1
|
Amin W, Enam SA, Sufiyan S, Ghias K, Bajwa MH, Ilyas S, Laghari AA, Naeem S, Abidi SH, Mughal N. Autophagy-associated biomarkers ULK2, UVRAG, and miRNAs miR-21, miR-126, and miR-374: Prognostic significance in glioma patients. PLoS One 2024; 19:e0311308. [PMID: 39348350 PMCID: PMC11441661 DOI: 10.1371/journal.pone.0311308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
As the pioneering study from Pakistan, our research distinctly focuses on validating the roles of autophagy-associated genes and MicroRNAs (miRs) in the unique context of our population for glioma prognosis. The study delves into the nuanced interplay of autophagy within a miR-modulated environment, prompting an exploration of its potential impact on glioma development and survival. Employing real-time PCR (qPCR), we meticulously assessed the expression profiles of autophagy genes and miRs in glioma tissues, complemented by immunohistochemistry on Formalin-fixed paraffin-embedded tissues from the same patients. Our comprehensive statistical analyses, including the data normality hypothesis Shapiro-Wilk test, the Mann-Whitney U-test, Spearman correlation test, and Kaplan-Meier survival analysis, were tailored to unravel the intricate associations specific to low- and high-grade glioma within our population. Clinicopathological analysis revealed a predominance of male patients (66%) with a median age of 35 years. Glioblastoma (32%) and Astrocytoma (36%) were the most prevalent histopathological subtypes. Molecular analysis showed significant correlations between prognostic markers (Ki-67, IDH-1, p53) and clinicopathological factors, including age, histological type, radiotherapy, and chemotherapy. In high-grade glioma, increased expression of AKT and miR-21, coupled with reduced ULK2 and LC3 expression was distinctly observed. While correlation analysis identified a strong positive correlation between ULK2 and UVRAG, PTEN, miR-7, and miR-100 in low-grade glioma, unveiling distinctive molecular signatures unique to our study. Furthermore, a moderate positive correlation emerged between ULK2 and mTOR, miR-7, miR-30, miR-100, miR-204, and miR-374, also between miR-21 and miR-126. Similarly, a positive correlation appeared between ULK2 and AKT, LC3, PI3K, PTEN, ULK1, VPS34, mTOR, Beclin1, UVRAG, miR-7 and miR-374. AKT positively correlated with LC3, PI3K, PTEN, ULK1, VPS34, mTOR, Beclin1, UVRAG, miR-7, miR-30, miR-204, miR-374, miR-126 and miR-21 weakly correlated with AKT and miR-30 in high-grade glioma, providing further insights into the autophagy pathway within our population. The enrichment analysis for miR-21, miR-126, and miR-374 showed MAPK pathway as a common pathway along with Ras, PI3K, and mTOR pathway. The low ULK2, UVRAG, and miR-374 expression group exhibited significantly poor overall survival in glioma, while miR-21 over-expression indicated a poor prognosis in glioma patients, validating it in our population. This study provides comprehensive insights into the molecular landscape of gliomas, highlighting the dysregulation of autophagy genes ULK2, and UVRAG and the associated miR-21, miR-126 and miR-374 as potential prognostic biomarkers and emphasizing their unique significance in shaping survival outcomes in gliomas within the specific context of the Pakistani population.
Collapse
Affiliation(s)
- Wajiha Amin
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Sufiyan Sufiyan
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Kulsoom Ghias
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Sahar Ilyas
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Altaf Ali Laghari
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Sana Naeem
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Syed Hani Abidi
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Astana, Kazakhstan
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Nouman Mughal
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
2
|
Beilankouhi EAV, Maghsoodi MS, Sani MZ, Khosroshahi NS, Zarezadeh R, Nargesi MM, Safaralizadeh R, Valilo M. miRNAs that regulate apoptosis in breast cancer and cervical cancer. Cell Biochem Biophys 2024; 82:1993-2006. [PMID: 38969951 DOI: 10.1007/s12013-024-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
In today's world, one of the main problems is cancer, which still has a long way to go to cure it, and it brings a lot of financial and emotional costs to the people of society and governments. Breast cancer (BC) and cervical cancer (CC), two of the most common cancers, are caused by several genetic and environmental factors in women. These two cancers' involvement rate is higher than other cancers in women. microRNAs (miRNAs) are non-coding RNA molecules with a length of 18 to 24 nucleotides, which play an important role in post-translational changes. miRNAs themselves are divided into two categories, oncomiRs and tumor suppressors. OncomiRs have a part in tumor expansion and tumor suppressors prevent tumor development and progress. miRNAs can control cellular processes by regulating various pathways including autophagy, apoptosis, and signaling. Apoptosis is a type of programmed cell death that includes intrinsic and extrinsic pathways and is different from other cell death pathways such as necrosis and ferroptosis. Apoptosis controls the growth, differentiation, and death of cells by regulating the death of damaged and old cells, and since miRNAs are one of the factors that regulate apoptosis, and divided into two categories: pro-apoptotic and anti-apoptotic. We decided in this study to investigate the relationship between miRNAs and apoptosis in the most common women's cancers, BC and CC.
Collapse
Affiliation(s)
| | - Maral Salek Maghsoodi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirsaed Miri Nargesi
- Molecular Virology and Covid Unit, LabPlus, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Chauhan P, Pramodh S, Hussain A, Elsori D, Lakhanpal S, Kumar R, Alsaweed M, Iqbal D, Pandey P, Al Othaim A, Khan F. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front Cell Dev Biol 2024; 12:1397945. [PMID: 39263322 PMCID: PMC11387185 DOI: 10.3389/fcell.2024.1397945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Cervical cancer (CC) is the most common cancer in women and poses a serious threat to health. Despite familiarity with the factors affecting its etiology, initiation, progression, treatment strategies, and even resistance to therapy, it is considered a significant problem for women. However, several factors have greatly affected the previous aspects of CC progression and treatment in recent decades. miRNAs are short non-coding RNA sequences that regulate gene expression by inhibiting translation of the target mRNA. miRNAs play a crucial role in CC pathogenesis by promoting cancer stem cell (CSC) proliferation, postponing apoptosis, continuing the cell cycle, and promoting invasion, angiogenesis, and metastasis. Similarly, miRNAs influence important CC-related molecular pathways, such as the PI3K/AKT/mTOR signaling pathway, Wnt/β-catenin system, JAK/STAT signaling pathway, and MAPK signaling pathway. Moreover, miRNAs affect the response of CC patients to chemotherapy and radiotherapy. Consequently, this review aims to provide an acquainted summary of onco miRNAs and tumor suppressor (TS) miRNAs and their potential role in CC pathogenesis and therapy responses by focusing on the molecular pathways that drive them.
Collapse
Affiliation(s)
| | - Sreepoorna Pramodh
- Department of Biomedical Sciences, University of Birmingham Dubai, Dubai, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Deena Elsori
- Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rahul Kumar
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, India
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah, Saudi Arabia
| | - Pratibha Pandey
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
- Centre for Research Impact and Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Fahad Khan
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Kordic M, Martinovic D, Puizina E, Bozic J, Zubcic Z, Dediol E. Impact of Human Papillomavirus on microRNA-21 Expression in Oral and Oropharyngeal Cancer-A Systematic Review. Int J Mol Sci 2024; 25:8038. [PMID: 39125608 PMCID: PMC11311551 DOI: 10.3390/ijms25158038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, microRNAs (miR) were identified to have potential links with oral squamous cell carcinoma (OSCC) and oropharyngeal squamous cell carcinoma (OPSCC) oncogenesis, specifically miR-21. Since HPV is a major risk factor for the development of these diseases, we aimed to search the literature regarding miR-21 expression in both HPV-positive and HPV-negative OSCC/OPSCC. The search was performed in the PubMed (MEDLINE), Scopus, Web of Science, and Cochrane electronic databases. The research question was as follows: Is there a difference in the tissue expression of miR-21 between patients with HPV-positive and those with HPV-negative OSCC/OPSCC? After conducting a meticulous search strategy, four studies were included, and they had a pooled sample size of 621 subjects with OSCC and/or OPSCC. Three studies did not find any significant difference in miR-21 expression between HPV-positive and HPV-negative OSCC/OPSCC. The findings of this systematic review showed that there are no differences in miR-21 expression between HPV-positive and HPV-negative OSCC/OPSCC. Nevertheless, it is worth noting that there are still insufficient studies regarding this important subject, because understanding how HPV influences miR-21 expression and its downstream effects can provide insights into the molecular mechanisms underlying OSCC/OPSCC development and progression.
Collapse
Affiliation(s)
- Mario Kordic
- Department of ENT and Maxillofacial Surgery, University Hospital Mostar, 88000 Mostar, Bosnia and Herzegovina;
| | - Dinko Martinovic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (E.P.)
| | - Ema Puizina
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia; (D.M.); (E.P.)
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia;
| | - Zeljko Zubcic
- Department of ENT, University Hospital of Osijek, 31000 Osijek, Croatia;
| | - Emil Dediol
- Department of Maxillofacial Surgery, University Hospital Dubrava, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Aguilar-Martínez SY, Campos-Viguri GE, Medina-García SE, García-Flores RJ, Deas J, Gómez-Cerón C, Pedroza-Torres A, Bautista-Rodríguez E, Fernández-Tilapa G, Rodríguez-Dorantes M, Pérez-Plasencia C, Peralta-Zaragoza O. MiR-21 Regulates Growth and Migration of Cervical Cancer Cells by RECK Signaling Pathway. Int J Mol Sci 2024; 25:4086. [PMID: 38612895 PMCID: PMC11012906 DOI: 10.3390/ijms25074086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Expression of miR-21 has been found to be altered in almost all types of cancers, and it has been classified as an oncogenic microRNA. In addition, the expression of tumor suppressor gene RECK is associated with miR-21 overexpression in high-grade cervical lesions. In the present study, we analyze the role of miR-21 in RECK gene regulation in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression using siRNAs. We analyzed the expression of miR-21 and RECK, as well as functional effects on cell proliferation and migration. We found that in cervical cancer cells, there was an inverse correlation between miR-21 expression and RECK mRNA and protein expression. SiRNAs to miR-21 increased luciferase reporter activity in construct plasmids containing the RECK-3'-UTR microRNA response elements MRE21-1, MRE21-2, and MRE21-3. The role of miR-21 in cell proliferation was also analyzed, and cancer cells transfected with siRNAs exhibited a markedly reduced cell proliferation and migration. Our findings indicate that miR-21 post-transcriptionally down-regulates the expression of RECK to promote cell proliferation and cell migration inhibition in cervical cancer cell survival. Therefore, miR-21 and RECK may be potential therapeutic targets in gene therapy for cervical cancer.
Collapse
Affiliation(s)
- Seidy Y. Aguilar-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Gabriela E. Campos-Viguri
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Selma E. Medina-García
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Ricardo J. García-Flores
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Claudia Gómez-Cerón
- Department of Epidemiology of Cancer, Research Center Population Health, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Abraham Pedroza-Torres
- Programa Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, México City 14080, Mexico;
- Hereditary Cancer Clinic, Instituto Nacional de Cancerología, México City 14080, Mexico
| | | | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Chemical Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo 39070, Mexico;
| | | | - Carlos Pérez-Plasencia
- Oncogenomics Laboratory, Instituto Nacional de Cancerología, México City 14080, Mexico;
- Biomedicine Unit, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| |
Collapse
|
6
|
Chawra HS, Agarwal M, Mishra A, Chandel SS, Singh RP, Dubey G, Kukreti N, Singh M. MicroRNA-21's role in PTEN suppression and PI3K/AKT activation: Implications for cancer biology. Pathol Res Pract 2024; 254:155091. [PMID: 38194804 DOI: 10.1016/j.prp.2024.155091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
MicroRNA-21 (miR-21) was recognized as a key figure in the intricate web of tumor biology, with a prominent role in regulating the PTEN tumor suppressor gene and the PI3K/AKT cascade. This review elucidates the multifaceted interactions between miR-21, PTEN, and the PI3K/AKT signaling, shedding light on their profound implications in cancer initiation, progression, and therapeutic strategies. The core of this review delves into the mechanical intricacies of miR-21-mediated PTEN suppression and its consequent impact on PI3K/AKT pathway activation. It explores how miR-21, as an oncogenic miRNA, targets PTEN directly or indirectly, resulting in uncontrolled activation of PI3K/AKT, fostering cancerous cell survival, proliferation, and evasion of apoptosis. Furthermore, the abstract emphasizes the clinical relevance of these molecular interactions, discussing their implications in various cancer types, prognostic significance, and potential as therapeutic targets. The review provides insights into ongoing research efforts to develop miR-21 inhibitors and strategies to restore PTEN function, offering new avenues for cancer treatment. This article illuminates the critical function of miR-21 in PTEN suppression and PI3K/AKT activation, offering profound insights into its implications for cancer biology and the potential for targeted interventions.
Collapse
Affiliation(s)
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | | | | | - Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| |
Collapse
|
7
|
Mobinikhaledi M, Faridzadeh A, Farkhondeh T, Pourhanifeh MH, Samarghandian S. The Roles of Autophagy-related miRNAs in Gynecologic Tumors: A Review of Current Knowledge for Possible Targeted Therapy. Curr Mol Med 2024; 24:1269-1281. [PMID: 39300715 DOI: 10.2174/0115665240263059231002093454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2024]
Abstract
Gynecological cancers are the leading cause of malignancy-related death and disability in the world. These cancers are diagnosed at end stages, and unfortunately, the standard therapeutic strategies available for the treatment of affected women [including chemotherapy, radiotherapy and surgery] are not safe and effective enough. Moreover, the unwanted side-effects lowering the patients' life quality is another problem for these therapies. Therefore, researchers should search for better alternative/complementary treatments. The involvement of autophagy in the pathogenesis of various cancers has been demonstrated. Recently, a novel crosstalk between microRNAs, small non-coding RNAs with important regulatory functions, and autophagy machinery has been highlighted. In this review, we indicate the importance of this interaction for targeted therapy in the treatment of cancers including gynecological cancers, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Mahya Mobinikhaledi
- Department of Pediatrics, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
Jiang NJ, Yin YN, Lin J, Li WY, Long DR, Mei L. MicroRNA-21 in gynecological cancers: From molecular pathogenesis to clinical significance. Pathol Res Pract 2023; 248:154630. [PMID: 37393665 DOI: 10.1016/j.prp.2023.154630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Ovarian, cervical, and endometrial cancers are the three most common gynecological cancer types (GCs). They hold a significant position as the leading causes of mortality among women with cancer-related death. However, GCs are often diagnosed late, severely limiting the efficacy of current treatment options. Thus, there is an urgent, unmet need for innovative experimentation to enhance the clinical treatment of GC patients. MicroRNAs (miRNAs) are a large and varied class of short noncoding RNAs (22 nucleotides in length) that have been shown to play essential roles in various biological processes involved in development. Recent research has shown that miR-211 influences tumorigenesis and cancer formation, adding to our knowledge of the miR-21 dysregulation in GCs. Furthermore, current research that sheds light on the crucial functions of miR-21 may provide supporting evidence for its potential prognostic, diagnostic, and therapeutic applications in the context of GCs. This review will thus focus on the most recent findings concerning miR-21 expression, miR-21 target genes, and the processes behind GCs. In addition, the latest findings that support miR-21's potential use as a non-invasive biomarker and therapeutic agent for detecting and treating cancer will be elucidated in this review. The roles played by various lncRNA/circRNA-miRNA-mRNA axis in GCs are also comprehensively summarized and described in this study, along with any possible implications for how these regulatory networks may contribute to the pathogenesis of GCs. Also, it is crucial to recognize the complexity of the processes involved in tumour therapeutic resistance as a significant obstacle in treating GCs. Furthermore, this review provides an overview of the current state of knowledge regarding the functional significance miR-21 in therapeutic resistance within the context of GCs.
Collapse
Affiliation(s)
- Ni-Jie Jiang
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ya-Nan Yin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Jiao Lin
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Wen-Yuan Li
- West China Nursing School, Sichuan University, Chengdu, 610041, China
| | - De-Rong Long
- Department of Gynecology and Obstetrics Nursing, West China Second University Hospital Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Ling Mei
- Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, 610041, China; Department of Gynecology and Obstetrics, West China Second Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Orozco-García E, van Meurs DJ, Calderón JC, Narvaez-Sanchez R, Harmsen MC. Endothelial plasticity across PTEN and Hippo pathways: A complex hormetic rheostat modulated by extracellular vesicles. Transl Oncol 2023; 31:101633. [PMID: 36905871 PMCID: PMC10020115 DOI: 10.1016/j.tranon.2023.101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 03/11/2023] Open
Abstract
Vascularization is a multifactorial and spatiotemporally regulated process, essential for cell and tissue survival. Vascular alterations have repercussions on the development and progression of diseases such as cancer, cardiovascular diseases, and diabetes, which are the leading causes of death worldwide. Additionally, vascularization continues to be a challenge for tissue engineering and regenerative medicine. Hence, vascularization is the center of interest for physiology, pathophysiology, and therapeutic processes. Within vascularization, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and Hippo signaling have pivotal roles in the development and homeostasis of the vascular system. Their suppression is related to several pathologies, including developmental defects and cancer. Non-coding RNAs (ncRNAs) are among the regulators of PTEN and/or Hippo pathways during development and disease. The purpose of this paper is to review and discuss the mechanisms by which exosome-derived ncRNAs modulate endothelial cell plasticity during physiological and pathological angiogenesis, through the regulation of PTEN and Hippo pathways, aiming to establish new perspectives on cellular communication during tumoral and regenerative vascularization.
Collapse
Affiliation(s)
- Elizabeth Orozco-García
- Physiology and biochemistry research group - PHYSIS, Faculty of Medicine, University of Antioquia, Colombia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - D J van Meurs
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands
| | - J C Calderón
- Physiology and biochemistry research group - PHYSIS, Faculty of Medicine, University of Antioquia, Colombia
| | - Raul Narvaez-Sanchez
- Physiology and biochemistry research group - PHYSIS, Faculty of Medicine, University of Antioquia, Colombia
| | - M C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), Groningen 9713 GZ, The Netherlands.
| |
Collapse
|
10
|
Farasati Far B, Vakili K, Fathi M, Yaghoobpoor S, Bhia M, Naimi-Jamal MR. The role of microRNA-21 (miR-21) in pathogenesis, diagnosis, and prognosis of gastrointestinal cancers: A review. Life Sci 2023; 316:121340. [PMID: 36586571 DOI: 10.1016/j.lfs.2022.121340] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs regulating the expression of several target genes. miRNAs play a significant role in cancer biology, as they can downregulate their corresponding target genes by impeding the translation of mRNA (at the mRNA level) as well as degrading mRNAs by binding to the 3'-untranslated (UTR) regions (at the protein level). miRNAs may be employed as cancer biomarkers. Therefore, miRNAs are widely investigated for early detection of cancers which can lead to improved survival rates and quality of life. This is particularly important in the case of gastrointestinal cancers, where early detection of the disease could substantially impact patients' survival. MicroRNA-21 (miR-21 or miRNA-21) is one of the most frequently researched miRNAs, where it is involved in the pathophysiology of cancer and the downregulation of several tumor suppressor genes. In gastrointestinal cancers, miR-21 regulates phosphatase and tensin homolog (PTEN), programmed cell death 4 (PDCD4), mothers against decapentaplegic homolog 7 (SMAD7), phosphatidylinositol 3-kinase /protein kinase B (PI3K/AKT), matrix metalloproteinases (MMPs), β-catenin, tropomyosin 1, maspin, and ras homolog gene family member B (RHOB). In this review, we investigate the functions of miR-21 in pathogenesis and its applications as a diagnostic and prognostic cancer biomarker in four different gastrointestinal cancers, including colorectal cancer (CRC), pancreatic cancer (PC), gastric cancer (GC), and esophageal cancer (EC).
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Kimia Vakili
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammed Bhia
- Student Research Committee, Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Reza Naimi-Jamal
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
11
|
Gebrie A. Disease progression role as well as the diagnostic and prognostic value of microRNA-21 in patients with cervical cancer: A systematic review and meta-analysis. PLoS One 2022; 17:e0268480. [PMID: 35895593 PMCID: PMC9328569 DOI: 10.1371/journal.pone.0268480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Introduction Cervical cancer is the fourth commonest and the fourth leading cause of cancer death in females globally. The upregulated expression of microRNA-21 in cervical cancer has been investigated in numerous studies, yet given the inconsistency on some of the findings, a systematic review and meta-analysis is needed. Therefore, the aim of this systematic review and meta-analysis is to investigate the role in disease progression as well as the diagnostic and prognostic value of microRNA-21 in patients with cervical cancer. Methods Literature search was carried out through visiting several electronic databases including PubMed/MEDLINE/ PubMed Central, Web of Science, Embase, WorldCat, DOAJ, ScienceDirect, and Google Scholar. After extraction, data analysis was carried out using Rev-Man 5.3, STATA 15.0 and Meta-disk 1.4. I2 and meta-bias statistics assessed heterogeneity and publication bias of the included studies, respectively. The area under summary receiver operating characteristic curve and other diagnostic indexes were used to estimate diagnostic accuracy. Result A total of 53 studies were included for this systematic review and meta-analysis. This study summarized that microRNA-21 targets the expression of numerous genes that regulate their subsequent downstream signaling pathways which promote cervical carcinogenesis. The targets addressed in this study included TNF-α, CCL20, PTEN RasA1, TIMP3, PDCD-4, TPM-1, FASL, BTG-2, GAS-5, and VHL. In addition, the meta-analysis of reports from 6 eligible studies has demonstrated that the overall area under the curve (AUC) of summary receiver operating characteristic (SROC) of microRNA-21 as a diagnostic accuracy index for cervical cancer was 0.80 (95% CI: 0.75, 0.86). In addition, evidence from studies revealed that upregulated microRNA-21 led to worsening progression and poor prognosis in cervical cancer patients. Conclusion microRNA-21 is an oncogenic microRNA molecule playing a key role in the development and progression of cervical malignancy. It has good diagnostic accuracy in the diagnosis of cervical cancer. In addition, the upregulation of microRNA-21 could predict a worse outcome in terms of prognosis in cervical cancer patients.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
- * E-mail:
| |
Collapse
|
12
|
Zeng Z, Cai J, Liao Y, Sun S, Xie L. Progress in the effect of microRNA-21 on diseases via autophagy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:936-941. [PMID: 36039591 PMCID: PMC10930284 DOI: 10.11817/j.issn.1672-7347.2022.210647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 06/15/2023]
Abstract
Autophagy is a regulatory mechanism that packages damaged organelles, proteins, and pathogens to form vesicles and transports to lysosomes for degradation, enabling the recycle of useful components. Therefore, autophagy plays an important role in biological growth regulation and homeostasis. In the past two decades, growing evidence has shown that microRNA (miRNA) is closely related to autophagy. MiRNA-21 promotes or inhibits autophagy via regulating relevant pathways for different downstream target genes, and plays a role in tumors, ischemia-reperfusion injury, and other diseases.
Collapse
Affiliation(s)
- Zhengpeng Zeng
- Center of Health Management, Third Xiangya Hospital, Central South University, Changsha 410013.
- Department of Respiratory and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Jinwen Cai
- Department of Respiratory and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yumei Liao
- Department of Respiratory and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shenghua Sun
- Department of Respiratory and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Lihua Xie
- Department of Respiratory and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
13
|
Tian C, Su J, Ma Z, Wu Y, Ma H. lncRNA NBAT1 Inhibits Cell Metastasis and Promotes Apoptosis in Endometrial Cancer by Sponging miR-21-5p to Regulate PTEN. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9304392. [PMID: 35912140 PMCID: PMC9328976 DOI: 10.1155/2022/9304392] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/18/2022]
Abstract
Objective Long noncoding RNA neuroblastoma-associated transcript 1 (NBAT1) is implicated in the progression of various cancers. Nevertheless, its biological function in endometrial cancer (EC) remains unknown. Methods The levels of NBAT1, miR-21-5p, and PTEN in EC cells and EC tissues were examined by RT-qPCR. Western blot was carried out to assess the protein expression of PTEN. The dual-luciferase reporter assay was conducted to explore the interactions among NBAT1, miR-21-5p, and PTEN. The effect of NBAT1 on EC proliferation, metastasis, and apoptosis was evaluated by CCK-8, transwell assays, wound healing, and flow cytometry. miR-21-5p mimics or NBAT1+miR-21-5p were transfected into HEC-1A and Ishikawa cells to investigate whether NBAT1 regulated EC tumorigenesis via sponging miR-21-5p. Results NBAT1 is downregulated, and miR-21-5p is upregulated in EC cells and tumor tissues. Overexpression of NBAT1 inhibits the proliferation, migration, and invasion abilities of EC cells and facilitated apoptosis. NBAT1 directly binds and negatively regulates miR-21-5p in EC. miR-21-5p mimics reverses the effect of lncRNA NBAT1 overexpression on the proliferation and migration of EC cells. PTEN is a downstream gene of miR-21-5p. lncRNA NBTA1 elevates PTEN expression via sponging miR-21-5p. Conclusions lncRNA NBAT1 acts as a tumor suppressor in EC via regulating PTEN through sponging miR-21-5p.
Collapse
Affiliation(s)
- Chunhua Tian
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| | - Jing Su
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| | - Zhao Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| | - Yang Wu
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002 Ningxia, China
| |
Collapse
|
14
|
Parashar D, Singh A, Gupta S, Sharma A, Sharma MK, Roy KK, Chauhan SC, Kashyap VK. Emerging Roles and Potential Applications of Non-Coding RNAs in Cervical Cancer. Genes (Basel) 2022; 13:genes13071254. [PMID: 35886037 PMCID: PMC9317009 DOI: 10.3390/genes13071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/06/2022] Open
Abstract
Cervical cancer (CC) is a preventable disease using proven interventions, specifically prophylactic vaccination, pervasive disease screening, and treatment, but it is still the most frequently diagnosed cancer in women worldwide. Patients with advanced or metastatic CC have a very dismal prognosis and current therapeutic options are very limited. Therefore, understanding the mechanism of metastasis and discovering new therapeutic targets are crucial. New sequencing tools have given a full visualization of the human transcriptome's composition. Non-coding RNAs (NcRNAs) perform various functions in transcriptional, translational, and post-translational processes through their interactions with proteins, RNA, and even DNA. It has been suggested that ncRNAs act as key regulators of a variety of biological processes, with their expression being tightly controlled under physiological settings. In recent years, and notably in the past decade, significant effort has been made to examine the role of ncRNAs in a variety of human diseases, including cancer. Therefore, shedding light on the functions of ncRNA will aid in our better understanding of CC. In this review, we summarize the emerging roles of ncRNAs in progression, metastasis, therapeutics, chemo-resistance, human papillomavirus (HPV) regulation, metabolic reprogramming, diagnosis, and as a prognostic biomarker of CC. We also discussed the role of ncRNA in the tumor microenvironment and tumor immunology, including cancer stem cells (CSCs) in CC. We also address contemporary technologies such as antisense oligonucleotides, CRISPR-Cas9, and exosomes, as well as their potential applications in targeting ncRNAs to manage CC.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, MI 53226, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| | - Anupam Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur 572107, Karnataka, India;
| | - Manish K. Sharma
- Department of Biotechnology, IP College, Bulandshahr 203001, Uttar Pradesh, India;
| | - Kuldeep K. Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| |
Collapse
|
15
|
Drakopoulou E, Anagnou NP, Pappa KI. Gene Therapy for Malignant and Benign Gynaecological Disorders: A Systematic Review of an Emerging Success Story. Cancers (Basel) 2022; 14:cancers14133238. [PMID: 35805007 PMCID: PMC9265289 DOI: 10.3390/cancers14133238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review discusses all the major advances in gene therapy of gynaecological disorders, highlighting the novel and potentially therapeutic perspectives associated with such an approach. It specifically focuses on the gene therapy strategies against major gynaecological malignant disorders, such as ovarian, cervical, and endometrial cancer, as well as benign disorders, such as uterine leiomyomas, endometriosis, placental, and embryo implantation disorders. The above therapeutic strategies, which employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation approaches, have yielded promising results over the last decade, setting the grounds for successful clinical trials. Abstract Despite the major advances in screening and therapeutic approaches, gynaecological malignancies still present as a leading cause of death among women of reproductive age. Cervical cancer, although largely preventable through vaccination and regular screening, remains the fourth most common and most lethal cancer type in women, while the available treatment schemes still pose a fertility threat. Ovarian cancer is associated with high morbidity rates, primarily due to lack of symptoms and high relapse rates following treatment, whereas endometrial cancer, although usually curable by surgery, it still represents a therapeutic problem. On the other hand, benign abnormalities, such as fibroids, endometriosis, placental, and embryo implantation disorders, although not life-threatening, significantly affect women’s life and fertility and have high socio-economic impacts. In the last decade, targeted gene therapy approaches toward both malignant and benign gynaecological abnormalities have led to promising results, setting the ground for successful clinical trials. The above therapeutic strategies employ both viral and non-viral systems for mutation compensation, suicide gene therapy, oncolytic virotherapy, antiangiogenesis and immunopotentiation. This review discusses all the major advances in gene therapy of gynaecological disorders and highlights the novel and potentially therapeutic perspectives associated with such an approach.
Collapse
Affiliation(s)
- Ekati Drakopoulou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
| | - Nicholas P. Anagnou
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- Correspondence:
| | - Kalliopi I. Pappa
- Laboratory of Cell and Gene Therapy, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece; (E.D.); (K.I.P.)
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, 11528 Athens, Greece
| |
Collapse
|
16
|
Lagunas-Martínez A, Madrid-Marina V, Gómez-Cerón C, Deas J, Peralta-Zaragoza O. The Autophagy Process in Cervical Carcinogenesis: Role of Non-Coding-RNAs, Molecular Mechanisms, and Therapeutic Targets. Cells 2022; 11:cells11081323. [PMID: 35456001 PMCID: PMC9028856 DOI: 10.3390/cells11081323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a highly conserved multistep lysosomal degradation process in which cellular components are localized to autophagosomes, which subsequently fuse with lysosomes to degrade the sequestered contents. Autophagy serves to maintain cellular homeostasis. There is a close relationship between autophagy and tumor progression, which provides opportunities for the development of anticancer therapeutics that target the autophagy pathway. In this review, we analyze the effects of human papillomavirus (HPV) E5, E6, and E7 oncoproteins on autophagy processes in cervical cancer development. Inhibition of the expression or the activity of E5, E6, and E7 can induce autophagy in cells expressing HPV oncogenes. Thus, E5, E6, and E7 oncoproteins target autophagy during HPV-associated carcinogenesis. Furthermore, noncoding RNA (ncRNA) expression profiling in cervical cancer has allowed the identification of autophagy-related ncRNAs associated with HPV. Autophagy-related genes are essential drivers of autophagy and are regulated by ncRNAs. We review the existing evidence regarding the role of autophagy-related proteins, the function of HPV E5, E6, and E7 oncoproteins, and the effects of noncoding RNA on autophagy regulation in the setting of cervical carcinogenesis. By characterizing the mechanisms behind the dysregulation of these critical factors and their impact on host cell autophagy, we advance understanding of the relationship between autophagy and progression from HPV infection to cervical cancer, and highlight pathways that can be targeted in preventive and therapeutic strategies against cervical cancer.
Collapse
Affiliation(s)
- Alfredo Lagunas-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Vicente Madrid-Marina
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Claudia Gómez-Cerón
- Research Center in Population Health, Department of Cancer Epidemiology, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico;
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Morelos, Mexico; (A.L.-M.); (V.M.-M.); (J.D.)
- Correspondence: ; Tel.: +52-777-3293000
| |
Collapse
|
17
|
Salinas-Montalvo AM, Supramaniam A, McMillan NA, Idris A. RNA-based gene targeting therapies for human papillomavirus driven cancers. Cancer Lett 2021; 523:111-120. [PMID: 34627949 DOI: 10.1016/j.canlet.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
While platinum-based chemotherapy, radiation therapy and or surgery are effective in reducing human papillomavirus (HPV) driven cancer tumours, they have some significant drawbacks, including low specificity for tumour, toxicity, and severe adverse effects. Though current therapies for HPV-driven cancers are effective, severe late toxicity associated with current treatments contributes to the deterioration of patient quality of life. This warrants the need for novel therapies for HPV derived cancers. In this short review, we examined RNA-based therapies targeting the major HPV oncogenes, including short-interfering RNAs (siRNAs) and clustered regularly interspaced short palindromic repeats (CRISPR) as putative treatment modalities. We also explore other potential RNA-based targeting approaches such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and mRNA vaccines as future treatment modalities for HPV cancers. Some of these technologies have already been approved for clinical use for a range of other human diseases but not for HPV cancers. Here we explore the emerging evidence supporting the effectiveness of some of these gene-based therapies for HPV malignancies. In short, the evidence sheds promising light on the feasibility of translating these technologies into a clinically relevant treatment modality for HPV derived cancers and potentially other virally driven human cancers.
Collapse
Affiliation(s)
- Ana María Salinas-Montalvo
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Aroon Supramaniam
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Nigel Aj McMillan
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Adi Idris
- Menzies Health Institute Queensland and School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
18
|
Bizzarri AR, Cannistraro S. Direct Interaction of miRNA and circRNA with the Oncosuppressor p53: An Intriguing Perspective in Cancer Research. Cancers (Basel) 2021; 13:6108. [PMID: 34885216 PMCID: PMC8657023 DOI: 10.3390/cancers13236108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are linear single-stranded non-coding RNAs oligonucleotides, widely distributed in cells, playing a key role as regulators of gene expression at post-transcriptional level. Circular RNAs (circRNAs) are single-stranded RNA oligonucleotides forming a covalently closed continuous loop, which confers them a high structural stability and which may code for proteins or act as gene regulators. Abnormal levels or dysregulation of miRNA or circRNA are linked to several cancerous pathologies, so that they are receiving a large attention as diagnostic and prognostic tools. Some miRNAs and circRNAs are strongly involved in the regulatory networks of the transcription factor p53, which plays a pivotal role as tumor suppressor. Overexpression of miRNAs and/or circRNAs, as registered in a number of cancers, is associated to a concomitant inhibition of the p53 onco-suppressive function. Among other mechanisms, it was recently suggested that a functional inhibition of p53 could arise from a direct interaction between p53 and oncogenic miRNAs or circRNAs; a mechanism that might be reminiscent of the p53 inhibition by some E3 ubiquitin ligase such as MDM2 and COP1. Such evidence might deserve important implications for restoring the p53 anticancer functionality, and pave the way to intriguing perspectives for novel therapeutic strategies. In the present paper, the experimental evidence of the interaction between p53 and miRNAs and/or circRNAs is reviewed and discussed in connection with the development of new anticancer approaches.
Collapse
|
19
|
Li C, Li X. circPTEN suppresses colorectal cancer progression through regulating PTEN/AKT pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1418-1432. [PMID: 34938598 PMCID: PMC8645425 DOI: 10.1016/j.omtn.2021.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
Recently, circular RNAs (circRNAs) have attracted growing attention due to their pivotal roles in the complicated cellular processes of diverse human malignancies, including colorectal cancer (CRC). Phosphatase and tensin homolog (PTEN) is known as a typical tumor-suppressing gene. Nevertheless, limited investigation on the function of circRNAs generated from PTEN has been undertaken. In this research, hsa_circ_0094343 (circPTEN) was found to display low expression in CRC tissues and cells. CircPTEN is characterized with high stability due to its circular structure. Upregulation of circPTEN suppressed CRC cell proliferation, migration, and invasion but facilitated apoptosis. Data from mechanism assays revealed that circPTEN could elevate PTEN expression through sequestering microRNA-4470 (miR-4470) in CRC cells. Further, circPTEN was validated to inhibit K63-linked ubiquitination of protein kinase B (AKT) and AKT phosphorylation at Thr-308 and Ser-473 by competitively binding with tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6). Moreover, the results of rescue assays indicated that the suppressive effect of circPTEN on CRC progression could be totally reversed by overexpression of insulin like growth factor 1 (IGF-1) or partially reversed by knockdown of PTEN. To conclude, circPTEN suppresses CRC progression via regulation of PTEN/AKT pathway.
Collapse
Affiliation(s)
- Chen Li
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City 710061, Shaanxi Province, China.,Molecular Testing Center, the First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou City 121000, Liaoning Province, China
| | - Xu Li
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City 710061, Shaanxi Province, China
| |
Collapse
|
20
|
Chong ZX, Yeap SK, Ho WY. Transfection types, methods and strategies: a technical review. PeerJ 2021; 9:e11165. [PMID: 33976969 PMCID: PMC8067914 DOI: 10.7717/peerj.11165] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Wan Yong Ho
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| |
Collapse
|
21
|
He G, Ding J, Zhang Y, Cai M, Yang J, Cho WC, Zheng Y. microRNA-21: a key modulator in oncogenic viral infections. RNA Biol 2021; 18:809-817. [PMID: 33499700 DOI: 10.1080/15476286.2021.1880756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Oncogenic viruses are associated with approximately 15% of human cancers. In viral infections, microRNAs play an important role in host-pathogen interactions. miR-21 is a highly conserved non-coding RNA that not only regulates the development of oncogenic viral diseases, but also responds to the regulation of intracellular signal pathways. Oncogenic viruses, including HBV, HCV, HPV, and EBV, co-evolve with their hosts and cause persistent infections. The upregulation of host miR-21 manipulates key cellular pathways to evade host immune responses and then promote viral replication. Thus, a better understanding of the role of miR-21 in viral infections may help us to develop effective genetically-engineered oncolytic virus-based therapies against cancer.
Collapse
Affiliation(s)
- Guitian He
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Juntao Ding
- College of Life Science and Technology, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yong'e Zhang
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Mengting Cai
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology' and 'Key Laboratory of Veterinary Parasitology of Gansu Province, CAAS, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou China
| |
Collapse
|
22
|
Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel SM, Büsselberg D, Kubatka P, Shakibaei M. Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers (Basel) 2021; 13:cancers13020188. [PMID: 33430318 PMCID: PMC7825813 DOI: 10.3390/cancers13020188] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prevention and treatment of cancer is an ongoing medical challenge. In the context of personalized medicine, the well-studied polyphenol resveratrol could complement classical tumor therapy. It may affect key processes such as inflammation, angiogenesis, proliferation, metastasis, glucose metabolism, and apoptosis in various cancers because resveratrol acts as a multi-targeting agent by modulating multiple signal transduction pathways. This review article focuses on resveratrol’s ability to modify tumor glucose metabolism and its associated therapeutic capacity. Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway. It also inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM. In addition, resveratrol induces apoptosis by targeting integrin, p53, LDH, and FAK. In conclusion, resveratrol has many potentials to intervene in tumor processes if bioavailability can be increased and this natural compound can be used selectively. Abstract Tumor cells develop several metabolic reprogramming strategies, such as increased glucose uptake and utilization via aerobic glycolysis and fermentation of glucose to lactate; these lead to a low pH environment in which the cancer cells thrive and evade apoptosis. These characteristics of tumor cells are known as the Warburg effect. Adaptive metabolic alterations in cancer cells can be attributed to mutations in key metabolic enzymes and transcription factors. The features of the Warburg phenotype may serve as promising markers for the early detection and treatment of tumors. Besides, the glycolytic process of tumors is reversible and could represent a therapeutic target. So-called mono-target therapies are often unsafe and ineffective, and have a high prevalence of recurrence. Their success is hindered by the ability of tumor cells to simultaneously develop multiple chemoresistance pathways. Therefore, agents that modify several cellular targets, such as energy restriction to target tumor cells specifically, have therapeutic potential. Resveratrol, a natural active polyphenol found in grapes and red wine and used in many traditional medicines, is known for its ability to target multiple components of signaling pathways in tumors, leading to the suppression of cell proliferation, activation of apoptosis, and regression in tumor growth. Here, we describe current knowledge on the various mechanisms by which resveratrol modulates glucose metabolism, its potential as an imitator of caloric restriction, and its therapeutic capacity in tumors.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Saba Sameri
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, 6517838678 Hamadan, Iran;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: ; Tel.: +49-892-1807-2624; Fax: +49-892-1807-2625
| |
Collapse
|
23
|
Overexpression of microRNA-21 decreased the sensitivity of advanced cervical cancer to chemoradiotherapy through SMAD7. Anticancer Drugs 2021; 31:272-281. [PMID: 31815762 DOI: 10.1097/cad.0000000000000871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drug resistance is a major problem in the treatment of advanced cervical cancer. The oncogenic microRNA-21 (miR-21) is involved in drug resistance in various cancers. However, the regulatory role of miR-21 and its target, Smad7 in drug resistance of cervical cancer remains to be elucidated. We compared miR-21 and Smad7 levels in human samples from chemoradiotherapy-resistance cervical cancer (resistant group) and chemoradiotherapy-sensitive cervical cancer (sensitive group) patients. Then, the miR-21 level was manipulated in HeLa and SiHa cervical cancer cells and the Smad7 level was determined by PCR and western blot. We also manipulated miR-21, Smad7 or both in cells, and measured cell viability using cell counting kit-8 method and epithelial-mesenchymal transition (EMT) biomarkers using Western blot. In human samples, resistant group has significantly higher miR-21 and lower Smad7 levels than sensitive group. In-vitro analysis demonstrated downregulated Smad7 after transfection with miR-21 mimics. When cells were transfected with Smad7 inhibitor, we observed increased drug resistance and changed levels of EMT-biomarkers after chemoradiotherapy, suggesting that downregulation of Smad7 decreased the sensitivity through EMT. When the cells were transfected with miR-21 inhibitor alone, we found increased sensitivity to chemoradiotherapy through EMT. However, such effects were attenuated when Smad7 was also downregulated after cotransfection. In summary, we provided clinical and experimental evidence that decreased miR-21 may improve drug resistance through EMT by direct targeting Smad7 in cervical cancer. Our data suggest that miR-21/Smad7 pathway may be an effective target for drug resistance in cervical cancer treatment.
Collapse
|
24
|
Aranda-Rivera AK, Cruz-Gregorio A, Briones-Herrera A, Pedraza-Chaverri J. Regulation of autophagy by high- and low-risk human papillomaviruses. Rev Med Virol 2020; 31:e2169. [PMID: 33590566 DOI: 10.1002/rmv.2169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
While high-risk human papillomavirus (HR-HPV) infection is related to the development of cervical, vulvar, anal, penile and oropharyngeal cancer, low-risk human papillomavirus (LR-HPV) infection is implicated in about 90% of genital warts, which rarely progress to cancer. The carcinogenic role of HR-HPV is due to the overexpression of HPV E5, E6 and E7 oncoproteins which target and modify cellular proteins implicated in cell proliferation, apoptosis and immortalization. LR-HPV proteins also target and modify some of these processes; however, their oncogenic potential is lower than that of HR-HPV. HR-HPVs have substantial differences with LR-HPVs such as viral integration into the cell genome, induction of p53 and retinoblastoma protein degradation, alternative splicing in HR-HPV E6-E7 open reading frames, among others. In addition, LR-HPV can activate the autophagy process in infected cells while HR-HPV infection deactivates it. However, in cancer HR-HPV might reactivate autophagy in advance stages. Autophagy is a catabolic process that maintains cell homoeostasis by lysosomal degradation and recycling of damaged macromolecules and organelles; nevertheless, depending upon cellular context autophagy may also induce cell death. Therefore, autophagy can contribute either as a promotor or as a suppressor of tumours. In this review, we focus on the role of HR-HPV and LR-HPV in autophagy during viral infection and cancer development. Additionally, we review key regulatory molecules such as microRNAs in HPV present during autophagy, and we emphasize the potential use of cancer treatments associated with autophagy in HPV-related cancers.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - Alfredo Cruz-Gregorio
- Laboratorio 225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| | - Alfredo Briones-Herrera
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México.,Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - José Pedraza-Chaverri
- Laboratorio 315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
25
|
miR-21-5p: A viable therapeutic strategy for regulating intraocular pressure. Exp Eye Res 2020; 200:108197. [PMID: 32871166 DOI: 10.1016/j.exer.2020.108197] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Lowering intraocular pressure (IOP) is the most effective treatment of glaucoma, however most of the current available glaucoma drugs target a single molecule. MicroRNAs (miRNAs) are noncoding RNAs that target a network of molecules. This study aims to investigate the role of miR-21-5p in regulating IOP and the mechanism of function. miR-21-5p mimics was topically applied to C57/BL6 mouse eyes, which significantly increased miR-21-5p expression in the conventional outflow tissue and reduced IOP by a maximum of 17.77% at 24 h after treatment. The conventional outflow facility measured by ex vivo moue eye perfusion of miR-21-5p was significantly increased by 60.14%. Moreover, miR-21-5p overexpression significantly reduced the transendothelial electrical resistance in porcine angular aqueous plexus cells. Transcriptome analysis and further quantification by Western blot and PCR revealed that SMAD7 and FGF18 might be the downstream target of miR-21-5p in regulating aqueous humor outflow. The predicted functional pathways PTEN/eNOS, RhoB/pMLC and TIMP3/MMP9 were significantly altered after miR-21-5p transfection. Dual luciferase assay verified the direct targets of miR-21-5p. In conclusion, miR-21-5p seems to regulate IOP by modulating multiple genes that are associated with aqueous humor outflow, including genes those regulating cell adhesion, cytoskeletal dynamics and extracellular matrix turnover. Thus, miR-21-5p represents a new therapeutic strategy for glaucoma and a viable alternative to existing multidrug regimens.
Collapse
|
26
|
Miao J, Regenstein JM, Xu D, Zhou D, Li H, Zhang H, Li C, Qiu J, Chen X. The roles of microRNA in human cervical cancer. Arch Biochem Biophys 2020; 690:108480. [PMID: 32681832 DOI: 10.1016/j.abb.2020.108480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Although a potentially preventable disease, cervical cancer (CC) is the second most commonly diagnosed gynaecological cancer with at least 530,000 new cases annually, and the prognosis with CC is still poor. Studies suggest that aberrant expression of microRNA (miRNA) contributes to the progression of CC. As a group of small non-coding RNA with 18-25 nucleotides, miRNA regulate about one-third of all human genes. They function by repressing translation or inducing mRNA cleavage or degradation, including genes involved in diverse and important cellular processes, including cell cycling, proliferation, differentiation, and apoptosis. Results showed that misexpression of miRNA is closely related to the onset and progression of CC. This review will provide an overview of the function of miRNA in CC and the mechanisms involved in cervical carcinogenesis.
Collapse
Affiliation(s)
- Jingnan Miao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Dan Xu
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Dan Zhou
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Haixia Li
- School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China
| | - Hua Zhang
- Department of Food Science, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150010, China
| | - Chunfeng Li
- Gastrointestinal Surgical Ward, Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Junqiang Qiu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China.
| | - Xun Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Haikou, Hainan, 570100, China; School of Pharmacy, Hainan Medical University, Haikou, Hainan, 570100, China; Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou, Hainan, 570100, China
| |
Collapse
|
27
|
Liang L, Zheng YW, Wang YL. miR-4429 Regulates the Proliferation, Migration, Invasion, and Epithelial-Mesenchymal Transition of Cervical Cancer by Targeting FOXM1. Cancer Manag Res 2020; 12:5301-5312. [PMID: 32669877 PMCID: PMC7338043 DOI: 10.2147/cmar.s244167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/08/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND miR-4429 acts as an inhibitor in many malignant tumors and participates in the biological processes of them, but the clinical value and potential molecular mechanism of miR-4429 in cervical cancer (CC) are still under investigation. OBJECTIVE To analyze the clinical value and molecular mechanism of miR-4429 in CC. MATERIALS AND METHODS A qRT-PCR assay was employed to determine the levels of miR-4429 and forkhead-box M1 (FOXM1) in CC tissues, CC cell lines (SiHa, CaSki, ME-180, and C33A) and human normal immortalized epithelial cell lines (HaCaT). The proliferation, migration, invasion, and apoptosis abilities of ME-180 and C33A cells were detected, and the epithelial-to-mesenchymal transition (EMT)-related proteins in the cells were also determined. RESULTS MiR-4429 acted as a tumor suppressor gene in CC tissues and cells and was linked to lymph node metastasis and International Federation of Gynecology and Obstetrics (FIGO) staging. The survival analysis revealed that lymph node metastasis, high FIGO staging, and low miR-4429 expression were all related to the unfavorable prognosis of the patients, and the dual-luciferase reporter assay revealed that FOXM1 was the target of miR-4429. Both overexpression of miR-4429 and knock-down of FOXM1 inhibited the proliferation, migration, invasion, and EMT of CCCs, and accelerated the apoptosis of them. Conversely, both knockdown of miR-4429 and overexpression of FOXM1 promoted those biological behaviors of the cells. Moreover, the rescue experiment revealed that the overexpression of FOXM1 reversed the influences of miR-4429 overexpression on the proliferation, migration, invasion, and EMT of CCCs. CONCLUSION miR-4429 acts as a tumor suppressor in CC and can directly target FOXM1 to regulate the proliferation, migration, invasion, apoptosis and EMT of CCCs, so miR-4429 is expected to be a new therapeutic target for CC.
Collapse
Affiliation(s)
- Lin Liang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Yu Wei Zheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| | - Yan Li Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai200032, People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai200032, People’s Republic of China
- Institute of Pathology, Fudan University, Shanghai200032, People’s Republic of China
| |
Collapse
|
28
|
Tumor microRNA profile and prognostic value for lymph node metastasis in oral squamous cell carcinoma patients. Oncotarget 2020; 11:2204-2215. [PMID: 32577165 PMCID: PMC7289532 DOI: 10.18632/oncotarget.27616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/14/2020] [Indexed: 12/23/2022] Open
Abstract
Neck lymph node metastasis (LN+) is one of the most significant prognostic factors affecting 1-in-2 patients diagnosed with oral squamous cell carcinoma (OSCC). The different LN outcomes between clinico-pathologically similar primary tumors suggest underlying molecular signatures that could be associated with the risk of nodal disease development. MicroRNAs (miRNAs)are short non-coding molecules that regulate the expression of their target genes to maintain the balance of cellular processes. A plethora of evidence has indicated that aberrantly expressed miRNAs are involved in cancers with either an antitumor or oncogenic role. In this study, we characterized miRNA expression among OSCC fresh-frozen tumors with known outcomes of nodal disease (82 LN+, 76 LN0). We identified 49 differentially expressed miRNAs in tumors of the LN+ group. Using penalized lasso Cox regression, we identified a group of 10 miRNAs of which expression levels were highly associated with nodal-disease free survival. We further reported a 4-miRNA panel (miR-21-5p, miR-107, miR-1247-3p, and miR-181b-3p) with high accuracy in discriminating LN status, suggesting their potential application as prognostic biomarkers for nodal disease.
Collapse
|
29
|
Áyen Á, Jiménez Martínez Y, Boulaiz H. Targeted Gene Delivery Therapies for Cervical Cancer. Cancers (Basel) 2020; 12:cancers12051301. [PMID: 32455616 PMCID: PMC7281413 DOI: 10.3390/cancers12051301] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Despite being largely preventable through early vaccination and screening strategies, cervical cancer is the most common type of gynecological malignancy worldwide and constitutes one of the leading causes of cancer deaths in women. Patients with advanced or recurrent disease have a very poor prognosis; hence, novel therapeutic modalities to improve clinical outcomes in cervical malignancy are needed. In this regard, targeted gene delivery therapy is presented as a promising approach, which leads to the development of multiple strategies focused on different aspects. These range from altered gene restoration, immune system potentiation, and oncolytic virotherapy to the use of nanotechnology and the design of improved and enhanced gene delivery systems, among others. In the present manuscript, we review the current progress made in targeted gene delivery therapy for cervical cancer, the advantages and drawbacks and their clinical application. At present, multiple targeted gene delivery systems have been reported with encouraging preclinical results. However, the translation to humans has not yet shown a significant clinical benefit due principally to the lack of efficient vectors. Real efforts are being made to develop new gene delivery systems, to improve tumor targeting and to minimize toxicity in normal tissues.
Collapse
Affiliation(s)
- Ángela Áyen
- Department of Dermatology, San Cecilio Universitary Hospital, 18016 Granada, Spain;
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Yaiza Jiménez Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
| | - Houria Boulaiz
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain;
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-271
| |
Collapse
|
30
|
Guo H, Zeng X, Li H, Guo Y, Wang T, Guo H, Zhu G, Wang L, Zhou H, Liu K, Chen X, Wang H, Zhao X, Su H, Li Y. Plasma miR-1273g-3p acts as a potential biomarker for early Breast Ductal Cancer diagnosis. AN ACAD BRAS CIENC 2020; 92:e20181203. [PMID: 32321013 DOI: 10.1590/0001-3765202020181203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Circulating miRNAs presenting in plasma in a stable manner have been demonstrated their potential role as a promising biomarkers in many human diseases, such as Alzheimer's disease, melanoma and ovarian carcinoma. However, few circulating miRNAs could be used for breast ductal cancer diagnosis. Here, we identified miR-1273g-3p as a biomarker for detecting breast ductal cancer. We detected miR-1273g-3p levels in the plasma of 39 sporadic breast ductal cancer patients and 40 healthy donors by Stem-loop Quantitative Real-time PCR (qRT-PCR). The results showed the plasma miR-1273g-3p level were significantly up-regulated in breast ductal cancer patients compared with healthy donors (p=0.0139). Receiver operating characteristic (ROC) curve also revealed the significantly diagnostic ability of miR-1273g-3p in patients (p=0.0414). In addition, the plasma level of miR-1273g-3p was closely related to IIIB-IIIC TNM stage. We also confirmed the higher expression level of miR-1273g-3p in breast cancer cell lines MCF-7 (4.872±0.537) than normal breast cells (Hs 578Bst). Taken together, miR-1273g-3p could represent as a potential biomarker for early breast ductal cancer diagnosis.
Collapse
Affiliation(s)
- Huan Guo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Xiangting Zeng
- Department of general surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, People's Republic of China
| | - Haining Li
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Yanxiang Guo
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Tao Wang
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Hongyun Guo
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Gongjian Zhu
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Lan Wang
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Haihong Zhou
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Kedan Liu
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Xiaoyi Chen
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Haitao Wang
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
| | - Xinke Zhao
- Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Haixiang Su
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Sciences, Lanzhou, Gansu, People's Republic of China
- Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yingdong Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| |
Collapse
|
31
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
32
|
Zhang L, Liu F, Fu Y, Chen X, Zhang D. MiR-520d-5p functions as a tumor-suppressor gene in cervical cancer through targeting PTK2. Life Sci 2020; 254:117558. [PMID: 32198053 DOI: 10.1016/j.lfs.2020.117558] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/01/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE PTK2 has been reported to be involved in tumor progression, but its regulating mechanisms in cervical cancer (CC) remain to be elusive. MiRNA-520d-5p was demonstrated to regulate the expression of many genes and inhibit the development of human tumors. However, the functional mechanisms of miRNA-520d-5p in the regulation of cervical cancer are not fully understood. METHODS RT-qPCR was employed to detect the expression levels of miR-520d-5p and PTK2. Western blot was performed to detect the expression levels of proteins. Dual-luciferase reporter assay was utilized to investigate the associations between miR-520d-5p and PTK2. CCK-8 assay was carried out to measure cell proliferation. In addition, transwell assay and scratch assay were used for cell invasion and migration analysis. Flow cytometry was used to detect cell apoptosis of cervical cancer. RESULTS The expression levels of PTK2 were elevated in CC tissues and cells lines. It was found that PTK2 was a target gene of miR-520d-5p. The expression of miR-520d-5p was down-regulated in CC tissues, which was negatively correlated with the expression of PTK2. MiR-520d-5p inhibited the proliferation, migration, and invasion of CC cells. In addition, overexpression of miR-520d-5p resulted in apoptosis of CC cells. Finally, we demonstrated that miR-520d-5p inhibited the activation of PI3K/AKT signaling. CONCLUSION MiR-520d-5p suppressed the proliferation, invasion, and migration of CC cells via targeting PTK2.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gynecology, The Maternal and Child Health Hospital of Zibo City, Zibo City, Shandong 255029, China
| | - Fuwei Liu
- Department of Emergency, The Maternal and Child Health Hospital of Zibo City, Zibo City, Shandong 255029, China
| | - Yajie Fu
- Department of ICU, Huantai County People's Hospital, Zibo City, Shandong 256400, China
| | - Xiaoyun Chen
- Department of Gynecology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, China
| | - Dongdong Zhang
- Department of Gynecology, The Maternal and Child Health Hospital of Zibo City, Zibo City, Shandong 255029, China.
| |
Collapse
|
33
|
Arisan ED, Rencuzogullari O, Freitas IL, Radzali S, Keskin B, Kothari A, Warford A, Uysal-Onganer P. Upregulated Wnt-11 and miR-21 Expression Trigger Epithelial Mesenchymal Transition in Aggressive Prostate Cancer Cells. BIOLOGY 2020; 9:biology9030052. [PMID: 32182839 PMCID: PMC7150874 DOI: 10.3390/biology9030052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 01/31/2023]
Abstract
Prostate cancer (PCa) is the second-leading cause of cancer-related death among men. microRNAs have been identified as having potential roles in tumorigenesis. An oncomir, miR-21, is commonly highly upregulated in many cancers, including PCa, and showed correlation with the Wnt-signaling axis to increase invasion. Wnt-11 is a developmentally regulated gene and has been found to be upregulated in PCa, but its mechanism is unknown. The present study aimed to investigate the roles of miR-21 and Wnt-11 in PCa in vivo and in vitro. First, different Gleason score PCa tissue samples were used; both miR-21 and Wnt-11 expressions correlate with high Gleason scores in PCa patient tissues. This data then was confirmed with formalin-fixed paraffin cell blocks using PCa cell lines LNCaP and PC3. Cell survival and colony formation studies proved that miR-21 involves in cells’ behaviors, as well as the epithelial-mesenchymal transition. Consistent with the previous data, silencing miR-21 led to significant inhibition of cellular invasiveness. Overall, these results suggest that miR-21 plays a significant role related to Wnt-11 in the pathophysiology of PCa.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Institute of Biotechnology, Gebze Technical University, Gebze 41400, Kocaeli, Turkey;
| | - Ozge Rencuzogullari
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus 34156, Istanbul, Turkey; (O.R.); (B.K.)
| | - Ines Lua Freitas
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (I.L.F.); ; (S.R.); (A.W.)
| | - Syanas Radzali
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (I.L.F.); ; (S.R.); (A.W.)
| | - Buse Keskin
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Atakoy Campus 34156, Istanbul, Turkey; (O.R.); (B.K.)
| | - Archana Kothari
- Department of Histopathology, Kingston Hospital, Galsworthy Road, London KT2 7QE, UK;
| | - Antony Warford
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (I.L.F.); ; (S.R.); (A.W.)
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (I.L.F.); ; (S.R.); (A.W.)
- Correspondence: ; Tel.: +44-(0)207-911-5151 (ext. 64581)
| |
Collapse
|
34
|
Dai YF, Lin N, He DQ, Xu M, Zhong LY, He SQ, Guo DH, Li Y, Huang HL, Zheng XQ, Xu LP. LZAP promotes the proliferation and invasiveness of cervical carcinoma cells by targeting AKT and EMT. J Cancer 2020; 11:1625-1633. [PMID: 32047568 PMCID: PMC6995386 DOI: 10.7150/jca.39359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/01/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: To explore the relationship and mechanism of LZAP in the occurrence and development of cervical cancer and to provide a new target and intervention method for the treatment of cervical cancer. Methods: Data mining and analysis of LZAP expression levels were performed using several online databases, including The Cancer Genome Atlas (TCGA). A cervical cancer cell line that stably overexpresses LZAP was established, and the effect of LZAP overexpression on cell proliferation, invasion, migration and tumor formation in vivo as well as its mechanism were explored. Results: Our study shows that the expression of LZAP is upregulated in cervical cancer. The overexpression of LZAP can significantly promote the proliferation, colony formation, and invasion and migration abilities of cervical cancer cells. The tumorigenesis test in nude mice showed that overexpression of LZAP could promote the tumorigenicity of cervical cancer cells in vivo. LZAP could also promote the phosphorylation of AKT at position 473 and the epithelial-mesenchymal transition (EMT). Conclusion: The expression of LAZP is increased in cervical cancer, which can enhance the invasion, metastasis, and EMT in cervical cancer cells by promoting AKT phosphorylation.
Collapse
Affiliation(s)
- Yi-Fang Dai
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Na Lin
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - De-Qin He
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Mu Xu
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Li-Ying Zhong
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Shu-Qiong He
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Dan-Hua Guo
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Ying Li
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Hai-Long Huang
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| | - Xiang-Qing Zheng
- Department of Gynecology, Fujian Provincial Maternity and Children's Hospital, Fuzhou 350001, China
| | - Liang-Pu Xu
- Center of Prenatal Diagnosis, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China.,Fujian Provincial Key Laboratory for Prenatal diagnosis and Birth Defect, Fuzhou 350001, China
| |
Collapse
|
35
|
Pinho JD, Silva GEB, Teixeira Júnior AAL, Belfort MRDC, Macedo JM, da Cunha IW, Quintana LG, Calixto JDRR, Nogueira LR, Coelho RWP, Khayat AS. MIR-107, MIR-223-3P and MIR-21-5P Reveals Potential Biomarkers in Penile Cancer. Asian Pac J Cancer Prev 2020; 21:391-397. [PMID: 32102516 PMCID: PMC7332144 DOI: 10.31557/apjcp.2020.21.2.391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inguinal lymph node involvement is the main prognostic factor in patients with penile cancer. However, there is a lack of marker/s for lymph node metastasis. microRNAs have been investigated as potential markers for prognosis of various types of cancer. Taking this into consideration, our main goal was to determine the association of miR-223-3p, miR-107, and miR-21-5p expression with clinicopathological characteristics, as well as presence of lymph node metastasis in patients with penile cancer. METHODS Formalin-fixed paraffin-embedded penile squamous cell carcinoma specimens from 50 patients, at diagnosis and prior to any cancer treatment, were obtained. Tissue samples comprising at least 70% malignant cells and adjacent non-tumor tissues were evaluated by using qRT-PCR for expression level of miR-223-3p, miR-107 and miR-21-5p. Additionally, molecular identification of HPV was performed by PCR, and the expression levels of PTEN were analyzed by immunohistochemistry. RESULTS Penile squamous cell carcinoma primary tumors presented higher expression of miR-223-3p, miR-107, and miR-21-5p when compared to non-tumor adjacent tissues. Upregulation of miR-223-3p was associated lymph node metastasis. Higher expression of miR-107 was associated with worsening of prognosis (as observed by histological grade II and III, tumors bigger than 2.0 cm, stage III and IV, and lower disease-free survival). In addition, higher expression of miR-107 and miR-21-5p was correlated to the absence of PTEN protein expression. CONCLUSIONS Our data demonstrate that higher expression of miR-223-3p, miR-107, and miR-21-5p is correlated with poor prognosis in penile cancer. The upregulation of these microRNAs potentially affect critical cancer pathways and may be important for the prognosis and response to therapy in penile cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabela Wernerck da Cunha
- Laboratory Immunofluorescence and Electron Microscopy, University Hospital Universitário Presidente Dutra,
| | | | | | | | | | - André Salim Khayat
- Oncologist, Maranhense Institute of Oncology Aldenora Belo, São Luís, MA, Brazil.
| |
Collapse
|
36
|
Akkoc Y, Gozuacik D. MicroRNAs as major regulators of the autophagy pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118662. [PMID: 32001304 DOI: 10.1016/j.bbamcr.2020.118662] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 01/17/2023]
Abstract
Autophagy is a cellular stress response mechanism activation of which leads to degradation of cellular components, including proteins as well as damaged organelles in lysosomes. Defects in autophagy mechanisms were associated with several pathologies (e.g. cancer, neurodegenerative diseases, and rare genetic diseases). Therefore, autophagy regulation is under strict control. Transcriptional and post-translational mechanisms that control autophagy in cells and organisms studied in detail. Recent studies introduced non-coding small RNAs, and especially microRNAs (miRNAs) in the post-translational orchestration of the autophagic activity. In this review article, we analyzed in detail the current status of autophagy-miRNA connections. Comprehensive documentation of miRNAs that were directly involved in autophagy regulation resulted in the emergence of common themes and concepts governing these complex and intricate interactions. Hence, a better and systematic understanding of these interactions reveals a central role for miRNAs in the regulation of autophagy.
Collapse
Affiliation(s)
- Yunus Akkoc
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey
| | - Devrim Gozuacik
- Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Orhanli-Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
37
|
Li R, Liu J, Qi J. Knockdown of long non-coding RNA CCAT1 suppresses proliferation and EMT of human cervical cancer cell lines by down-regulating Runx2. Exp Mol Pathol 2020; 113:104380. [PMID: 31935379 DOI: 10.1016/j.yexmp.2020.104380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cervical cancer (CC) is one of the common malignant tumors in women. CCAT1 is a novel lncRNA and its knockdown can inhibit viability, migration and invasion in CC cells. Here, we aimed to further explore the roles of CCAT1 knockdown and underlying mechanism to provide theoretical support for the application of CCAT1 knockdown in treating CC. METHODS The expression level of CCAT1 in CC tissues was examined by using qRT-PCR. Si-CCAT1, pc-Runx2 and relative control were transfected into HeLa and SiHa cells to explore the functional mechanism of CCAT1. The effects of CCAT1 on cell proliferation, apoptosis, migration and invasion were examined via BrdU incorporation assay, flow cytometry and transwell assay. The expression of Runx2 and other relative factors was examined via qRT-PCR and western blot analysis. RESULTS Our findings indicated that CCAT1 was highly expressed in CC tissues contrasted with adjacent tissues. The proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) were suppressed, while the apoptosis was promoted by CCAT1 knockdown. Moreover, knockdown of CCAT1 could negatively regulate Runx2 to play anti-tumor roles in HeLa and SiHa cells. Further, CCAT1 knockdown could suppress PI3K/AKT signal pathway. CONCLUSION Knockdown of CCAT1 suppressed proliferation, EMT, migration and invasion in HeLa and SiHa cells through down-regulating Runx2, which provided theoretical support for its application in CC treatment.
Collapse
Affiliation(s)
- Ruiping Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Jilin Medical University, Jilin 132013, China.
| | - Jinyu Liu
- Department of Gynecology, Jilin Provincial Cancer Hospital, Changchun 130000, China
| | - Jinhong Qi
- Department of Gynecology, Jilin Provincial Cancer Hospital, Changchun 130000, China
| |
Collapse
|
38
|
R. Babu K, Tay Y. The Yin-Yang Regulation of Reactive Oxygen Species and MicroRNAs in Cancer. Int J Mol Sci 2019; 20:ijms20215335. [PMID: 31717786 PMCID: PMC6862169 DOI: 10.3390/ijms20215335] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/17/2023] Open
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing chemical species formed as a by-product of normal aerobic respiration and also from a number of other cellular enzymatic reactions. ROS function as key mediators of cellular signaling pathways involved in proliferation, survival, apoptosis, and immune response. However, elevated and sustained ROS production promotes tumor initiation by inducing DNA damage or mutation and activates oncogenic signaling pathways to promote cancer progression. Recent studies have shown that ROS can facilitate carcinogenesis by controlling microRNA (miRNA) expression through regulating miRNA biogenesis, transcription, and epigenetic modifications. Likewise, miRNAs have been shown to control cellular ROS homeostasis by regulating the expression of proteins involved in ROS production and elimination. In this review, we summarized the significance of ROS in cancer initiation, progression, and the regulatory crosstalk between ROS and miRNAs in cancer.
Collapse
Affiliation(s)
- Kamesh R. Babu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-6516-7756
| |
Collapse
|
39
|
Wang H, Zhang D, Chen Q, Hong Y. Plasma expression of miRNA-21, - 214, -34a, and -200a in patients with persistent HPV infection and cervical lesions. BMC Cancer 2019; 19:986. [PMID: 31646977 PMCID: PMC6806558 DOI: 10.1186/s12885-019-6066-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 08/20/2019] [Indexed: 11/15/2022] Open
Abstract
Background To examine differences in the plasma levels of miRNA-21, − 214, −34a, and -200a in patients with persistent high-risk human papillomavirus (hr-HPV) infection or with cervical lesions of different grades. Methods Venous blood was collected from 232 individuals to measure the plasma expression levels of miRNA-21, − 214, −34a, and -200a. The subjects included normal controls and patients with persistent hr-HPV infection, CIN1, CIN2, CIN3, or cervical cancer (n = 42, 31, 19, 54, 71, and 15 patients, respectively). Cervical conization specimens were collected from all the women. To ensure the accuracy of histopathology, three consecutive tissue sections with an identical diagnosis were selected, and dissection samples were taken from them for miRNA detection. Eligible cases met the inclusion criteria based on sample observation using the middle slice of sandwich tissue sections from the pathological tissue in accordance with the diagnosis of CIN1, CIN2 and CIN3 in 8, 29, and 26 cases, respectively. The miRNA-21, − 214, −34a, and -200a expression levels in the paraffin-embedded tissue samples were determined. The percentage of patients with a CIN2+ diagnosis at 30–49 years old was significantly different from that of those diagnosed with CIN1. The incidence of CIN2+ patients exposed to passive smoking was significantly different from that of CIN1- patients. The percentage of CIN2+ patients with three pregnancies was significantly different from that of those with CIN1, and the percentage of CIN2+ subjects with ≥4 pregnancies was significantly different from that of CIN1- patients. The number of CIN2+ patients with two or more induced abortions was significantly different from that of patients with CIN1. The percentage of CIN2+ patients who underwent a caesarean section was significantly different from that of patients with CIN. The percentage of CIN2+ patients with first-degree relatives with cancer was significantly different from that of those with CIN1. Among CIN2+ patients, the percentage with a first sexual encounter at ≤20 years old was significantly different from that of those with CIN1. The percentage of CIN2+ patients with ≥2 sexual partners was significantly different from that of CIN1- patients. Results The plasma miRNA-214, −34a, and -200a expression levels were decreased in patients with more severe cervical lesions. Plasma miRNA levels in CIN1- patients were significantly different from those in CIN2+ patients. The kappa values for miRNA-21, − 214, −34a and -200a in tissue versus plasma were 0.7122, 0.9998, 0.8986 and 0.7458, respectively. The sensitivity of each biomarker for detecting CIN2 was calculated, and ROC curves of the four miRNA biomarkers were drawn. The AUC of the four plasma miRNAs was greater than 0.5, with the AUC of miRNA-21 being the largest at 0.703. The plasma miRNA expression levels exhibited at least one tie between CIN1 and CIN2. The AUCs for miRNA-21, −34a, −200a and − 214 were 0.613, 0.508, 0.615 and 0.505, respectively. Conclusions Changes in plasma miRNA-21, − 214, −34a and -200a levels were associated with cervical lesion severity. The plasma miRNA levels in CIN1- subjects were significantly different from those in CIN2+ subjects. This analysis may help in detection of high-grade cervical lesions.
Collapse
Affiliation(s)
- Hongyun Wang
- Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, 210008, China.,Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dandan Zhang
- Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, 210008, China
| | - Qing Chen
- Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Ying Hong
- Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, 210008, China. .,Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
40
|
del Mar Díaz-González S, Rodríguez-Aguilar ED, Meneses-Acosta A, Valadez-Graham V, Deas J, Gómez-Cerón C, Tavira-Montalván CA, Arizmendi-Heras A, Ramírez-Bello J, Zurita-Ortega ME, Illades-Aguiar B, Leyva-Vázquez MA, Fernández-Tilapa G, Bermúdez-Morales VH, Madrid-Marina V, Rodríguez-Dorantes M, Pérez-Plasencia C, Peralta-Zaragoza O. Transregulation of microRNA miR-21 promoter by AP-1 transcription factor in cervical cancer cells. Cancer Cell Int 2019; 19:214. [PMID: 31427899 PMCID: PMC6694678 DOI: 10.1186/s12935-019-0931-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/05/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Gene expression profiles have demonstrated that miR-21 expression is altered in almost all types of cancers and it has been classified as an oncogenic microRNA. Persistent HPV infection is the main etiologic agent in cervical cancer and induces genetic instability, including disruption of microRNA gene expression. In the present study, we analyzed the underlying mechanism of how AP-1 transcription factor can active miR-21 gene expression in cervical cancer cells. METHODS To identify that c-Fos and c-Jun regulate the expression of miR-21 we performed RT-qPCR and western blot assays. We analyzed the interaction of AP-1 with miR-21 promoter by EMSA and ChIP assays and determined the mechanism of its regulation by reporter construct plasmids. We identified the nuclear translocation of c-Fos and c-Jun by immunofluorescence microscopy assays. RESULTS We demonstrated that c-Fos and c-Jun proteins are expressed and regulate the expression of miR-21 in cervical cancer cells. DNA sequence analysis revealed the presence of AP-1 DNA-binding sites in the human miR-21 promoter region. EMSA analyses confirmed the interactions of the miR-21 upstream transcription factor AP-1. ChIP assays further showed the binding of c-Fos to AP-1 sequences from the miR-21 core promoter in vivo. Functional analysis of AP-1 sequences of miR-21 in reporter plasmids demonstrated that these sequences increase the miR-21 promoter activation. CONCLUSIONS Our findings suggest a physical interaction and functional cooperation between AP-1 transcription factor in the miR-21 promoter and may explain the effect of AP-1 on miR-21 gene expression in cervical cancer cells.
Collapse
Affiliation(s)
- Sacnite del Mar Díaz-González
- Academic Unit of Biological Chemical Sciences, Guerrero Autonomous University, Av. Lázaro Cárdenas S/N, Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Eduardo Daniel Rodríguez-Aguilar
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera. Col. Santa María Ahuacatitlán, 62100 Cuernavaca, Morelos Mexico
| | - Angélica Meneses-Acosta
- Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Autonomous University of Morelos State, Av. Universidad No. 1001, Col. Chamilpa, 62010 Cuernavaca, Morelos Mexico
| | - Viviana Valadez-Graham
- Biotechnology Institute, National Autonomous University of México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera. Col. Santa María Ahuacatitlán, 62100 Cuernavaca, Morelos Mexico
| | - Claudia Gómez-Cerón
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera. Col. Santa María Ahuacatitlán, 62100 Cuernavaca, Morelos Mexico
| | - Carlos Alberto Tavira-Montalván
- Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Autonomous University of Morelos State, Av. Universidad No. 1001, Col. Chamilpa, 62010 Cuernavaca, Morelos Mexico
| | - Alitzel Arizmendi-Heras
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera. Col. Santa María Ahuacatitlán, 62100 Cuernavaca, Morelos Mexico
| | - Julián Ramírez-Bello
- Endocrine and Metabolic Disease Unit Research, Hospital Juárez of México, Av. Instituto Politécnico Nacional 5160, Col. Magdalena de las Salinas, 07760 Ciudad de México, Mexico
| | - Mario Enrique Zurita-Ortega
- Biotechnology Institute, National Autonomous University of México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Berenice Illades-Aguiar
- Academic Unit of Biological Chemical Sciences, Guerrero Autonomous University, Av. Lázaro Cárdenas S/N, Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Marco Antonio Leyva-Vázquez
- Academic Unit of Biological Chemical Sciences, Guerrero Autonomous University, Av. Lázaro Cárdenas S/N, Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Gloria Fernández-Tilapa
- Academic Unit of Biological Chemical Sciences, Guerrero Autonomous University, Av. Lázaro Cárdenas S/N, Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Víctor Hugo Bermúdez-Morales
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera. Col. Santa María Ahuacatitlán, 62100 Cuernavaca, Morelos Mexico
| | - Vicente Madrid-Marina
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera. Col. Santa María Ahuacatitlán, 62100 Cuernavaca, Morelos Mexico
| | - Mauricio Rodríguez-Dorantes
- National Institute of Genomic Medicine, Periférico Sur No. 4809, Col. Arenal Tepepan, 14610 Ciudad de México, Mexico
| | - Carlos Pérez-Plasencia
- Oncogenomics Laboratory, National Cancer Institute of Mexico, Av. San Fernando No. 22, Col. Sección XVI, 14080 Ciudad de México, Mexico
- Biomedicine Unit, FES-Iztacala UNAM, Av. De los Barrios S/N. Col. Los Reyes Iztacala, 54090 Tlalnepantla de Baz, Estado de México Mexico
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Av. Universidad No. 655, Cerrada los Pinos y Caminera. Col. Santa María Ahuacatitlán, 62100 Cuernavaca, Morelos Mexico
| |
Collapse
|
41
|
Moscetti I, Cannistraro S, Bizzarri AR. Probing direct interaction of oncomiR-21-3p with the tumor suppressor p53 by fluorescence, FRET and atomic force spectroscopy. Arch Biochem Biophys 2019; 671:35-41. [PMID: 31181181 DOI: 10.1016/j.abb.2019.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022]
Abstract
miRNA-21-3p is overexpressed in a number of cancers and contributes to their development with a concomitant inhibition of the p53 onco-suppressive function. While a direct interaction of p53 with some miRNA precursors (namely pri-miRNAs and pre-miRNAs) was found, no interaction with mature micro RNA has been so far evidenced. It could therefore be very interesting to investigate if a direct interaction of miR-21-3p and p53 is occurring with possible impairment of the p53 onco-suppressive function. Fluorescence and Atomic Force Spectroscopy (AFS) were applied to study the interaction of p53 DNA Binding Domain (DBD) and miRNA-21-3p. Förster resonance energy transfer (FRET) was used to measure the distance between the DBD lone tryptophan (FRET donor) and a dye (FRET acceptor) bound to miRNA-21-3p. AFS and Fluorescence evidenced a direct interaction between miRNA-21-3p and DBD; with the formed complex being characterized by an affinity of 105 M, with a lifetime in the order of seconds. FRET allowed to determine an average distance of 4.0 nm between the DBD lone Trp146 and miRNA-21-3p; consistently with the involvement of the DBD L3 loop and/or the H1 helix in the complex formation, directly involved in the oligomerization and DNA binding. This may suggest that a functional inhibition of p53 could arise from its interaction with the oncogenic miRNA. Evidence of DBD-miRNA-21-3p complex formation may deserve some interest for inspiring novel therapeutic strategies.
Collapse
Affiliation(s)
- Ilaria Moscetti
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
| | | | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
| |
Collapse
|
42
|
Zhang WY, Liu YJ, He Y, Chen P. Down-regulation of long non-coding RNA ANRIL inhibits the proliferation, migration and invasion of cervical cancer cells. Cancer Biomark 2019; 23:243-253. [PMID: 30198868 DOI: 10.3233/cbm-181467] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Cervical cancer (CC) is a common malignant tumor in the female reproductive system that is characterized by a high metastatic potential. LncRNA ANRIL has been found to be a cancer oncogene in multiple tumors. In our study, we altered the expression of ANRIL in CC cells and evaluated its ability on influencing proliferation, migration and invasion of CC cells and associated mechanism. METHODS Differentially expressed lncRNAs in CC were identified by microarray and TCGA analyses. CC tissues and adjacent tissues were collected in order to extract CC cells. The expression of ANRIL was determined by RT-qPCR. The CC cells were transfected with siRNA or si-NC against ANRIL to find out whether ANRIL can influence the expression of Cyclin D1, CDK4, CDK6, E-cadherin, vimentin and N-cadherin, as well as affect cell proliferation, cell apoptosis, cell migration and cell invasion of CC cells. RESULTS Based on TCGA and microarray analyses, ANRIL was predicted to be highly expressed in CC and CC with migration. Then further verification was obtained by means of RT-qPCR that ANRIL was highly expressed in CC tissues. In addition, high expression of ANRIL was related to increased E-cadherin expression, high migration of CC as well as decreased cell apoptosis rate. On the other hand, inhibition of ANRIL expression led to decreased expressions of Cyclin D1, CDK4, CDK6, N-cadherin and Vimentin, along with attenuated cell proliferation, migration and invasion of CC cells. CONCLUSION The key findings of our study demonstrated that the inhibition of lncRNA ANRIL reduces the proliferation, migration and invasion capabilities of CC cells. Down-regulation of ANRIL may serve as a potential therapeutic target in the treatment of CC.
Collapse
|
43
|
Dietz S, Lifshitz A, Kazdal D, Harms A, Endris V, Winter H, Stenzinger A, Warth A, Sill M, Tanay A, Sültmann H. Global DNA methylation reflects spatial heterogeneity and molecular evolution of lung adenocarcinomas. Int J Cancer 2018; 144:1061-1072. [DOI: 10.1002/ijc.31939] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Steffen Dietz
- Division of Cancer Genome Research; German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT); Heidelberg Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL); Heidelberg Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
- Medical Faculty Heidelberg; University of Heidelberg; Heidelberg Germany
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics; Weizmann Institute of Science; Rehovot Israel
- Department of Biological Regulation; Weizmann Institute of Science; Rehovot Israel
| | - Daniel Kazdal
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL); Heidelberg Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Alexander Harms
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL); Heidelberg Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Hauke Winter
- Department of Thoracic Surgery; Thoraxklinik at the University Hospital Heidelberg; Heidelberg Germany
| | - Albrecht Stenzinger
- German Cancer Consortium (DKTK); Heidelberg Germany
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
| | - Arne Warth
- Institute of Pathology, University Hospital Heidelberg; Heidelberg Germany
- Institute of Pathology, Cytopathology, and Molecular Pathology; ÜGP Gießen; Wetzlar Limburg Germany
| | - Martin Sill
- Division of Pediatric Neurooncology; Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ) and German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics; Weizmann Institute of Science; Rehovot Israel
- Department of Biological Regulation; Weizmann Institute of Science; Rehovot Israel
| | - Holger Sültmann
- Division of Cancer Genome Research; German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT); Heidelberg Germany
- Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL); Heidelberg Germany
- German Cancer Consortium (DKTK); Heidelberg Germany
| |
Collapse
|
44
|
Zhou Q, Dong J, Luo R, Zhou X, Wang J, Chen F. MicroRNA-20a regulates cell proliferation, apoptosis and autophagy by targeting thrombospondin 2 in cervical cancer. Eur J Pharmacol 2018; 844:102-109. [PMID: 30513279 DOI: 10.1016/j.ejphar.2018.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022]
Abstract
Cervical cancer (CC) is the fourth most frequent malignancy worldwide. MicroRNAs (miRNAs) can function as potential biomarkers or therapeutic targets in multiple cancers including CC. Our present study aimed to investigate the roles and downstream targets of microRNA-20a (miR-20a) in regulating CC proliferation, apoptosis and autophagy. Here, RT-qPCR assay revealed that miR-20a was highly expressed in CC tissues and cells. Functional analysis showed that the inhibition of miR-20a resulted in reduced proliferation, increased apoptosis and downregulated autophagic activity in CC cells. Bioinformatics analysis, luciferase reporter assay and RNA immunoprecipitation (RIP) assay manifested that thrombospondin 2 (THBS2) was a target of miR-20a. Also, THBS2 expression was notably reduced in CC tissues and cells, and inversely associated with miR-20a expression in CC tissues. Restoration experiments disclosed that THBS2 knockdown abrogated miR-20a inhibitor-mediated anti-proliferation, pro-apoptosis, and anti-autophagy effects in CC cells. In summary, these data showed that the depletion of miR-20a suppressed proliferation and autophagy and induced apoptosis by targeting THBS2 in CC cells, further elucidating the roles and molecular basis of miR-20a in the development of CC.
Collapse
Affiliation(s)
- Qinghong Zhou
- Department of Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, 441000 Xiangyang, China
| | - Jinju Dong
- Department of Gynecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, 441000 Xiangyang, China
| | - Ruoyu Luo
- Department of Gynaecology, Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| | - Xiaohong Zhou
- Department of Pathology, Xiangyang Hospital Affiliated to Hubei Medical College, 441000 Xiangyang, China
| | - Jun Wang
- Department of Gynecology, Xiangyang Hospital Affiliated to Hubei Medical College, 441000 Xiangyang, China
| | - Fang Chen
- Department of Gynecology, Xiangyang Hospital Affiliated to Hubei Medical College, 441000 Xiangyang, China
| |
Collapse
|
45
|
Grolmusz VK, Kövesdi A, Borks K, Igaz P, Patócs A. Prognostic relevance of proliferation-related miRNAs in pancreatic neuroendocrine neoplasms. Eur J Endocrinol 2018; 179:219-228. [PMID: 30299890 DOI: 10.1530/eje-18-0305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Pancreatic neuroendocrine neoplasms (PanNENs) are rare tumors arising from the endocrine pancreas; however, their prognosis differs significantly upon their proliferative state, which is characterized by histopathological grading. MiRNAs are small, noncoding RNAs posttranscriptionally regulating gene expression. Our aim was to identify miRNAs with altered expression upon proliferation which can be used as prognostic biomarkers in PanNENs. METHODS MiRNA expression profiles of 40 PanNENs were downloaded from Gene Expression Omnibus and were reanalyzed upon tumor grades (discovery cohort). Results of the reanalysis were confirmed by qRT-PCR analysis of five miRNAs on an independent validation cohort of 63 primary PanNEN samples. Cox proportional hazards survival regression models were fit for both univariate and multivariate analysis to determine the miRNAs’ effect on progression-free and overall survival. RESULTS Nineteen miRNAs displayed differential expression between tumor grades. The altered expression of three out of five chosen miRNAs was successfully validated; hsa-miR-21, hsa-miR-10a and hsa-miR-106b were upregulated in more proliferative PanNENs compared to Grade 1 tumors. In univariate analysis, higher expression of tissue hsa-miR-21, hsa-miR-10a and hsa-miR-106b of primary PanNENs predicted worse progression-free and overall survival; however, multivariate analysis only confirmed the expression of hsa-miR-21 as an independent prognostic factor. CONCLUSIONS The expression of hsa-miR-106b, hsa-miR-10a and especially hsa-miR-21 has prognostic relevance regarding progression-free and overall survival in patients with PanNENs.
Collapse
Affiliation(s)
- Vince Kornél Grolmusz
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
- ‘Lendület’ Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
- Department of Medical Oncology and Therapeutics, Beckman Research Institute, City of Hope National Medical Center, Monrovia, California, USA
| | - Annamária Kövesdi
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
- ‘Lendület’ Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
| | - Katalin Borks
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Peter Igaz
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- ‘Lendület’ Hereditary Endocrine Tumours Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences – Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
46
|
Correlations of MicroRNA-21 Gene Polymorphisms With Chemosensitivity and Prognosis of Cervical Cancer. Am J Med Sci 2018; 356:544-551. [PMID: 30447706 DOI: 10.1016/j.amjms.2018.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND We investigated correlations of miR-21 gene polymorphisms including rs1292037 (A > G) and rs13137 (A > T) with the chemosensitivity to cisplatin plus paclitaxel, and prognosis before cervical cancer (CC) surgery, which may provide a novel target for prevention and treatment of CC. MATERIALS AND METHODS A total of 165 patients with CC were divided into 2 groups, a sensitive group and resistance group. Gene polymorphisms of rs1292037 (A > G) and rs13137 (A > T) were detected respectively. Logistic and Cox multivariate regression analyses were used to explore factors that influence resistance to cisplatin plus paclitaxel. RESULTS rs1292037 (A > G) locus AG, GG, AG + GG and G allele in miR-21 gene may increase chemoresistance to cisplatin plus paclitaxel in CC. The risk factors of prognosis included rs1292037 (A > G) locus, tumor stage, maximum lesion diameter and lymph node metastasis (hazard ratio [HR] = 1.819, 95% CI = 1.127-2.935; HR = 1.504, 95% CI = 1.070-2.114; HR = 1.671, 95% CI = 1.038-2.689; HR = 3.043, 95% CI = 1.783-5.193). The influencing factors of resistance to cisplatin plus paclitaxel included maximum lesion diameter, tumor stage, lymph node metastasis and rs1292037 (odds ratio [OR] = 14.047, 95% CI = 5.694-34.653; OR = 5.873, 95% CI = 3.104-11.110; OR = 3.574, 95% CI = 1.554-8.216; OR = 2.449, 95% CI = 1.052-5.705). CONCLUSIONS rs1292037 (A > G) locus are associated with the chemoresistance to cisplatin plus paclitaxel and prognosis of patients with CC. In addition to that, the G allele at rs1292037 (A > G) locus increases the risk of preoperative chemoresistance to cisplatin plus paclitaxel and is a poor prognostic factor for patients with CC.
Collapse
|
47
|
Chanyshev MD, Razumova YV, Ovchinnikov VY, Gulyaeva LF. MiR-21 regulates the ACAT1 gene in MCF-7 cells. Life Sci 2018; 209:173-178. [PMID: 30092298 DOI: 10.1016/j.lfs.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/19/2018] [Accepted: 08/04/2018] [Indexed: 12/28/2022]
Abstract
AIMS The purpose of the present study was to determine whether miR-21 regulates the human ACAT1 gene. We also assessed whether transfection of MCF-7 cells with miR-21 mimic/inhibitor leads to changes in ACAT1 mRNA/protein levels, cell proliferation rate, or apoptosis. MAIN METHODS Regulation of ACAT1 3'UTR by miR-21 was evaluated using a dual-luciferase reporter assay. The effect of miR-21 on mRNA/protein levels of ACAT1 and PTEN (confirmed as an important target of miR-21 for comparison) was measured by qPCR/western blot analysis and immunostaining. Proliferation rate was determined by cell counting. Percentage of cells undergoing late apoptosis was determined by staining with Hoechst 33342/propidium iodide. KEY FINDINGS Dual-luciferase reporter assay confirmed the regulation of ACAT1 3'UTR by miR-21. Furthermore, transfection of MCF-7 cells with miR-21 mimic decreased mRNA and protein levels of ACAT1 and PTEN genes. In contrast, miR-21 inhibition increased the mRNA and protein levels of both genes studied. Finally, we observed an increase in cell proliferation and decrease in the percentage of cells in late apoptosis in MCF-7 cells transfected with miR-21 mimic, whereas transfection with miR-21 inhibitor led to the opposite effect. SIGNIFICANCE Our data confirm the hypothesis that miR-21 regulates the human ACAT1 gene. As the expression of this microRNA is altered in many types of cancers, the discovery of novel targets for miR-21 is of particular interest for diagnosis and treatment.
Collapse
Affiliation(s)
- M D Chanyshev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Y V Razumova
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - V Y Ovchinnikov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - L F Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
48
|
Liu B, Shyr Y, Cai J, Liu Q. Interplay between miRNAs and host genes and their role in cancer. Brief Funct Genomics 2018; 18:255-266. [PMID: 30785618 PMCID: PMC6609535 DOI: 10.1093/bfgp/elz002] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/21/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding functional RNAs that post-transcriptionally regulate gene expression. They play essential roles in nearly all biological processes including cell development and differentiation, DNA damage repair, cell death as well as intercellular communication. They are highly involved in cancer, acting as tumor suppressors and/or promoters to modulate cell proliferation, epithelial-mesenchymal transition and tumor invasion and metastasis. Recent studies have shown that more than half of miRNAs are located within protein-coding or non-coding genes. Intragenic miRNAs and their host genes either share the promoter or have independent transcription. Meanwhile, miRNAs work as partners or antagonists of their host genes by fine-tuning their target genes functionally associated with host genes. This review outlined the complicated relationship between intragenic miRNAs and host genes. Focusing on miRNAs known as oncogenes or tumor suppressors in specific cancer types, it studied co-expression relationships between these miRNAs and host genes in the cancer types using TCGA data sets, which validated previous findings and revealed common, tumor-specific and even subtype-specific patterns. These observations will help understand the function of intragenic miRNAs and further develop miRNA therapeutics in cancer.
Collapse
Affiliation(s)
- Baohong Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
49
|
Li G, Song Y, Li G, Ren J, Xie J, Zhang Y, Gao F, Mu J, Dai J. Downregulation of microRNA‑21 expression inhibits proliferation, and induces G1 arrest and apoptosis via the PTEN/AKT pathway in SKM‑1 cells. Mol Med Rep 2018; 18:2771-2779. [PMID: 30015844 PMCID: PMC6102657 DOI: 10.3892/mmr.2018.9255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 04/19/2018] [Indexed: 12/27/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis and may progress to acute myeloid leukemia (AML). MicroRNAs (miRNA/miRs) as oncogenes or tumor suppressors regulate a number of biological processes including cell proliferation, cell cycle and apoptosis in different types of cancer cells. Recently, it has been reported that miR-21 as an oncogene is overexpressed and directly targets SMAD-7 in MDS. However, little is known about the mechanism of miR-21 in the progression of MDS. In the present study, the role of miR-21 in the proliferation and apoptosis of SKM-1 cells, an acute myeloid leukemia cell line established in the AML/MDS leukemic phase was investigated. The present results demonstrated that downregulation of miR-21 inhibited proliferation, induced apoptosis and caused G1 phase cell cycle arrest of SKM-1 cells. In addition, the expression levels of apoptosis regulator Bcl-2 (bcl2), cyclinD1 and phosphorylated-protein kinase B (AKT) were significantly decreased in SKM-1 cells transfected with the miR-21 inhibitor, whilst the expression levels of phosphatase and tensin homolog (PTEN), bcl-associated protein X (bax) and cleaved caspase 3 were significantly elevated. Furthermore, knockdown of Akt by small interfering (si)RNA significantly increased the expression of bax, cleaved caspase 3 and reduced the expression of bcl2 and cyclinD1 in SKM-1 cells. Taken together, these data indicate that miR-21 targets the PTEN/AKT pathway in the pathogenesis of MDS and could be a potential target for MDS therapy.
Collapse
Affiliation(s)
- Guang Li
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Yanping Song
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Gangcan Li
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jingjing Ren
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jia Xie
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Yunjie Zhang
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Fei Gao
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jiao Mu
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Jinqian Dai
- Institute of Hematopathy, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
50
|
Nie X, Tian H. Correlation between miR-222 and uterine cancer and its prognostic value. Oncol Lett 2018; 16:1722-1726. [PMID: 30008859 PMCID: PMC6036468 DOI: 10.3892/ol.2018.8815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
Relationship between the expression of miR-222 and uterine cancer was investigated to explore its prognostic value. A total of 66 patients with uterine cancer diagnosed by pathological examination in Dongying People's Hospital were enrolled from March 2014 to October 2016. Uterine cancer and adjacent tissues were collected, and the expression of miR-222 in the tissues was detected by stem-loop RT-PCR. The relationship between miR-222 expression and various clinicopathological features of uterine cancer was analyzed. All the patients were followed up to record the survival conditions. The results revealed that stem-loop RT-PCR method could specifically amplify miR-222. The expression of miR-222 in uterine cancer tissues was significantly upregulated compared with that in adjacent tissues (p<0.05). The expression level of miR-222 was significantly increased with the increase of degree of tumor differentiation (p<0.05). The expression of miR-222 in uterine cancer tissue was not significantly correlated with patients age, tumor size, gross tumor type, pathological type and FIGO stage (p>0.05). There was a significant negative correlation between the expression of miR-222 and the survival of patients with uterine cancer. In conclusion, the expression of miR-222 in uterine cancer tissues was significantly upregulated in uterine cancer and negatively correlated with prognosis. miR-222 may play a pivotal role in the development and progression of uterine cancer. It is expected that miR-222 will be an indicator and target for the treatment and prognosis of uterine cancer.
Collapse
Affiliation(s)
- Xiujuan Nie
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Haili Tian
- Department of Obstetrics and Gynecology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|