% and 60.06%, respectively, compared to topotecan (% inhibition = 71.09%). Furthermore, compound 3j arrested the cell cycle of leukemia SR cells at G2/M phase. It induced apoptosis both intrinsically and extrinsically via activation of proteolytic caspases cascade (caspases-3, -8, and -9), release of cytochrome C from mitochondria, upregulation of proapoptotic Bax and down-regulation of Bcl-2 protein level. Thus, the new ciprofloxacin derivative 3j could be considered as a potential lead for further optimization of antitumor agent against leukemia and colorectal carcinoma.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New, Minia 61519, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Alaa M Hayallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New, Minia 61519, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, 71526, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt.
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New, Minia 61519, Egypt.
| | - Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, 71526, Egypt
| |
Collapse
|
41
|
Uncovering New Drug Properties in Target-Based Drug-Drug Similarity Networks. Pharmaceutics 2020; 12:pharmaceutics12090879. [PMID: 32947845 PMCID: PMC7557376 DOI: 10.3390/pharmaceutics12090879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
Despite recent advances in bioinformatics, systems biology, and machine learning, the accurate prediction of drug properties remains an open problem. Indeed, because the biological environment is a complex system, the traditional approach—based on knowledge about the chemical structures—can not fully explain the nature of interactions between drugs and biological targets. Consequently, in this paper, we propose an unsupervised machine learning approach that uses the information we know about drug–target interactions to infer drug properties. To this end, we define drug similarity based on drug–target interactions and build a weighted Drug–Drug Similarity Network according to the drug–drug similarity relationships. Using an energy-model network layout, we generate drug communities associated with specific, dominant drug properties. DrugBank confirms the properties of 59.52% of the drugs in these communities, and 26.98% are existing drug repositioning hints we reconstruct with our DDSN approach. The remaining 13.49% of the drugs seem not to match the dominant pharmacologic property; thus, we consider them potential drug repurposing hints. The resources required to test all these repurposing hints are considerable. Therefore we introduce a mechanism of prioritization based on the betweenness/degree node centrality. Using betweenness/degree as an indicator of drug repurposing potential, we select Azelaic acid and Meprobamate as a possible antineoplastic and antifungal, respectively. Finally, we use a test procedure based on molecular docking to analyze Azelaic acid and Meprobamate’s repurposing.
Collapse
|
42
|
The role of MITF and Mcl-1 proteins in the antiproliferative and proapoptotic effect of ciprofloxacin in amelanotic melanoma cells: In silico and in vitro study. Toxicol In Vitro 2020; 66:104884. [DOI: 10.1016/j.tiv.2020.104884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/24/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023]
|
43
|
Xu Z, Gao G, Liu F, Han Y, Dai C, Wang S, Wei G, Kuang Y, Wan D, Zhi Q, Xu Y. Molecular Screening for Nigericin Treatment in Pancreatic Cancer by High-Throughput RNA Sequencing. Front Oncol 2020; 10:1282. [PMID: 32850392 PMCID: PMC7411259 DOI: 10.3389/fonc.2020.01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 12/18/2022] Open
Abstract
Objectives: Nigericin, an antibiotic derived from Streptomyces hygroscopicus, has been proved to exhibit promising anti-cancer effects on a variety of cancers. Our previous study investigated the potential anti-cancer properties in pancreatic cancer (PC), and demonstrated that nigericin could inhibit the cell viabilities in concentration- and time-dependent manners via differentially expressed circular RNAs (circRNAs). However, the knowledge of nigericin associated with long non-coding RNA (lncRNA) and mRNA in pancreatic cancer (PC) has not been studied. This study is to elucidate the underlying mechanism from the perspective of lncRNA and mRNA. Methods: The continuously varying molecules (lncRNAs and mRNAs) were comprehensively screened by high-throughput RNA sequencing. Results: Our data showed that 76 lncRNAs and 172 mRNAs were common differentially expressed in the nigericin anti-cancer process. Subsequently, the bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, coding and non-coding co-expression network, cis- and trans-regulation predictions and protein-protein interaction (PPI) network, were applied to annotate the potential regulatory mechanisms among these coding and non-coding RNAs during the nigericin anti-cancer process. Conclusions: These findings provided new insight into the molecular mechanism of nigericin toward cancer cells, and suggested a possible clinical application in PC.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanzhuang Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Dai
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sentai Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guobang Wei
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| |
Collapse
|
44
|
Affiliation(s)
- Katrina L Schmid
- School of Optometry and Vision Science, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
45
|
Synthesis and evaluation of moxifloxacin derivatives for effects on proliferation and apoptosis of NCI-H1299 cells. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Fan M, Chen S, Weng Y, Li X, Jiang Y, Wang X, Bie M, An L, Zhang M, Chen B, Huang G, Wu J, Zhu M, Shi Q. Ciprofloxacin promotes polarization of CD86+CD206‑ macrophages to suppress liver cancer. Oncol Rep 2020; 44:91-102. [PMID: 32377744 PMCID: PMC7251753 DOI: 10.3892/or.2020.7602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota can promote tumor development by producing toxic metabolites and inhibiting the function of immune cells. Previous studies have demonstrated that gut microbiota can reach the liver through the circulation and promote the occurrence of liver cancer. Ciprofloxacin, an effective broad‑spectrum antimicrobial agent, can promote cell apoptosis and regulate the function of immune cells. As an important part of the tumor microenvironment, macrophages play an important role in tumor regulation. The present study demonstrated that the treatment of macrophages with ciprofloxacin was able to promote the production of interleukin‑1β, tumor necrosis factor‑α and the polarization of CD86+CD206‑ macrophages, while inhibiting the polarization of CD86‑CD206+ macrophages. This transformation may help macrophages promote tumor cell apoptosis, inhibit tumor cell proliferation, reduce metastasis and downregulate the phosphoinositide 3‑kinase/AKT signaling pathway in liver cancer cell lines. In vivo experiments demonstrated that macrophages treated with ciprofloxacin inhibited the growth of subcutaneous implanted tumors in nude mice. In conclusion, the findings of the present study indicated that ciprofloxacin may inhibit liver cancer by upregulating the expression of CD86+CD206‑ macrophages. This study further revealed the biological mechanism underlying the potential value of ciprofloxacin in antitumor therapy and provided new targets for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mengtian Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Sicheng Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yaguang Weng
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xian Li
- Department of Pathology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yingjiu Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengjun Bie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Liqin An
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Menghao Zhang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin Chen
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Gaigai Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jinghong Wu
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengying Zhu
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qiong Shi
- Ministry of Education Key Laboratory of Diagnostic Medicine, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
47
|
Zhang Z, Auyeung KKW, Sze SCW, Zhang S, Yung KKL, Ko JKS. The dual roles of calycosin in growth inhibition and metastatic progression during pancreatic cancer development: A "TGF-β paradox". PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153177. [PMID: 32106002 DOI: 10.1016/j.phymed.2020.153177] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Calycosin is a bioactive isoflavonoid of the medicinal plant Astragalus membranaceus that exhibits a wide range of pharmacological properties. In the present study, we have attempted to explore the anti-tumorigenic potential of calycosin in pancreatic cancer. METHODS MTT assay was used to determine cancer cell viability. Cell cycle analysis and detection of apoptosis were performed using flow cytometry. A wound healing assay was employed to study the migratory activity of cancer cells. Western blotting and RT-PCR were used to explore the mechanism by assessing the target proteins and genes. An orthotopic tumor xenograft mouse model was also used to study the drug effects in vivo. RESULTS Calycosin inhibited the growth of pancreatic cancer cells by inducing p21Waf1/Cip1-induced cell cycle arrest and caspase-dependent apoptosis. Alternatively, it also promoted MIA PaCa-2 cell migration by eliciting epithelial-mesenchymal transition (EMT) and matrix metalloproteinase activation. In vivo study has confirmed that calycosin would provoke the pro-invasive and angiogenic drive and subsequent EMT in pancreatic tumors. Further mechanistic study suggests that induction of the Raf/MEK/ERK pathway and facilitated polarization of M2 tumor-associated macrophage in the tumor microenvironment both contribute to the pro-metastatic potential of calycosin. These events appear to be associated with increased expression of TGF-β1 at both transcriptional and post-translational levels, which may explain the paradoxical drug actions since TGF-β has been implicated to play dual roles as both tumor suppressor and tumor promoter in pancreatic cancer development. CONCLUSION Findings of this study provide innovative insights about the impact of calycosin in pancreatic cancer progression through induction of cell cycle arrest and apoptosis while possessing certain tumor-promoting property by modulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Zhu Zhang
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | | | | - Shiqing Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Joshua Ka-Shun Ko
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
48
|
Liu Z, Liu L, Sun R, Liu C. BAF45D knockdown decreases cell viability, inhibits colony formation, induces cell apoptosis and S-phase arrest in human pancreatic cancer cells. Biosci Biotechnol Biochem 2020; 84:1146-1152. [PMID: 32024442 DOI: 10.1080/09168451.2020.1717923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer, an extremely aggressive malignancy, is resistant to chemo- or radiotherapy. The rapid progression of pancreatic cancer without distinctive clinical sign makes early diagnosing and/or treating very difficult. BAF45D, a member of the d4 domain family, is involved in oncogenic processes. However, the role of BAF45D in pancreatic tumorigenesis is largely unclear. Our goal is to examine BAF45D protein expression after lentivirus-mediated Baf45d RNAi and explore the effects of BAF45D knockdown on cell proliferation, cell apoptosis, and cell cycle of human pancreatic cancer cells. Here our results showed that Baf45d RNAi downregulated BAF45D protein levels and decreased cell viability, increased cell apoptosis, and decreased colony formation in BxPC-3 cells. Moreover, BAF45D knockdown induced S-phase arrest in BxPC-3 cells. Our results here suggest that BAF45D may play a crucial role in tumorigenic properties of human pancreatic cancer cells.
Collapse
Affiliation(s)
- Zengyi Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Ruyu Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chao Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
49
|
Flavopereirine induces cell cycle arrest and apoptosis via the AKT/p38 MAPK/ERK1/2 signaling pathway in human breast cancer cells. Eur J Pharmacol 2019; 863:172658. [DOI: 10.1016/j.ejphar.2019.172658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 11/20/2022]
|
50
|
Jia HY, Zhang K, Lu WJ, Xu GW, Zhang JF, Tang ZL. LncRNA MEG3 influences the proliferation and apoptosis of psoriasis epidermal cells by targeting miR-21/caspase-8. BMC Mol Cell Biol 2019; 20:46. [PMID: 31660855 PMCID: PMC6816225 DOI: 10.1186/s12860-019-0229-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Background It was reported that microRNA-21(miR-21) was differentially expressed in the keratinocytes of psoriasis patients, and it may influence the apoptosis and proliferation of cells. The role of lncRNA maternally expressed gene3 (MEG3), a competing endogenous RNAs of miR-21, in the progression of psoriasis remains unclear. We aimed to unfold the influence of MEG3 and miR-21 on the proliferation and apoptosis of psoriasis epidermal cells. Methods 50μg/L TNF-α was used to treat HaCaTs and NHEKs cells for 24 h, and then different experiments were conducted. qRT-PCR were applied for measuring the mRNA level of MEG3, miR-2, and caspase-8, and the protein expression of caspase-8 was measured with western blotting. Flow cytometry was used for assessing apoptosis. Cell proliferation was detected using MTT and colony formation assays. Dual luciferase reporter assay was applied for confirming the binding site between MEG3 and miR-21, miR-21 and Caspase-8. Results A cell model for in vitro studying the role of MEG3 in psoriasis pathophysiology was established using HaCaT and HHEKs. MEG3 was significantly down-regulated in HaCaT, HHEKs, and psoriatic skin samples. MEG3 inhibits proliferation and promotes apoptosis of Activated-HaCaT (Act-HaCaT) and Activated-HHEKs (Act- HHEK) by regulating miR-21, and the binding site between MEG3 and miR-21 was identified. We also found that miR-21 could inhibit the level of caspase-8 and identified the binding site between caspase-8 and miR-21. Some down-stream proteins of caspase-8, Cleaved caspase-8, cytc, and apaf-1 were regulated by miR-21 and MEG3. Conclusion MEG3/miR-21 axis may regulate the expression of caspase-8, and further influence the proliferation and apoptosis of psoriasis keratinocyte, Act-HaCaT and Act- HHEK. Therefore, our findings may provide a new thought for the study of pathogenesis and treatment of psoriasis.
Collapse
Affiliation(s)
- Hai-Yan Jia
- Department of Dermatology, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Kai Zhang
- Department of Neurosurgery, Shengli Oilfield Central Hospital, Dongying, 257000, People's Republic of China
| | - Wen-Jing Lu
- Department of Dermatology, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Gui-Wen Xu
- Department of Dermatology, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian-Fen Zhang
- Department of Dermatology, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China
| | - Zhan-Li Tang
- Department of Dermatology, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong Province, People's Republic of China.
| |
Collapse
|