1
|
Tekatli H, Bohoudi O, Hardcastle N, Palacios MA, Schneiders FL, Bruynzeel AME, Siva S, Senan S. Artificial intelligence-assisted quantitative CT analysis of airway changes following SABR for central lung tumors. Radiother Oncol 2024; 198:110376. [PMID: 38857700 DOI: 10.1016/j.radonc.2024.110376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION Use of stereotactic ablative radiotherapy (SABR) for central lung tumors can result in up to a 35% incidence of late pulmonary toxicity. We evaluated an automated scoring method to quantify post-SABR bronchial changes by using artificial intelligence (AI)-based airway segmentation. MATERIALS AND METHODS Central lung SABR patients treated at Amsterdam UMC (AUMC, internal reference dataset) and Peter MacCallum Cancer Centre (PMCC, external validation dataset) were identified. Patients were eligible if they had pre- and post-SABR CT scans with ≤ 1 mm resolution. The first step of the automated scoring method involved AI-based airway auto-segmentation using MEDPSeg, an end-to-end deep learning-based model. The Vascular Modeling Toolkit in 3D Slicer was then used to extract a centerline curve through the auto-segmented airway lumen, and cross-sectional measurements were computed along each bronchus for all CT scans. For AUMC patients, airway stenosis/occlusion was evaluated by both visual assessment and automated scoring. Only the automated method was applied to the PMCC dataset. RESULTS Study patients comprised 26 from AUMC, and 33 from PMCC. Visual scoring identified stenosis/occlusion in 8 AUMC patients (31 %), most frequently in the segmental bronchi. After airway auto-segmentation, minor manual edits were needed in 9 % of patients. Segmentation for a single scan averaged 83sec (range 73-136). Automated scoring nearly doubled detected airway stenosis/occlusion (n = 15, 58 %), and allowed for earlier detection in 5/8 patients who had also visually scored changes. Estimated rates were 48 % and 66 % at 1- and 2-years, respectively, for the internal dataset. The automated detection rate was 52 % in the external dataset, with 1- and 2-year risks of 56 % and 61 %, respectively. CONCLUSION An AI-based automated scoring method allows for detection of more bronchial stenosis/occlusion after lung SABR, and at an earlier time-point. This tool can facilitate studies to determine early airway changes and establish more reliable airway tolerance doses.
Collapse
Affiliation(s)
- Hilâl Tekatli
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands.
| | - Omar Bohoudi
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| | - Nicholas Hardcastle
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Miguel A Palacios
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| | - Famke L Schneiders
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| | - Anna M E Bruynzeel
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam UMC (location VUmc), the Netherlands
| |
Collapse
|
2
|
Shaw M, Lye J, Alves A, Lehmann J, Sanagou M, Geso M, Brown R. Measuring dose in lung identifies peripheral tumour dose inaccuracy in SBRT audit. Phys Med 2023; 112:102632. [PMID: 37406592 DOI: 10.1016/j.ejmp.2023.102632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/25/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023] Open
Abstract
PURPOSE Stereotactic Body Radiotherapy (SBRT) for lung tumours has become a mainstay of clinical practice worldwide. Measurements in anthropomorphic phantoms enable verification of patient dose in clinically realistic scenarios. Correction factors for reporting dose to the tissue equivalent materials in a lung phantom are presented in the context of a national dosimetry audit for SBRT. Analysis of dosimetry audit results is performed showing inaccuracies of common dose calculation algorithms in soft tissue lung target, inhale lung material and at tissue interfaces. METHODS Monte Carlo based simulation of correction factors for detectors in non-water tissue was performed for the soft tissue lung target and inhale lung materials of a modified CIRS SBRT thorax phantom. The corrections were determined for Gafchromic EBT3 Film and PTW 60019 microDiamond detectors used for measurements of 168 SBRT lung plans in an end-to-end dosimetry audit. Corrections were derived for dose to medium (Dm,m) and dose to water (Dw,w) scenarios. RESULTS Correction factors were up to -3.4% and 9.2% for in field and out of field lung respectively. Overall, application of the correction factors improved the measurement-to-plan dose discrepancy. For the soft tissue lung target, agreement between planned and measured dose was within average of 3% for both film and microDiamond measurements. CONCLUSIONS The correction factors developed for this work are provided for clinical users to apply to commissioning measurements using a commercially available thorax phantom where inhomogeneity is present. The end-to-end dosimetry audit demonstrates dose calculation algorithms can underestimate dose at lung tumour/lung tissue interfaces by an average of 2-5%.
Collapse
Affiliation(s)
- Maddison Shaw
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Jessica Lye
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia; Olivia Newton John Cancer Wellness and Research Centre, Austin Health, Australia
| | - Andrew Alves
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| | - Joerg Lehmann
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, Australia; School of Science, RMIT University, Melbourne, Australia; School of Mathematical and Physical Sciences, University of Newcastle, Australia; Institute of Medical Physics, University of Sydney, Australia
| | - Masoumeh Sanagou
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| | - Moshi Geso
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Rhonda Brown
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Melbourne, Australia
| |
Collapse
|
3
|
Smith CP, Xiang M, Yoon SM, Lee A, Ruan D, Goldman JW, Cummings AL, Lisberg A, Garon EB, Moghanaki D. Brief Report: Severe Pneumonitis After Combined Thoracic Radiotherapy and Osimertinib. JTO Clin Res Rep 2023; 4:100468. [PMID: 36923158 PMCID: PMC10009282 DOI: 10.1016/j.jtocrr.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Osimertinib is an effective treatment for metastatic NSCLC. Occasionally, thoracic radiation therapy (TRT) is delivered to patients receiving osimertinib to treat residual or progressing pulmonary tumors. Anecdotal reports suggest that the delivery of TRT in combination with osimertinib may be associated with a high risk of severe pneumonitis. Methods A retrospective study was performed at a single academic medical center in the United States to investigate the incidence of severe pneumonitis among patients treated with combined TRT and osimertinib between June 2016 and December 2021. Baseline patient characteristics, tumor size and location, and dosimetric parameters were evaluated. The highest grade of radiation pneumonitis that developed within 6 months of treatment was scored in accordance with the Common Terminology Criteria for Adverse Events version 5.0. Results A total of 16 patients were identified who were treated with combined TRT and osimertinib. All had a diagnosis of metastatic NSCLC. Treatment-related grade greater than or equal to 2 pneumonitis developed in 56%, grade greater than or equal to 3 in 37.5%, and grade 4 in 6.3%; no patient developed grade 5 pneumonitis. Median time to any-grade pneumonitis was 29 days (1-84 d); all patients had symptom resolution with expectant management or oral steroid therapies. All patients discovered to have grade greater than or equal to 3 pneumonitis (n = 6) received TRT to tumors located within 2 cm of the proximal bronchial tree, including tumors abutting the proximal bronchial tree (n = 2) and within the mediastinum (n = 1). Conclusions The combination of TRT with osimertinib was associated with a high rate of severe pneumonitis that required oral steroid medications. Larger studies are needed to validate these findings and to understand the clinical and treatment factors that influence this risk and how they can be mitigated.
Collapse
Affiliation(s)
- Clayton P. Smith
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Michael Xiang
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Stephanie M. Yoon
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Alan Lee
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dan Ruan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jonathan W. Goldman
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Amy L. Cummings
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Aaron Lisberg
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Edward B. Garon
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Drew Moghanaki
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
4
|
Lourenco RDA, Khoo T, Crothers A, Haas M, Montgomery R, Ball D, Bressel M, Siva S. Cost-Effectiveness of Single Versus Multifraction SABR for Pulmonary Oligometastases: The SAFRON II Trial. Int J Radiat Oncol Biol Phys 2022; 114:968-976. [DOI: 10.1016/j.ijrobp.2022.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/19/2023]
|
5
|
Falcinelli L, Menichelli C, Casamassima F, Aristei C, Borghesi S, Ingrosso G, Draghini L, Tagliagambe A, Badellino S, di Monale e Bastia MB. Stereotactic radiotherapy for lung oligometastases. Rep Pract Oncol Radiother 2022; 27:23-31. [PMID: 35402023 PMCID: PMC8989443 DOI: 10.5603/rpor.a2022.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
30-60% of cancer patients develop lung metastases, mostly from primary tumors in the colon-rectum, lung, head and neck area, breast and kidney. Nowadays, stereotactic radiotherapy (SRT ) is considered the ideal modality for treating pulmonary metastases. When lung metastases are suspected, complete disease staging includes a total body computed tomography (CT ) and/or positron emission tomography-computed tomography (PET -CT ) scan. PET -CT has higher specificity and sensitivity than a CT scan when investigating mediastinal lymph nodes, diagnosing a solitary lung lesion and detecting distant metastases. For treatment planning, a multi-detector planning CT scan of the entire chest is usually performed, with or without intravenous contrast media or esophageal lumen opacification, especially when central lesions have to be irradiated. Respiratory management is recommended in lung SRT, taking the breath cycle into account in planning and delivery. For contouring, co-registration and/or matching planning CT and diagnostic images (as provided by contrast enhanced CT or PET-CT ) are useful, particularly for central tumors. Doses and fractionation schedules are heterogeneous, ranging from 33 to 60 Gy in 3-6 fractions. Independently of fractionation schedule, a BED10 > 100 Gy is recommended for high local control rates. Single fraction SRT (ranges 15-30 Gy) is occasionally administered, particularly for small lesions. SRT provides tumor control rates of up to 91% at 3 years, with limited toxicities. The present overview focuses on technical and clinical aspects related to treatment planning, dose constraints, outcome and toxicity of SRT for lung metastases.
Collapse
Affiliation(s)
- Lorenzo Falcinelli
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | | | | | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | | | | | - Serena Badellino
- Radiation Oncology Department, A.O.U. Città della Salute e della Scienza, Turin, Italy
| | | |
Collapse
|
6
|
Fernández C, Navarro-Martin A, Bobo A, Cabrera-Rodriguez J, Calvo P, Chicas-Sett R, Luna J, Rodríguez de Dios N, Couñago F. Single-fraction stereotactic ablative body radiation therapy for primary and metastasic lung tumor: A new paradigm? World J Clin Oncol 2022; 13:101-115. [PMID: 35316929 PMCID: PMC8894272 DOI: 10.5306/wjco.v13.i2.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/07/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Stereotactic ablative body radiotherapy (SABR) is an effective technique comparable to surgery in terms of local control and efficacy in early stages of non-small cell lung cancer (NSCLC) and pulmonary metastasis. Several fractionation schemes have proven to be safe and effective, including the single fraction (SF) scheme. SF is an option cost-effectiveness, more convenience and comfortable for the patient and flexible in terms of its management combined with systemic treatments. The outbreak of the severe acute respiratory syndrome coronavirus 2 pandemic has driven this not new but underutilized paradigm, recommending this option to minimize patients' visits to hospital. SF SABR already has a long experience, strong evidence and sufficient maturity to reliably evaluate outcomes in peripheral primary NSCLC and there are promising outcomes in pulmonary metastases, making it a valid treatment option; although its use in central locations, synchronous and recurrencies tumors requires more prospective safety and efficacy studies. The SABR radiobiology study, together with the combination with systemic therapies, (targeted therapies and immunotherapy) is a direction of research in both advanced disease and early stages whose future includes SF.
Collapse
Affiliation(s)
- Castalia Fernández
- Department of Radiation Oncology, GenesisCare Madrid, Madrid 28043, Spain
| | - Arturo Navarro-Martin
- Department of Radiation Oncology, Institut Catalá d’Oncologia, L’Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Andrea Bobo
- Department of Radiation Oncology, Hospital Ruber Internacional, Madrid 28034, Spain
| | | | - Patricia Calvo
- Department of Radiation Oncology, Hospitalario Clínico Universitario de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Rodolfo Chicas-Sett
- Department of Radiation Oncology, ASCIRES Grupo Biomédico, Valencia 46004, Spain
| | - Javier Luna
- Department of Radiation Oncology, Hospital Fundación Jiménez Díaz, Madrid 28040, Spain
| | | | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28223, Spain
- Department of Medicine, School of Biomedical Sciences, Universidad Europea, Madrid 28223, Spain
| |
Collapse
|
7
|
Tjong M, Louie A, Singh A, Videtic G, Stephans K, Plumridge N, Harden S, Slotman B, Alongi F, Guckenberger M, Siva S. Single-Fraction Stereotactic Ablative Body Radiotherapy to the Lung – The Knockout Punch. Clin Oncol (R Coll Radiol) 2022; 34:e183-e194. [DOI: 10.1016/j.clon.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
|
8
|
Siva S, Bressel M, Mai T, Le H, Vinod S, de Silva H, Macdonald S, Skala M, Hardcastle N, Rezo A, Pryor D, Gill S, Higgs B, Wagenfuehr K, Montgomery R, Awad R, Chesson B, Eade T, Wong W, Sasso G, De Abreu Lourenco R, Kron T, Ball D, Neeson P. Single-Fraction vs Multifraction Stereotactic Ablative Body Radiotherapy for Pulmonary Oligometastases (SAFRON II): The Trans Tasman Radiation Oncology Group 13.01 Phase 2 Randomized Clinical Trial. JAMA Oncol 2021; 7:1476-1485. [PMID: 34455431 DOI: 10.1001/jamaoncol.2021.2939] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Evidence is lacking from randomized clinical trials to guide the optimal approach for stereotactic ablative body radiotherapy (SABR) in patients with pulmonary oligometastases. Objective To assess whether single-fraction or multifraction SABR is more effective for the treatment of patients with pulmonary oligometastases. Design, Setting, and Participants This multicenter, unblinded, phase 2 randomized clinical trial of 90 patients across 13 centers in Australia and New Zealand enrolled patients with 1 to 3 lung oligometastases less than or equal to 5 cm from any nonhematologic malignant tumors located away from the central airways, Eastern Cooperative Oncology Group performance status 0 or 1, and all primary and extrathoracic disease controlled with local therapy. Enrollment was from January 1, 2015, to December 31, 2018, with a minimum patient follow-up of 2 years. Interventions Single fraction of 28 Gy (single-fraction arm) or 4 fractions of 12 Gy (multifraction arm) to each oligometastasis. Main Outcomes and Measures The main outcome was grade 3 or higher treatment-related adverse events (AEs) occurring within 1 year of SABR. Secondary outcomes were freedom from local failure, overall survival, disease-free survival, and patient-reported outcomes (MD Anderson Symptom Inventory-Lung Cancer and EuroQol 5-dimension visual analog scale). Results Ninety participants were randomized, of whom 87 were treated for 133 pulmonary oligometastases. The mean (SD) age was 66.6 [11.6] years; 58 (64%) were male. Median follow-up was 36.5 months (interquartile range, 24.8-43.9 months). The numbers of grade 3 or higher AEs related to treatment at 1 year were 2 (5%; 80% CI, 1%-13%) in the single-fraction arm and 1 (3%; 80% CI, 0%-10%) in the multifraction arm, with no significant difference observed between arms. One grade 5 AE occurred in the multifraction arm. No significant differences were found between the multifraction arm and single-fraction arm for freedom from local failure (hazard ratio [HR], 0.5; 95% CI, 0.2-1.3; P = .13), overall survival (HR, 1.5; 95% CI, 0.6-3.7; P = .44), or disease-free survival (HR, 1.0; 95% CI, 0.6-1.6; P > .99). There were no significant differences observed in patient-reported outcomes. Conclusions and Relevance In this randomized clinical trial, neither arm demonstrated evidence of superior safety, efficacy, or symptom burden; however, single-fraction SABR is more efficient to deliver. Therefore, single-fraction SABR, as assessed by the most acceptable outcome profile from all end points, could be chosen to escalate to future studies. Trial Registration ClinicalTrials.gov Identifier: NCT01965223.
Collapse
Affiliation(s)
- Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Mathias Bressel
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Tao Mai
- Radiation Oncology Centre, Princess Alexandra Hospital, Queensland, Australia
| | - Hien Le
- Department of Radiation Oncology, Royal Adelaide Hospital, South Australia, Australia
| | - Shalini Vinod
- Cancer Therapy Centre, Liverpool Hospital, New South Wales, Australia
| | - Harini de Silva
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sean Macdonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Angela Rezo
- Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - David Pryor
- Radiation Oncology Centre, Princess Alexandra Hospital, Queensland, Australia
| | - Suki Gill
- Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Braden Higgs
- Department of Radiation Oncology, Royal Adelaide Hospital, South Australia, Australia
| | - Kassandra Wagenfuehr
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, New South Wales, Australia
| | - Rebecca Montgomery
- Trans Tasman Radiation Oncology Group (TROG) Cancer Research, New South Wales, Australia
| | - Raef Awad
- Royal Hobart Hospital, Tasmania, Australia
| | - Brent Chesson
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Wenchang Wong
- Department of Radiation Oncology, Prince of Wales Hospital, New South Wales, Australia
| | - Giuseppe Sasso
- Radiation Oncology Department, Auckland City Hospital, New Zealand
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, New South Wales, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Radiation Oncology Centre, Princess Alexandra Hospital, Queensland, Australia
| | - David Ball
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | |
Collapse
|
9
|
Lee S, Yadav P, van der Kogel AJ, Bayouth J, Bassetti MF. In Silico Single-Fraction Stereotactic Ablative Radiation Therapy for the Treatment of Thoracic and Abdominal Oligometastatic Disease With Online Adaptive Magnetic Resonance Guidance. Adv Radiat Oncol 2021; 6:100652. [PMID: 34195490 PMCID: PMC8233469 DOI: 10.1016/j.adro.2021.100652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Purpose Although SABR can improve oncologic outcomes for patients with oligometastatic disease, treatment of metastases near critical organs remains challenging. The purpose of this study is to determine the dosimetric feasibility of delivering magnetic resonance imaging (MRI)-guided adaptive SABR in a single fraction for abdominal and thoracic metastases. Methods and Materials Previously delivered MRI-guided radiation therapy plans for 20 patients with oligometastatic disease in the thorax or abdomen, with 70% (14/20) of the lesions within 8 mm from dose-limiting organs at risk (OARs), were used to simulate the delivery of 24 Gy in a single fraction. Planning objectives included planning target volume (PTV) V95% >90%, optimized PTV (PTVopt) V95% >90%, and PTVopt D99% >20 Gy with no OAR dose violations, where PTVopt removed overlap with nearby planning organ at risk volume (PRV). Single-fraction plans were simulated on the first 5 daily setup breath-hold MRI scans, and the plans were reoptimized to consider variations in setup position and anatomy. Results The mean PTV V95% for single-fraction SABR plans was lower compared with multifraction plans (mean 85.4% vs 92.6%, P = .02), but mean PTVopt V95% was not different (95.3% vs 98.2%, P = .62). After reoptimization of the single-fraction plan to the treatment day MRI, there was an increase in mean PTV V95% (85.0% vs 88.1%, P = .05), increase in mean PTVopt V95% (92.7% vs 96.3%, P = .02), increase in mean PTVopt D99% (19.7 Gy vs 23.8 Gy, P < .01), increase in mean frequency of meeting PTV D99% >20 Gy (52% vs 87%, P < .01), and increase in mean gross tumor volume minimum dose (17.5 Gy vs 19.3 Gy, P < .01). Reoptimization decreased mean frequency of OAR dose constraint violation (48% vs 0%, P < .01). Conclusions Single-fraction MRI-guided SABR is a dosimetrically feasible treatment for oligometastases that allows for on-table adaptation to avoid OAR dose constraint violations, but this method requires clinical validation.
Collapse
Affiliation(s)
- Sangjune Lee
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin.,Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Poonam Yadav
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Albert J van der Kogel
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - John Bayouth
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Michael F Bassetti
- Department of Human Oncology, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| |
Collapse
|
10
|
Sogono P, Bressel M, David S, Shaw M, Chander S, Chu J, Plumridge N, Byrne K, Hardcastle N, Kron T, Wheeler G, Hanna GG, MacManus M, Ball D, Siva S. Safety, Efficacy, and Patterns of Failure After Single-Fraction Stereotactic Body Radiation Therapy (SBRT) for Oligometastases. Int J Radiat Oncol Biol Phys 2020; 109:756-763. [PMID: 33069796 PMCID: PMC7560377 DOI: 10.1016/j.ijrobp.2020.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/07/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
Purpose Fewer attendances for radiation therapy results in increased efficiency and less foot traffic within a radiation therapy department. We investigated outcomes after single-fraction (SF) stereotactic body radiation therapy (SBRT) in patients with oligometastatic disease. Methods and Materials Between February 2010 and June 2019, patients who received SF SBRT to 1 to 5 sites of oligometastatic disease were included in this retrospective study. The primary objective was to describe patterns of first failure after SBRT. Secondary objectives included overall survival (OS), progression-free survival (PFS), high-grade treatment-related toxicity (Common Terminology Criteria for Adverse Events grade ≥3), and freedom from systemic therapy (FFST). Results In total, 371 patients with 494 extracranial oligometastases received SF SBRT ranging from 16 Gy to 28 Gy. The most common primary malignancies were prostate (n = 107), lung (n = 63), kidney (n = 52), gastrointestinal (n = 51), and breast cancers (n = 42). The median follow-up was 3.1 years. The 1-, 3-, and 5-year OS was 93%, 69%, and 55%, respectively; PFS was 48%, 19%, and 14%, respectively; and FFST was 70%, 43%, and 35%, respectively. Twelve patients (3%) developed grade 3 to 4 treatment-related toxicity, with no grade 5 toxicity. As the first site of failure, the cumulative incidence of local failure (irrespective of other failures) at 1, 3 and 5 years was 4%, 8%, and 8%, respectively; locoregional relapse at the primary was 10%, 18%, and 18%, respectively; and distant failure was 45%, 66%, and 70%, respectively. Conclusions SF SBRT is safe and effective, and a significant proportion of patients remain FFST for several years after therapy. This approach could be considered in resource-constrained or bundled-payment environments. Locoregional failure of the primary site is the second most common pattern of failure, suggesting a role for optimization of primary control during metastasis-directed therapy.
Collapse
Affiliation(s)
- Paolo Sogono
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mathias Bressel
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Steven David
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mark Shaw
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sarat Chander
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Julie Chu
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Nikki Plumridge
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Keelan Byrne
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Greg Wheeler
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Gerard G Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - David Ball
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
11
|
Ng SS, Ning MS, Lee P, McMahon RA, Siva S, Chuong MD. Single-Fraction Stereotactic Body Radiation Therapy: A Paradigm During the Coronavirus Disease 2019 (COVID-19) Pandemic and Beyond? Adv Radiat Oncol 2020; 5:761-773. [PMID: 32775790 PMCID: PMC7406732 DOI: 10.1016/j.adro.2020.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Owing to the coronavirus disease 2019 (COVID-19) pandemic, radiation oncology departments have adopted various strategies to deliver radiation therapy safely and efficiently while minimizing the risk of severe acute respiratory syndrome coronavirus-2 transmission among patients and health care providers. One practical strategy is to deliver stereotactic body radiation therapy (SBRT) in a single fraction, which has been well established for treating bone metastases, although it has been infrequently used for other extracranial sites. METHODS AND MATERIALS A PubMed search of published articles in English related to single-fraction SBRT was performed. A critical review was performed of the articles that described clinical outcomes of single-fraction SBRT for treatment of primary extracranial cancers and oligometastatic extraspinal disease. RESULTS Single-fraction SBRT for peripheral early-stage non-small cell lung cancer is supported by randomized data and is strongly endorsed during the COVID-19 pandemic by the European Society for Radiotherapy and Oncology-American Society for Radiation Oncology practice guidelines. Prospective and retrospective studies supporting a single-fraction regimen are limited, although outcomes are promising for renal cell carcinoma, liver metastases, and adrenal metastases. Data are immature for primary prostate cancer and demonstrate excess late toxicity in primary pancreatic cancer. CONCLUSIONS Single-fraction SBRT should be strongly considered for peripheral early-stage non-small cell lung cancer during the COVID-19 pandemic to mitigate the potentially severe consequences of severe acute respiratory syndrome coronavirus-2 transmission. Although single-fraction SBRT is promising for the definitive treatment of other primary or oligometastatic cancers, multi-fraction SBRT should be the preferred regimen owing to the need for additional prospective evaluation to determine long-term efficacy and safety.
Collapse
Affiliation(s)
- Sylvia S.W. Ng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew S. Ning
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Percy Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ryan A. McMahon
- Department of Radiation Oncology, Peter MacCallum Cancer Center, University of Melbourne, Victoria, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Center, University of Melbourne, Victoria, Australia
| | - Michael D. Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| |
Collapse
|
12
|
Aslian H, Kron T, Watts T, Akalanli C, Hardcastle N, Lonski P, Montaseri A, Hay B, Korte J, Berk K, Longo F, Severgnini M. The effect of stereotactic body radiotherapy (SBRT) using flattening filter-free beams on cardiac implantable electronic devices (CIEDs) in clinical situations. J Appl Clin Med Phys 2020; 21:121-131. [PMID: 32277741 PMCID: PMC7324704 DOI: 10.1002/acm2.12873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE This study focused on determining risks from stereotactic radiotherapy using flattening filter-free (FFF) beams for patients with cardiac implantable electronic device (CIEDs). Two strategies were employed: a) a retrospective analysis of patients with CIEDs who underwent stereotactic radiosurgery (SRS)/SBRT at the Peter MacCallum Cancer Centre between 2014 and 2018 and b) an experimental study on the impact of FFF beams on CIEDs. METHODS A retrospective review was performed. Subsequently, a phantom study was performed using 30 fully functional explanted CIEDs from two different manufacturers. Irradiation was carried out in a slab phantom with 6-MV and 10-MV FFF beams. First, a repetition-rate test (RRT) with a range of beam pulse frequencies was conducted. Then, multifraction SBRT (48 Gy/4 Fx) and single-fraction SBRT (28 Gy/1 Fx) treatment plans were used for lung tumors delivered to the phantom. RESULTS Between 2014 and 2018, 13 cases were treated with an FFF beam (6 MV, 1400 MU/min or 10 MV, 2400 MU/min), and 15 cases were treated with a flattening filter (FF) beam (6 MV, 600 MU/min). All the devices were positioned outside the treatment field at a distance of more than 5 cm, except for one case, and no failures were reported due to SBRT/SRS. In the phantom rep-rate tests, inappropriate sensing occurred, starting at a rep-rate of 1200 MU/min. Cardiac implantable electronic device anomalies during and after delivering VMAT-SBRT with a 10-MV FFF beam were observed. CONCLUSIONS The study showed that caution should be paid to managing CIED patients when they undergo SBRT using FFF beams, as it is recommended by AAPM TG-203. Correspondingly, it was found that for FFF beams although there is small risk from dose-rate effects, delivering high dose of radiation with beam energy greater than 6 MV and high-dose rate to CIEDs positioned in close vicinity of the PTV may present issues.
Collapse
Affiliation(s)
| | - Tomas Kron
- Physical SciencesPeter MacCallum Cancer CentreMelbourneAustralia
| | - Troy Watts
- Department of CardiologyRoyal Melbourne HospitalMelbourneAustralia
| | - Cagla Akalanli
- Physical SciencesPeter MacCallum Cancer CentreMelbourneAustralia
| | | | - Peta Lonski
- Physical SciencesPeter MacCallum Cancer CentreMelbourneAustralia
| | - Atousa Montaseri
- Physical SciencesPeter MacCallum Cancer CentreMelbourneAustralia
| | - Barry Hay
- Physical SciencesPeter MacCallum Cancer CentreMelbourneAustralia
| | - James Korte
- Physical SciencesPeter MacCallum Cancer CentreMelbourneAustralia
| | - Kemal Berk
- Physical SciencesPeter MacCallum Cancer CentreMelbourneAustralia
| | - Francesco Longo
- Department of PhysicsUniversity of TriesteTriesteItaly
- Italian National Institute of Nuclear Physics (INFN)sezione di TriesteTriesteItaly
| | - Mara Severgnini
- Department of Medical PhysicsAzienda Sanitaria Universitaria Integrata di TriesteTriesteItaly
| |
Collapse
|
13
|
Burton A, Offer K, Hardcastle N. A robust VMAT delivery solution for single-fraction lung SABR utilizing FFF beams minimizing dosimetric compromise. J Appl Clin Med Phys 2020; 21:299-304. [PMID: 32469150 PMCID: PMC7484828 DOI: 10.1002/acm2.12919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022] Open
Abstract
Peripheral lung lesions treated with a single fraction of stereotactic ablative body radiotherapy (SABR) utilizing volumetric modulated arc therapy (VMAT) delivery and flattening filter‐free (FFF) beams represent a potentially high‐risk scenario for clinically significant dose blurring effects due to interplay between the respiratory motion of the lesion and dynamic multi‐leaf collimators (MLCs). The aim of this study was to determine an efficient means of developing low‐modulation VMAT plans in the Eclipse treatment planning system (v15.5, Varian Medical Systems, Palo Alto, USA) in order to minimize this risk, while maintaining dosimetric quality. The study involved 19 patients where an internal target volume (ITV) was contoured to encompass the entire range of tumor motion, and a planning target volume (PTV) created using a 5‐mm isotropic expansion of this contour. Each patient had seven plan variations created, with each rescaled to achieve the clinical planning goal for PTV coverage. All plan variations used the same field arrangement, and consisted of one dynamic conformal arc therapy (DCAT) plan, and six VMAT plans with varying degrees of modulation restriction, achieved through utilizing different combinations of the aperture shape controller (ASC) in the calculation parameters, and monitor unit (MU) objective during optimization. The dosimetric quality was assessed based on RTOG conformity indices (CI100/CI50), as well as adherence to dose–volume metrics used clinically at our institution. Plan complexity was assessed based on the modulation factor (MU/cGy) and the field edge metric. While VMAT plans with the least modulation restriction achieved the best dosimetry, it was found that there was no clinically significant trade‐off in terms of dose to organs at risk and conformity by reducing complexity. Furthermore, it was found that utilizing the ASC and MU objective could reduce plan complexity to near‐DCAT levels with improved dosimetry, which may be sufficiently robust to overcome the interplay effect.
Collapse
Affiliation(s)
- Alex Burton
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Keith Offer
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
14
|
Kalinauskaite GG, Tinhofer II, Kufeld MM, Kluge AA, Grün AA, Budach VV, Senger CC, Stromberger CC. Radiosurgery and fractionated stereotactic body radiotherapy for patients with lung oligometastases. BMC Cancer 2020; 20:404. [PMID: 32393261 PMCID: PMC7216666 DOI: 10.1186/s12885-020-06892-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with oligometastatic disease can potentially be cured by using an ablative therapy for all active lesions. Stereotactic body radiotherapy (SBRT) is a non-invasive treatment option that lately proved to be as effective and safe as surgery in treating lung metastases (LM). However, it is not clear which patients benefit most and what are the most suitable fractionation regimens. The aim of this study was to analyze treatment outcomes after single fraction radiosurgery (SFRS) and fractionated SBRT (fSBRT) in patients with lung oligometastases and identify prognostic clinical features for better survival outcomes. METHODS Fifty-two patients with 94 LM treated with SFRS or fSBRT between 2010 and 2016 were analyzed. The characteristics of primary tumor, LM, treatment, toxicity profiles and outcomes were assessed. Kaplan-Meier and Cox regression analyses were used for estimation of local control (LC), overall survival (OS) and progression-free survival. RESULTS Ninety-four LM in 52 patients were treated using SFRS/fSBRT with a median of 2 lesions per patient (range: 1-5). The median planning target volume (PTV)-encompassing dose for SFRS was 24 Gy (range: 17-26) compared to 45 Gy (range: 20-60) in 2-12 fractions with fSBRT. The median follow-up time was 21 months (range: 3-68). LC rates at 1 and 2 years for SFSR vs. fSBRT were 89 and 83% vs. 75 and 59%, respectively (p = 0.026). LM treated with SFSR were significantly smaller (p = 0.001). The 1 and 2-year OS rates for all patients were 84 and 71%, respectively. In univariate analysis treatment with SFRS, an interval of ≥12 months between diagnosis of LM and treatment, non-colorectal cancer histology and BED < 100 Gy were significantly associated with better LC. However, none of these parameters remained significant in the multivariate Cox regression model. OS was significantly better in patients with negative lymph nodes (N0), Karnofsky performance status (KPS) > 70% and time to first metastasis ≥12 months. There was no grade 3 acute or late toxicity. CONCLUSIONS Longer time to first metastasis, good KPS and N0 predicted better OS. Good LC and low toxicity rates were achieved after short SBRT schedules.
Collapse
Affiliation(s)
- Goda G. Kalinauskaite
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ingeborg I. Tinhofer
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- The Translational Radiooncology and Radiobiology Research Laboratory, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus M. Kufeld
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Anne A. Kluge
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Arne A. Grün
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Volker V. Budach
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carolin C. Senger
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Carmen C. Stromberger
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Charité CyberKnife Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
15
|
Finazzi T, van Sörnsen de Koste JR, Palacios MA, Spoelstra FO, Slotman BJ, Haasbeek CJ, Senan S. Delivery of magnetic resonance-guided single-fraction stereotactic lung radiotherapy. Phys Imaging Radiat Oncol 2020; 14:17-23. [PMID: 33458309 PMCID: PMC7807654 DOI: 10.1016/j.phro.2020.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Single-fraction stereotactic ablative radiotherapy (SABR) is an effective treatment for early-stage lung cancer, but concerns remain about the accurate delivery of SABR in a single session. We evaluated the delivery of single-fraction lung SABR using magnetic resonance (MR)-guidance. MATERIALS AND METHODS An MR-simulation was performed in 17 patients, seven of whom were found to be unsuitable, largely due to unreliable tracking of small tumors. Ten patients underwent single-fraction SABR to 34 Gy on a 0.35 T MR-linac system, with online plan adaptation. Gated breath-hold SABR was delivered using a planning target volume (PTV) margin of 5 mm, and a 3 mm gating window. Continuous MR-tracking of the gross tumor volume (GTVt) was performed in sagittal plane, with visual patient feedback provided using an in-room monitor. The real-time MR images were analyzed to determine precision and efficiency of gated delivery. RESULTS All but one patient completed treatment in a single session. The median total in-room procedure was 120 min, with a median SABR delivery session of 39 min. Review of 7.4 h of cine-MR imaging revealed a mean GTVt coverage by the PTV during beam-on of 99.6%. Breath-hold patterns were variable, resulting in a mean duty cycle efficiency of 51%, but GTVt coverage was not influenced due to real-time MR-guidance. On-table adaptation improved PTV coverage, but had limited impact on GTV doses. CONCLUSIONS Single-fraction gated SABR of lung tumors can be performed with high precision using MR-guidance. However, improvements are needed to ensure MR-tracking of small tumors, and to reduce treatment times.
Collapse
Affiliation(s)
- Tobias Finazzi
- Corresponding author at: Amsterdam University Medical Centers, Location VUmc, Postbox 7057, 1007 MB Amsterdam, The Netherlands.
| | | | - Miguel A. Palacios
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Femke O.B. Spoelstra
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Berend J. Slotman
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J.A. Haasbeek
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUmc, de Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
16
|
Antony R, Lonski P, Ungureanu E, Hardcastle N, Yeo A, Siva S, Kron T. Independent review of 4DCT scans used for SABR treatment planning. J Appl Clin Med Phys 2020; 21:62-67. [PMID: 32053280 PMCID: PMC7075381 DOI: 10.1002/acm2.12825] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 12/08/2019] [Accepted: 12/26/2019] [Indexed: 12/01/2022] Open
Abstract
Four-dimensional computerized tomography (4DCT) is required for stereotactic ablative body radiotherapy (SABR) of mobile targets to account for tumor motion during treatment planning and delivery. In this study, we report on the impact of an image review quality assurance process performed prior to treatment planning by medical physicists for 4DCT scans used for SABR treatment. Reviews were performed of 211 4DCT scans (193 patients) over a 3-yr period (October 2014 to October 2017). Treatment sites included lung (n = 168), kidney/adrenal/adrenal gland (n = 12), rib (n = 4), mediastinum (n = 10), liver (n = 2), T-spine (n = 1), and other abdominal sites (n = 14). It was found that in 23% (n = 49) of cases patient management was altered due to the review process. The most frequent intervention involved patient-specific contouring advice (n = 35 cases, 17%) including adjustment of internal target volume (ITV) margins. In 13 cases (6%) a rescan was requested due to extensive motion artifact rendering the scan inadequate for SABR treatment planning. 4DCT review by medical physicists was found to be an effective method to improve plan quality for SABR.
Collapse
Affiliation(s)
- Rachitha Antony
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVicAustralia
| | - Peta Lonski
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVicAustralia
| | - Elena Ungureanu
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVicAustralia
| | - Nicholas Hardcastle
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVicAustralia
- Centre for Medical Radiation PhysicsUniversity of WollongongWollongongNSWAustralia
| | - Adam Yeo
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVicAustralia
| | - Shankar Siva
- Department of Radiation OncologyPeter MacCallum Cancer CentreMelbourneVicAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVicAustralia
| | - Tomas Kron
- Department of Physical SciencesPeter MacCallum Cancer CentreMelbourneVicAustralia
- Sir Peter MacCallum Department of OncologyUniversity of MelbourneMelbourneVicAustralia
| |
Collapse
|
17
|
Radiotherapy in Lung Cancer: Current and Future Role. MEDICAL BULLETIN OF SISLI ETFAL HOSPITAL 2019; 53:353-360. [PMID: 32377108 PMCID: PMC7192301 DOI: 10.14744/semb.2019.25991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022]
Abstract
Lung cancer is divided into two subgroups concerning its natural course and treatment strategies as follows: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). In this review, for NSCLC, the role of stereotactic body radiation therapy (SBRT) in early-stage, chemoradiation in the locally advanced stage, post-operative radiotherapy for patients with high risk after surgery and radiotherapy for metastatic disease will be discussed. Also, for SCLC, the role and timing of thoracic irradiation and prophylactic cranial irradiation (PCI) for the limited and extensive stages will be discussed.
Collapse
|
18
|
Milano MT, Mihai A, Kang J, Singh DP, Verma V, Qiu H, Chen Y, Kong FM(S. Stereotactic body radiotherapy in patients with multiple lung tumors: a focus on lung dosimetric constraints. Expert Rev Anticancer Ther 2019; 19:959-969. [DOI: 10.1080/14737140.2019.1686980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael T. Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alina Mihai
- Department of Radiation Oncology, Beacon Hospital, Beacon Court, Dublin, Ireland
| | - John Kang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Deepinder P Singh
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Vivek Verma
- Department of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Haoming Qiu
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuhchyau Chen
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
19
|
Liu C, Sun B, Hu X, Zhang Y, Wang Q, Yue J, Yu J. Stereotactic Ablative Radiation Therapy for Pulmonary Recurrence-Based Oligometastatic Non-Small Cell Lung Cancer: Survival and Prognostic Value of Regulatory T Cells. Int J Radiat Oncol Biol Phys 2019; 105:1055-1064. [PMID: 31437470 DOI: 10.1016/j.ijrobp.2019.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE We evaluated survival of patients with pulmonary recurrence-based oligometastatic non-small cell lung cancer (NSCLC) whose lesions were all treated with stereotactic ablative radiation therapy (SABR) and the prognostic value of peripheral immune cells. METHODS AND MATERIALS In this prospective observational cohort study, we prospectively enrolled 63 patients with oligometastatic NSCLC, for whom all metastases were treated with SABR. Peripheral blood samples were collected 3 days before treatment began, and flow cytometry was used to identify proportions of regulatory T cells (Tregs; CD4+CD25+CD127low), B cells, NK cells, γδT cells, CD8+CD28+ T cells, and CD8+CD28- T cells. Overall survival (OS) and progression-free survival (PFS) was estimated by the Kaplan-Meier method, and the potential prognostic value of clinicopathologic factors was evaluated by Cox proportional hazards regression. RESULTS At a median follow-up time of 19.1 months, estimated OS rates were 84.3% at 1 year, 63.4% at 2 years, and 44.0% at 3 years; corresponding PFS rates were 55.2%, 30.9%, and 25.7%. Estimated local control rates were 96.7% at 1 year and 92.7% at both 2 years and 3 years. Patients with high numbers of Tregs had poorer OS and PFS than did those with low numbers of Tregs (OS: 16.1 months vs not reached, P = .006; PFS: 11.0 vs 21.7 months, P = .013). Treg level was found to be an independent predictor of both OS and PFS in multivariate analyses (OS: hazard ratio 2.68, P = .038; PFS: hazard ratio 2.35, P = .011). CONCLUSIONS Our results revealed the independent prognostic value of Tregs in patients treated with SABR for pulmonary recurrence-based oligometastatic NSCLC. Additional treatments may be needed for patients with oligometastatic NSCLC and poor outcomes.
Collapse
Affiliation(s)
- Chao Liu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Bing Sun
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xiaoyu Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yun Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qian Wang
- Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
20
|
Siva S, Ball DL. Single Fraction SBRT for Early Stage Lung Cancer-Less is More? Int J Radiat Oncol Biol Phys 2019; 103:1085-1087. [PMID: 30900559 DOI: 10.1016/j.ijrobp.2018.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.
| | - David L Ball
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Wang X, Zamdborg L, Ye H, Grills IS, Yan D. A matched-pair analysis of stereotactic body radiotherapy (SBRT) for oligometastatic lung tumors from colorectal cancer versus early stage non-small cell lung cancer. BMC Cancer 2018; 18:962. [PMID: 30305131 PMCID: PMC6180414 DOI: 10.1186/s12885-018-4865-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The use of stereotactic body radiotherapy (SBRT) for early-stage primary non-small cell lung cancer (NSCLC) reported excellent local control rates. But the optimal SBRT dose for oligometastatic lung tumors (OLTs) from colorectal cancer (CRC) has not yet been determined. This study aimed to evaluate whether SBRT to a dose of 48-60 Gy in 4-5 fractions could result in similar local outcomes for OLTs from CRC as compared to early-stage NSCLC, and to examine potential dose-response relationships for OLTs from CRC. METHODS OLTs from CRC and primary NSCLCs treated with SBRT to 48-60 Gy in 4-5 fractions at a single institution were evaluated, and a matched-pair analysis was performed. Local recurrence-free survival (LRFS) was estimated by the Kaplan-Meier method. Univariate Cox regression was performed to identify significant predictors. RESULTS There were 72 lung lesions in 61 patients (24 OLTs from CRC in 15 patients and 48 NSCLCs in 46 patients) were analyzed with a median follow-up of 30 months. LRFS for OLTs from CRC was significantly worse than that of NSCLC when treated with 48-60 Gy/4-5 fx (p = 0.006). The 1, 3 and 5-year LRFS of OLTs from CRC vs NSCLC were 80.6% vs. 100%, 68.6% vs. 97.2%, and 68.6% vs. 81.0%, respectively. On univariate analysis, OLTs from CRC treated with higher dose (BED10 = 132 Gy) exhibited significantly better local recurrence-free survival than those treated to lower doses (BED10 ≤ 105.6 Gy) (p = 0.0022). The 1 and 3-year LRFS rates for OLTs treated to a higher dose (BED10 = 132 Gy) were 88.9% and 81.5%, vs 33.3%, and not achieved for lower doses (BED10 ≤ 105.6 Gy). CONCLUSION The LRFS of OLTs from CRC after SBRT of 48-60 Gy/4-5 fx was significantly worse than that of primary NSCLC. Lower dose SBRT appeared to have inferior control for OLTs of CRC in this cohort. Further studies with larger sample sizes are needed.
Collapse
Affiliation(s)
- Xin Wang
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 of Wainan Guoxue Lane, Wuhou District, Chengdu, 610041, Sichuan Province, China. .,Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Leonid Zamdborg
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan, USA
| | - Hong Ye
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan, USA
| | - Inga S Grills
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan, USA.,Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Di Yan
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan, USA.,Department of Radiation Oncology, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| |
Collapse
|
22
|
Treatment-Related Adverse Effects in Lung Cancer Patients after Stereotactic Ablative Radiation Therapy. JOURNAL OF ONCOLOGY 2018; 2018:6483626. [PMID: 30402100 PMCID: PMC6193322 DOI: 10.1155/2018/6483626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 12/25/2022]
Abstract
Introduction Lung cancer is a disease which, despite the advancements in treatment, still has a very poor 5-year survival rate. Stereotactic ablative radiation therapy (SABR) is a highly advanced, sophisticated, and safe treatment which allows patients with early stage lung cancer to be treated effectively without invasive procedures and with excellent clinical outcomes. Avoiding surgery minimises morbidity and recovery time, bettering patients' quality of life. Furthermore, SABR allows patients unsuitable for surgery to still undergo curative treatment. Methods We aimed to review SABR-related normal tissue toxicities reported in the literature. While many studies assess safety, clinical efficacy, and disease control of SABR for lung cancer, the number of comprehensive reviews that analyse SABR-related side-effects is scarce. This integrative review summarises the toxicities reported in literature based on published clinical trials and tumour location (central or peripheral tumours) for available SABR techniques. Given that the majority of the clinical studies did not report on the statistical significance (e.g., p-values and confidence intervals) of the toxicities experienced by patients, statistical analyses cannot be performed. As a result, adverse events are compiled from clinical reports; however, due to various techniques and nonstandard toxicity reports, no meta-analysis is possible at the current stage of reported data. Results When comparing lobectomy and SABR in phase III trials, surgery resulted in increased procedure-related morbidity. In phase II trials, very few studies showed high grade toxicities/fatalities as a result of SABR for lung cancer. Gross target volume size was a significant predictor of toxicity. An ipsilateral mean lung dose larger than 9 Gy was significantly associated with radiation pneumonitis. Conclusions Based on the studies reviewed SABR is a safe treatment technique for lung cancer; however, further well-designed phase III randomised clinical trials are required to produce timely conclusive results and to enable their comparison and statistical analysis.
Collapse
|
23
|
Sharma A, Duijm M, Oomen-de Hoop E, Aerts JG, Verhoef C, Hoogeman M, Nuyttens JJ. Factors affecting local control of pulmonary oligometastases treated with stereotactic body radiotherapy. Acta Oncol 2018; 57:1031-1037. [PMID: 29488414 DOI: 10.1080/0284186x.2018.1445285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Oligometastases refers to a state of limited metastatic disease. The use of local ablative therapies to patients with oligometastases can result in durable state of remission or long-term cure. Stereotactic body radiotherapy (SBRT) is a highly conformal radiation technique that delivers ablative doses to the target. The study aimed to evaluate local control (LC) and identify factors associated with poor LC in patients with pulmonary oligometastases treated with SBRT. Primary endpoint of the study was to assess LC; secondary endpoint was to determine factors associated with LC. MATERIAL AND METHODS Criteria used for selection of patients with oligometastases included: metastatic disease limited to a maximum of two organs and no more than five metastatic lesions at time of treatment. Peripheral tumors were treated with 51-60 Gy in three fractions or a single fraction of 30 Gy. Central tumors received a dose of 45-60 Gy in 5-8 fractions. RESULTS In 206 patients, 327 pulmonary oligometastases were treated with SBRT. Median follow-up was 22 months (range 2-100). LC at 2 and 3 years was 85% and 83%, respectively. On univariate analysis, biological equivalent dose assuming an α/β ratio of 10 (BED10) < 100 Gy (HR 3.09), single-fraction SBRT (HR 2.83), synchronous metastasis (HR 1.99), and pre-SBRT chemotherapy (HR 2.79) were significantly associated with inferior LC. In the multivariable analysis BED10 <100 Gy (HR 3.59), pre-SBRT chemotherapy (HR 2.61) and presence of synchronous metastasis (HR 2.21) remained independently associated with poor LC. CONCLUSIONS SBRT achieved an excellent LC of 85% at 2 years. Although retrospective in nature, our study identified three factors associated with inferior LC. These factors may help to refine SBRT practice for pulmonary oligometastases in the future.
Collapse
Affiliation(s)
- Aman Sharma
- Department of Radiation Oncology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| | - Marloes Duijm
- Department of Radiation Oncology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| | - Esther Oomen-de Hoop
- Department of Radiation Oncology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| | - Joachim G. Aerts
- Department of Pulmonology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| | - Mischa Hoogeman
- Department of Radiation Oncology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| | - Joost Jan Nuyttens
- Department of Radiation Oncology, Erasmus MC-Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Ahmed KA, Scott JG, Arrington JA, Naghavi AO, Grass GD, Perez BA, Caudell JJ, Berglund AE, Welsh EA, Eschrich SA, Dilling TJ, Torres-Roca JF. Radiosensitivity of Lung Metastases by Primary Histology and Implications for Stereotactic Body Radiation Therapy Using the Genomically Adjusted Radiation Dose. J Thorac Oncol 2018; 13:1121-1127. [PMID: 29733909 DOI: 10.1016/j.jtho.2018.04.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION We assessed the radiosensitivity of lung metastases on the basis of primary histologic type by using a validated gene signature and model lung metastases for the gnomically adjusted radiation dose (GARD). METHODS Tissue samples were identified from our prospective observational protocol. The radiosensitivity index (RSI) 10-gene assay was run on samples and calculated alongside the GARD by using the previously published algorithms. A cohort of 105 patients with 137 lung metastases treated with stereotactic body radiation therapy (SBRT) at our institution was used for clinical correlation. RESULTS A total of 138 unique metastatic lung lesions from our institution's tissue biorepository were identified for inclusion. There were significant differences in the RSI of lung metastases on the basis of histology. In order of decreasing radioresistance, the median RSIs for the various histologic types of cancer were endometrial adenocarcinoma (0.49), soft-tissue sarcoma (0.47), melanoma (0.44), rectal adenocarcinoma (0.43), renal cell carcinoma (0.33), head and neck squamous cell cancer (0.33), colon adenocarcinoma (0.32), and breast adenocarcinoma (0.29) (p = 0.002). We modeled the GARD for these samples and identified the biologically effective dose necessary to optimize local control. The 12- and 24-month Kaplan-Meier rates of local control for radioresistant versus radiosensitive histologic types from our clinical correlation cohort after lung SBRT were 92%/87% and 100%, respectively (p = 0.02). CONCLUSIONS In this analysis, we have noted significant differences in radiosensitivity on the basis of primary histologic type of lung metastases and have modeled the biologically effective dose necessary to optimize local control. This study suggests that primary histologic type may be an additional factor to consider in selection of SBRT dose to the lung and that dose personalization may be feasible.
Collapse
Affiliation(s)
- Kamran A Ahmed
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jacob G Scott
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - John A Arrington
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arash O Naghavi
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - G Daniel Grass
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Bradford A Perez
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jimmy J Caudell
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anders E Berglund
- Department of Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Eric A Welsh
- Department of Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Steven A Eschrich
- Department of Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Thomas J Dilling
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Javier F Torres-Roca
- Departments of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
25
|
Single Fraction Stereotactic Ablative Body Radiotherapy for Oligometastasis: Outcomes from 132 Consecutive Patients. Clin Oncol (R Coll Radiol) 2017; 30:178-184. [PMID: 29224900 DOI: 10.1016/j.clon.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/20/2017] [Accepted: 10/26/2017] [Indexed: 12/28/2022]
Abstract
AIMS Stereotactic ablative body radiotherapy (SABR) is currently used to treat oligometastases, but the optimum dose/fractionation schedule is unknown. In this study, we evaluated outcomes after single fraction SABR in patients with oligometastatic disease. MATERIALS AND METHODS Single institutional retrospective review of patients treated with single fraction SABR for one to three oligometastases between 2010 and 2015. The primary outcome was freedom from widespread disease defined as distant recurrence not amenable to surgery or SABR; or recurrence with four or more metastases. RESULTS In total, 186 treatments were delivered in 132 patients. The two most common target sites were lung (51%) and bone (40%). The most frequent single fraction prescription dose was 26 Gy (47%). The most common primary malignancy was genitourinary (n = 46 patients). Freedom from widespread disease was 75% at 1 year (95% confidence interval 67-83%) and 52% at 2 years (95% confidence interval 42-63%). Freedom from local progression at 1 year was 90% (95% confidence interval 85-95%) and at 2 years was 84% (95% confidence interval 77-91%). A compression fracture of the lumbar vertebra was the only grade 3+ treatment-related toxicity. CONCLUSIONS Single fraction SABR is associated with a high rate of freedom from widespread disease, favourable local control and low toxicity comparable with historic multi-fraction SABR reports.
Collapse
|
26
|
Clark CH, Hurkmans CW, Kry SF. The role of dosimetry audit in lung SBRT multi-centre clinical trials. Phys Med 2017; 44:171-176. [PMID: 28391958 DOI: 10.1016/j.ejmp.2017.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/20/2017] [Accepted: 04/01/2017] [Indexed: 11/29/2022] Open
Abstract
Stereotactic Body Radiotherapy (SBRT) in the lung is a challenging technique which requires high quality clinical trials to answer the un-resolved clinical questions. Quality assurance of these clinical trials not only ensures the safety of the treatment of the participating patients but also minimises the variation in treatment, thus allowing the lowest number of patient treatments to answer the trial question. This review addresses the role of dosimetry audits in the quality assurance process and considers what can be done to ensure the highest accuracy of dose calculation and delivery and it's assessment in multi-centre trials.
Collapse
Affiliation(s)
- Catharine H Clark
- Royal Surrey County Hospital, Guildford, UK; National Physical Laboratory, Teddington, UK; National Radiotherapy Trials QA (RTTQA) Group, Mount Vernon Hospital, Northwood, UK.
| | - Coen W Hurkmans
- Catharina Ziekenhuis, Eindhoven, The Netherlands; European Organisation for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Stephen F Kry
- MD Andersen Cancer Center, Houston, TX, USA; Imaging and Radiation Oncology Core (IROC), Houston, USA
| | | |
Collapse
|
27
|
Siva S, Slotman BJ. Stereotactic Ablative Body Radiotherapy for Lung Metastases: Where is the Evidence and What are We Doing With It? Semin Radiat Oncol 2017; 27:229-239. [PMID: 28577830 DOI: 10.1016/j.semradonc.2017.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review provides an overview of the use of stereotactic ablative body radiotherapy (SABR) for pulmonary metastases. The local control rates after SABR are generally >90%. Whether this also translates into a significant improvement in overall survival is the subject of ongoing studies. New exciting opportunities including the integration of SABR with targeted and immune therapies as well as some competing treatment strategies are discussed.
Collapse
Affiliation(s)
- Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Ben J Slotman
- Department of Radiation Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Redmond KJ, Lo SS, Dagan R, Poon I, Foote MC, Erler D, Lee Y, Lohr F, Biswas T, Ricardi U, Sahgal A. A multinational report of technical factors on stereotactic body radiotherapy for oligometastases. Future Oncol 2017; 13:1081-1089. [PMID: 28152619 DOI: 10.2217/fon-2016-0479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM Oligometastatic cancer is being increasingly managed with aggressive local therapy using stereotactic body radiation therapy (SBRT). However, few guidelines exist. We summarize the results of an international survey reviewing technical factors for extracranial SBRT for oligometastatic disease to guide safe management. MATERIALS & METHODS Seven high-volume centers contributed. Levels of agreement were categorized as strong (6-7 common responses), moderate (4-5), low (2-3) or no agreement. RESULTS & CONCLUSION We present the results of a multi-national and multi-institutional survey of technical factors of SBRT for extracranial oligometastases. Key methods including target delineation, prescription doses, normal tissue constraints, imaging and set-up for safe implementation and practice of SBRT for oligometastasis have been identified. This manuscript will serve as a foundation for future clinical evaluations.
Collapse
Affiliation(s)
| | - Simon S Lo
- University of Washington School of Medicine, Seattle, WA, USA
| | - Roi Dagan
- University of Florida, Jacksonville, FL, USA
| | - Ian Poon
- Odette Cancer Centre-Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Matthew C Foote
- University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Darby Erler
- Odette Cancer Centre-Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Young Lee
- Odette Cancer Centre-Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Frank Lohr
- Azienda Az. Ospedaliero-Universitaria di Modena, Dipartimento di Oncologia, Unita Operativa di Radioterapia, Modena, Italy
| | - Tithi Biswas
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | | | - Arjun Sahgal
- Odette Cancer Centre-Sunnybrook Health Sciences, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Islam SM, Vinod SK, Lehman M, Siva S, Kron T, Dwyer PM, Holloway L, Lao L, Yap ML, Ruben JD. Lung cancer radiation therapy in Australia and New Zealand: Patterns of practice. J Med Imaging Radiat Oncol 2016; 60:677-685. [DOI: 10.1111/1754-9485.12475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/24/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Syed Muntasser Islam
- Radiation Oncology; William Buckland Radiotherapy Centre; Melbourne Victoria Australia
| | - Shalini K Vinod
- Cancer Therapy Centre; Liverpool Hospital; Liverpool BC New South Wales Australia
| | - Margot Lehman
- Radiation Oncology; Princess Alexandra Hospital; Brisbane Queensland Australia
| | - Shankar Siva
- Radiation Oncology; Peter MacCallum Cancer Centre; East Melbourne Victoria Australia
| | - Tomas Kron
- Medical Physics; Peter MacCallum Cancer Centre; East Melbourne Victoria Australia
| | - Patrick M Dwyer
- North Coast Cancer Institute; Lismore New South Wales Australia
| | - Lois Holloway
- Medical Physics; Liverpool Hospital; Liverpool BC New South Wales Australia
- South Western Clinical School; University of New South Wales; Sydney New South Wales Australia
- Ingham Institute for Applied Medical Research; Liverpool BC New South Wales Australia
| | - Louis Lao
- Radiation Oncology; Auckland City Hospital; Auckland New Zealand
- Auckland Radiation Oncology; Auckland New Zealand
- University of Auckland; Auckland New Zealand
| | - Mei Ling Yap
- Ingham Institute for Applied Medical Research; Liverpool BC New South Wales Australia
- Radiation Oncology; Liverpool Hospital; Liverpool BC New South Wales Australia
- Radiation Oncology; Macarthur Cancer Therapy Centre; Western Sydney University; Campbelltown New South Wales Australia
| | - Jeremy D Ruben
- Radiation Oncology; William Buckland Radiotherapy Centre; Melbourne Victoria Australia
- Monash University; Melbourne Victoria Australia
| |
Collapse
|
30
|
A Multidisciplinary Evaluation of a Web-based eLearning Training Programme for SAFRON II (TROG 13.01): a Multicentre Randomised Study of Stereotactic Radiotherapy for Lung Metastases. Clin Oncol (R Coll Radiol) 2016; 28:e101-8. [PMID: 27116931 DOI: 10.1016/j.clon.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/31/2022]
Abstract
AIMS In technically advanced multicentre clinical trials, participating centres can benefit from a credentialing programme before participating in the trial. Education of staff in participating centres is an important aspect of a successful clinical trial. In the multicentre study of fractionated versus single fraction stereotactic ablative body radiotherapy in lung oligometastases (TROG 13.01), knowledge transfer of stereotactic ablative body radiotherapy techniques to the local multidisciplinary team is intended as part of the credentialing process. In this study, a web-based learning platform was developed to provide education and training for the multidisciplinary trial teams at geographically distinct sites. MATERIALS AND METHODS A web-based platform using eLearning software consisting of seven training modules was developed. These modules were based on extracranial stereotactic theory covering the following discrete modules: Clinical background; Planning technique and evaluation; Planning optimisation; Four-dimensional computed tomography simulation; Patient-specific quality assurance; Cone beam computed tomography and image guidance; Contouring organs at risk. Radiation oncologists, medical physicists and radiation therapists from hospitals in Australia and New Zealand were invited to participate in this study. Each discipline was enrolled into a subset of modules (core modules) and was evaluated before and after completing each module. The effectiveness of the eLearning training will be evaluated based on (i) knowledge retention after participation in the web-based training and (ii) confidence evaluation after participation in the training. Evaluation consisted of a knowledge test and confidence evaluation using a Likert scale. RESULTS In total, 130 participants were enrolled into the eLearning programme: 81 radiation therapists (62.3%), 27 medical physicists (20.8%) and 22 radiation oncologists (16.9%). There was an average absolute improvement of 14% in test score (P < 0.001) after learning. This score improvement compared with initial testing was also observed in the long-term testing (>4 weeks) after completing the modules (P < 0.001). For most there was significant increase in confidence (P < 0.001) after completing all the modules.
Collapse
|