1
|
Albaradei S, Alganmi N, Albaradie A, Alharbi E, Motwalli O, Thafar MA, Gojobori T, Essack M, Gao X. A deep learning model predicts the presence of diverse cancer types using circulating tumor cells. Sci Rep 2023; 13:21114. [PMID: 38036622 PMCID: PMC10689793 DOI: 10.1038/s41598-023-47805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor and intravasate into the bloodstream. Thus, non-invasive liquid biopsies are being used to analyze CTC-expressed genes to identify potential cancer biomarkers. In this regard, several studies have used gene expression changes in blood to predict the presence of CTC and, consequently, cancer. However, the CTC mRNA data has not been used to develop a generic approach that indicates the presence of multiple cancer types. In this study, we developed such a generic approach. Briefly, we designed two computational workflows, one using the raw mRNA data and deep learning (DL) and the other exploiting five hub gene ranking algorithms (Degree, Maximum Neighborhood Component, Betweenness Centrality, Closeness Centrality, and Stress Centrality) with machine learning (ML). Both workflows aim to determine the top genes that best distinguish cancer types based on the CTC mRNA data. We demonstrate that our automated, robust DL framework (DNNraw) more accurately indicates the presence of multiple cancer types using the CTC gene expression data than multiple ML approaches. The DL approach achieved average precision of 0.9652, recall of 0.9640, f1-score of 0.9638 and overall accuracy of 0.9640. Furthermore, since we designed multiple approaches, we also provide a bioinformatics analysis of the gene commonly identified as top-ranked by the different methods. To our knowledge, this is the first study wherein a generic approach has been developed to predict the presence of multiple cancer types using raw CTC mRNA data, as opposed to other models that require a feature selection step.
Collapse
Affiliation(s)
- Somayah Albaradei
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
| | - Nofe Alganmi
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Eaman Alharbi
- Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
| | - Olaa Motwalli
- College of Computing and Informatics, Saudi Electronic University (SEU), Madinah, Saudi Arabia
| | - Maha A Thafar
- College of Computers and Information Technology, Taif University, Taif, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
2
|
Weissman R, Diamond EL, Haroche J, Durham BH, Cohen F, Buthorn J, Amoura Z, Emile JF, Mazor RD, Shomron N, Abdel-Wahab OI, Shpilberg O, Hershkovitz-Rokah O. MicroRNA-15a-5p acts as a tumor suppressor in histiocytosis by mediating CXCL10-ERK-LIN28a-let-7 axis. Leukemia 2022; 36:1139-1149. [PMID: 34785791 PMCID: PMC8979810 DOI: 10.1038/s41375-021-01472-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 01/18/2023]
Abstract
Erdheim-Chester disease (ECD) is characterized by excessive production and accumulation of histiocytes within multiple tissues and organs. ECD patients harbor recurrent mutations of genes associated with the RAS/RAF/MEK/ERK signaling pathway, particularly, the BRAFV600E mutation. Following our previous finding that miR-15a-5p is the most prominently downregulated microRNA in ECD patients compared to healthy individuals, we elucidated its role in ECD pathogenesis. Bioinformatics analysis followed by a luciferase assay showed that chemokine ligand 10 (CXCL10) is a target gene regulated by miRNA-15a-5p. This was confirmed in 24/34 ECD patients that had low expression of miR-15a-5p concurrent with upregulated CXCL10. Overexpression of miR-15a-5p in cell lines harboring BRAF or RAS mutations (Ba/F3, KG-1a and OCI-AML3) resulted in CXCL10 downregulation, followed by LIN28a and p-ERK signaling downregulation and let-7 family upregulation. Overexpression of miR-15a-5p inhibited cell growth and induced apoptosis by decreasing Bcl-2 and Bcl-xl levels. Analysis of sequential samples from 7 ECD patients treated with MAPK inhibitors (vemurafenib/cobimetinib) for 4 months showed miR-15a-5p upregulation and CXCL10 downregulation. Our findings suggest that miR-15a-5p is a tumor suppressor in ECD through the CXCL10-ERK-LIN28a-let7 axis, highlighting another layer of post-transcriptional regulation in this disease. Upregulation of miR-15a-5p in ECD patients may have a potential therapeutic role.
Collapse
Affiliation(s)
- Ran Weissman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel
| | - Eli L Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julien Haroche
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière - Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fleur Cohen
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière - Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France
| | - Justin Buthorn
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zahir Amoura
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière - Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France
| | - Jean-François Emile
- Research Unit EA4340, Versailles University, Paris-Saclay University, Boulogne, France
- Pathology Department, Ambroise Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Boulogne, France
| | - Roei D Mazor
- Institute of Hematology/Clinic of Histiocytic Neoplasms, Assuta Medical Centers, Tel-Aviv, Israel
| | - Noam Shomron
- Faculty of Medicine and Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Omar I Abdel-Wahab
- Research Unit EA4340, Versailles University, Paris-Saclay University, Boulogne, France
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel
- Institute of Hematology/Clinic of Histiocytic Neoplasms, Assuta Medical Centers, Tel-Aviv, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel.
| |
Collapse
|
3
|
Zhang Y, Tie Q, Bao Z, Shao Z, Zhang L. Inhibition of miR-15a-5p Promotes the Chemoresistance to Pirarubicin in Hepatocellular Carcinoma via Targeting eIF4E. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6468405. [PMID: 34812269 PMCID: PMC8605919 DOI: 10.1155/2021/6468405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023]
Abstract
Chemoresistance has become a primary hurdle in the therapeutic outcome of hepatocellular carcinoma. Substantial evidences have demonstrated that microRNAs (miRNAs) are closely associated with the chemoresistance of hepatocellular carcinoma (HCC). Our investigation is aimed at testifying the influence of microRNA-15a-5p (miR-15a-5p)/eukaryotic translation initiation factor 4E (eIF4E) on hepatocellular carcinoma resistance to pirarubicin (THP). In our study, miR-15a-5p expression was increased in THP-treated HepG2 cells. Downregulation of miR-15a-5p blocked cell growth and elevated cell apoptosis of HepG2 cells treated with THP. Moreover, eIF4E was verified as a direct target of miR-15a-5p by binding its 3'-UTR, which was confirmed by luciferase report experiment. Additionally, eIF4E was negatively associated with the miR-15a-5p expression in HepG2 cells. Mechanically, eIF4E was proven as a specific downstream of miR-15a-5p and mediated the effects of miR-15a-5p on cell viability and apoptosis of HepG2 cells treated with THP. These findings supported that miR-15a-5p facilitated THP resistance of hepatocellular carcinoma cells by modulating eIF4E, thus providing an experimental basis that miR-15a-5p might act as a novel diagnostic target in hepatocellular carcinoma resistance to THP.
Collapse
Affiliation(s)
- Ying Zhang
- Jianhu County People's Hospital, Yancheng, 224700 Jiangsu, China
| | - Qingsong Tie
- Jianhu County People's Hospital, Yancheng, 224700 Jiangsu, China
| | - Zhiwei Bao
- Jianhu County People's Hospital, Yancheng, 224700 Jiangsu, China
| | - Zhi Shao
- Jianhu County People's Hospital, Yancheng, 224700 Jiangsu, China
| | - Lan Zhang
- Jianhu County People's Hospital, Yancheng, 224700 Jiangsu, China
| |
Collapse
|
4
|
Bian W, Li Y, Zhu H, Gao S, Niu R, Wang C, Zhang H, Qin X, Li S. miR-493 by regulating of c-Jun targets Wnt5a/PD-L1-inducing esophageal cancer cell development. Thorac Cancer 2021; 12:1579-1588. [PMID: 33793074 PMCID: PMC8107036 DOI: 10.1111/1759-7714.13950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Esophageal cancer is one of the most common cancers across the globe; the 5-year survival of esophageal cancer patients is still low. MicroRNA (miRNA) dysregulation has been implicated in cancer development, and the miRNAs play a pivotal role in esophageal cancer pathogenesis. It is urgently needed to find out how miRNA dysregulation was involved in esophageal cancer (EC) development. METHODS Through experiments in vivo and in vitro, we explored potential signaling pathways, miR-493/Wnt5A/c-JUN loop, in EC. Their mechanistic roles in EC cell proliferation, migration, and invasion were investigated through multiple validation steps in EC9706 and TE13 cell lines and EC specimens. RESULTS Overexpression of miR-493 attenuates esophageal cancer cell proliferation, migration, and invasion in vivo and in vitro. Moreover, miR-493 downregulation is an unfavorable factor in EC and negatively correlated with Wnt5A. The existence of miR-493 is also an important attribute of metabolism. Based on mechanism analyses, we show that miR-493 inhibits the activity of c-JUN and p-PI3K/p-AKT with enhanced p21 and directly regulates Wnt5A expression and function, whereas c-JUN binds the promoter region of miR-493 and suppressed the expression of miR-493, forming a negative feedback loop. CONCLUSIONS The miR-493/Wnt5A/c-JUN loop is a molecular feedback loop that refers to the development of esophageal cancer cells and a potential target for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wei Bian
- Department of Hepatobiliary SurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yishuai Li
- Department of Thoracic SurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
- Department of Thoracic SurgeryHebei Chest HospitalShijiazhuangChina
| | - Haiyong Zhu
- Department of Thoracic SurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Shaolin Gao
- Department of Thoracic SurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Ren Niu
- Department of OncologyThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chuan Wang
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Department of PathologyJinan University Medical CollegeGuangzhouChina
- Research Centre of Translational MedicineThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xuebo Qin
- Department of Thoracic SurgeryHebei Chest HospitalShijiazhuangChina
| | - Shujun Li
- Department of Thoracic SurgeryThe Second Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
5
|
Liu Z, Cheng C, Luo X, Xia Q, Zhang Y, Long X, Jiang Q, Fang W. Retraction Note: CDK4 and miR-15a comprise an abnormal automodulatory feedback loop stimulating the pathogenesis and inducing chemotherapy resistance in nasopharyngeal carcinoma. BMC Cancer 2021; 21:273. [PMID: 33722206 PMCID: PMC7958696 DOI: 10.1186/s12885-021-08000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s12885-016-2277-2.
Collapse
Affiliation(s)
- Zhen Liu
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China
- Department of Pathology, Basic School of Guangzhou Medical University, Guangzhou, 510182, China
| | - Chao Cheng
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
- Pediatric Center of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, P.R. China
| | - Xiaojun Luo
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Qiong Xia
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China
| | - Yejie Zhang
- Department of Pathology, Basic School of Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiaobing Long
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China.
- Otorhinolaryngology of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, P.R. China.
| | - Qingping Jiang
- Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.
| | - Weiyi Fang
- Cancer Research Institute, Southern Medical University, Guangzhou, 510515, China.
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, 510315, Guangdong, China.
| |
Collapse
|
6
|
Zhuang J, Huo Q, Yang F, Xie N. Perspectives on the Role of Histone Modification in Breast Cancer Progression and the Advanced Technological Tools to Study Epigenetic Determinants of Metastasis. Front Genet 2020; 11:603552. [PMID: 33193750 PMCID: PMC7658393 DOI: 10.3389/fgene.2020.603552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis is a complex process that involved in various genetic and epigenetic alterations during the progression of breast cancer. Recent evidences have indicated that the mutation in the genome sequence may not be the key factor for increasing metastatic potential. Epigenetic changes were revealed to be important for metastatic phenotypes transition with the development in understanding the epigenetic basis of breast cancer. Herein, we aim to present the potential epigenetic drivers that induce dysregulation of genes related to breast tumor growth and metastasis, with a particular focus on histone modification including histone acetylation and methylation. The pervasive role of major histone modification enzymes in cancer metastasis such as histone acetyltransferases (HAT), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and so on are demonstrated and further discussed. In addition, we summarize the recent advances of next-generation sequencing technologies and microfluidic-based devices for enhancing the study of epigenomic landscapes of breast cancer. This feature also introduces several important biotechnologists for identifying robust epigenetic biomarkers and enabling the translation of epigenetic analyses to the clinic. In summary, a comprehensive understanding of epigenetic determinants in metastasis will offer new insights of breast cancer progression and can be achieved in the near future with the development of innovative epigenomic mapping tools.
Collapse
Affiliation(s)
- Jialang Zhuang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fan Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
7
|
Zhang X, Yang J, Shi D, Cao Z. TET2 suppresses nasopharyngeal carcinoma progression by inhibiting glycolysis metabolism. Cancer Cell Int 2020; 20:363. [PMID: 32774157 PMCID: PMC7397601 DOI: 10.1186/s12935-020-01456-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignant tumor. Ten-eleven translocation (TET) protein 2 (TET2), an evolutionarily conserved dioxygenases, is reported to be involved in various malignant tumor developments. Here, we aim to investigate the effect of TET2 on NPC progress in vitro and in vivo, and its detailed underlying mechanism. Methods Real-time PCR and western blotting were used to determine the expression levels of TET1/2/3 in NPC cell lines. The effects of TET2 on NPC progression were evaluated using CCK8 and invasion assays in vitro. Proteins interacted with TET2 in NPC cells were detected by immunoprecipitation and mass spectrometry. The effects of TET2 or pyruvate kinase, muscle (PKM) on glycolysis in NPC cells were examined by detecting glucose uptake and lactate production. The effects of TET2 on NPC progression were evaluated using xenograft tumor model in vivo. Results TET2 expression was decreased in NPC cells, and TET2 overexpression inhibited proliferation and invasion of NPC cells, which is independent on TET2’s catalytic activity. In mechanism, TET2 N-terminal domain interacts with PKM in cytoplasm to prevent PKM dimers from translocating into nucleus, suppressing glycolysis in NPC cells, thereby inhibiting proliferation and invasion of NPC cells. Moreover, using xenograft tumor model, we found that TET2 knockout promoted NPC progression and decreased survival rate. However, administration with the inhibitor of PKM, shikonin, decreased the tumor volume of TET2-cas9 group, and increased the survival rate. Conclusion TET2 suppresses NPC development through interacting with PKM to inhibit glycolysis.
Collapse
Affiliation(s)
- Xixia Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| | - Dong Shi
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Road, Shenyang, 110004 Liaoning China
| |
Collapse
|
8
|
Shi J, Tan S, Song L, Song L, Wang Y. LncRNA XIST knockdown suppresses the malignancy of human nasopharyngeal carcinoma through XIST/miRNA-148a-3p/ADAM17 pathway in vitro and in vivo. Biomed Pharmacother 2019; 121:109620. [PMID: 31810117 DOI: 10.1016/j.biopha.2019.109620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) X inactivate-specific transcript (XIST) has been verified as an oncogenic gene in human cancers, including nasopharyngeal carcinoma (NPC). However, the role of XIST in NPC remains to be largely uncovered, as well as its underlying mechanism. METHODS Expression of XIST, miR-148a-3p and ADAM17 was detected using qPCR and western blot assay. Cell proliferation and apoptosis assay were measured with MTT and flow cytometry, separately. Migration and invasion abilities were examined by transwell assays. Epithelial-mesenchymal transition (EMT) was assessed by western blot analyzing levels of E-cadherin, N-cadherin and vimentin. The potential binding between miR-148a-3p and XIST/ADAM17 was validated by luciferase reporter assay, Ago2-RNA immunoprecipitation and RNA pull-down assay. Xenograft experiments were conducted to measure tumor growth. RESULTS XIST was upregulated and miR-148a-3p was downregulated in NPC tissues and cell lines. Both XIST knockdown and miR-148a-3p overexpression promoted apoptosis, suppressed cell proliferation, migration, invasion, and EMT of NPC cells in vitro. In addition, miR-148a-3p was validated as a target of XIST, and silencing of miR-148a-3p could reverse XIST knockdown-mediated functions in SUNE-1 and CNE2 cells. Furthermore, miR-148a-3p was identified to target ADAM17, and ectopic expression of ADAM17 could abate miR-148a-3p-induced effects as well. Notably, ADAM17 was downregulated by XIST knockdown through upregulating miR-148a-3p. In vivo, XIST knockdown resulted in a slower tumor growth. CONCLUSION Knockdown of XIST suppresses the malignant progression of NPC cells through targeting miR-148a-3p/ADAM17 axis both in vitro and in vivo.
Collapse
Affiliation(s)
- Jinfeng Shi
- Department of Otolaryngology Head and Neck surgery, The First Hospital of Jilin University, 130021, Jilin, Changchun, China
| | - Shulian Tan
- Department of Institute of Immunology, The First Hospital of Jilin University, 130021, Jilin, Changchun, China
| | - Liangmei Song
- Department of Operation Room, The First Hospital of Jilin University, 130021, Jilin, Changchun, China
| | - Liangsong Song
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, 130021, Jilin, Changchun, China.
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck surgery, The First Hospital of Jilin University, 130021, Jilin, Changchun, China
| |
Collapse
|
9
|
Diao PC, Lin WY, Jian XE, Li YH, You WW, Zhao PL. Discovery of novel pyrimidine-based benzothiazole derivatives as potent cyclin-dependent kinase 2 inhibitors with anticancer activity. Eur J Med Chem 2019; 179:196-207. [PMID: 31254921 DOI: 10.1016/j.ejmech.2019.06.055] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022]
Abstract
To develop novel CDK2 inhibitors as anticancer agents, a series of novel pyrimidine-based benzothiazole derivatives were designed and synthesized. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against five cancer cell lines. Especially, the analogue 10s exhibited approximately potency with AZD5438 toward four cells including HeLa, HCT116, PC-3, and MDA-MB-231 with IC50 values of 0.45, 0.70, 0.92, 1.80 μM, respectively. More interestingly, the most highly active compound 10s in this study also possessed promising CDK2/cyclin A2 inhibitory activities with IC50 values of 15.4 nM, which was almost 3-fold potent than positive control AZD5438, and molecular docking studies revealed that the analogue bound efficiently with the CDK2 binding site. Further studies indicated that compound 10s could induce cell cycle arrest and apoptosis in a concentration-dependent manner. These observations suggest that pyrimidine-benzothiazole hybrids represent a new class of CDK2 inhibitors and well worth further investigation aiming to generate potential anticancer agents.
Collapse
Affiliation(s)
- Peng-Cheng Diao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wei-Yuan Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Xie-Er Jian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Yan-Hong Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China
| | - Wen-Wei You
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| | - Pei-Liang Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
10
|
Gu L, Shi Y, Xu W, Ji Y. PPARβ/δ Agonist GW501516 Inhibits Tumorigenesis and Promotes Apoptosis of the Undifferentiated Nasopharyngeal Carcinoma C666-1 Cells by Regulating miR-206. Oncol Res 2019; 27:923-933. [PMID: 30982495 PMCID: PMC7848406 DOI: 10.3727/096504019x15518706875814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In previous investigations, we reported that peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activation by GW501516 inhibits proliferation and promotes apoptosis in the undifferentiated C666-1 nasopharyngeal carcinoma (NPC) cells by modulating caspase-dependent apoptotic pathway. In the present study, the mechanism by which GW501516 induces apoptosis was explored from the perspective of microRNA (miRNA) expression. Among the assayed miRNAs that were involved in regulating the expression of antiapoptotic protein Bcl-2, miR-206 was increased significantly and specifically by GW501516 in C666-1 cells at both the in vitro level and at the in vivo xenograft samples. The induction on miR-206 expression caused by GW501516 was capable of being antagonized by the PPARβ/δ antagonist GSK3787 and AMPK antagonist dorsomorphin in C666-1 cells. GW501516's suppression on the growth and apoptosis of C666-1 cells was found to be dependent on the presence of miR-206. miR-206 overexpression resulted in suppressed proliferation and colony formation ability, and further triggered increased apoptosis in C666-1 cells in a caspase-dependent manner. The expression of cleaved caspase 3 and caspase 9, and the ratio of Bax to Bcl-2 were elevated remarkably by miR-206. Consistent with the in vitro result, miR-206 was corroborated to suppress the ectopic NPC xenograft tumorigenesis that derived from the C666-1 cells in BALB/c nu/nu mice. Taken together, the current data demonstrated that miR-206 plays a critical role in the direct apoptosis-promoting effect induced by GW501516 in C666-1 cells. Furthermore, the emphasized tumor-suppressive role of miR-206 in the C666-1 cells indicates that it has the potential to provide a new therapeutic approach for the undifferentiated NPC.
Collapse
Affiliation(s)
- Linglan Gu
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, P.R. China
| | - Yi Shi
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, P.R. China
| | - Weimin Xu
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, P.R. China
| | - Yangyang Ji
- Department of ENT, Central Hospital of Minhang District (Minhang Hospital Fudan University), Shanghai, P.R. China
| |
Collapse
|
11
|
Liu T, Xu Z, Ou D, Liu J, Zhang J. The miR-15a/16 gene cluster in human cancer: A systematic review. J Cell Physiol 2018; 234:5496-5506. [PMID: 30246332 DOI: 10.1002/jcp.27342] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are an important class of endogenous small noncoding single-stranded RNAs that suppress the expression of their target genes through messenger RNA (mRNA) degradation to inhibit transcription and translation. MiRNAs play a crucial regulatory role in many biological processes including proliferation, metabolism, and cellular malignancy. miR-15a/16 is an important tumor suppressor gene cluster with a variety of factors that regulate its transcriptional activity. It has been discovered that a relative reduction of miR-15a/16 expression in various cancers is closely related to the occurrence and progression of tumors. miR-15a/16 takes part in a wide array of biological processes including tumor cell proliferation, apoptosis, invasion, and chemoresistance by binding to the 3'-untranslated region of its target gene's mRNA. In this review, we will examine the complex regulatory network of miR-15a/16 gene expression and its biological functions in human cancers to further elucidate the molecular mechanisms of its antitumor effects.
Collapse
Affiliation(s)
- Ting Liu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Zhenru Xu
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Daming Ou
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ji Zhang
- Department of Rheumatology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Li Y, Zhu Y, Prochownik EV. MicroRNA-based screens for synthetic lethal interactions with c-Myc. RNA & DISEASE 2016; 3:e1330. [PMID: 27975083 PMCID: PMC5152767 DOI: 10.14800/rd.1330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRs) are small, non-coding RNAs, which play crucial roles in the development and progression of human cancer. Given that miRs are stable, easy to synthetize and readily introduced into cells, they have been viewed as having potential therapeutic benefit in cancer. c-Myc (Myc) is one of the most commonly deregulated oncogenic transcription factors and has important roles in the pathogenesis of cancer, thus making it an important, albeit elusive therapeutic target. Here we review the miRs that have been identified as being both positive and negative targets for Myc and how these participate in the complex phenotypes that arise as a result of Myc-driven transformation. We also discussseveral recent reports of Myc-synthetic lethal interactions with miRs.These highlight the importance and complexity of miRs in Myc-mediated biological functions and the opportunities for Myc-driven human cancer therapies.
Collapse
Affiliation(s)
- Youjun Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yahui Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Edward V. Prochownik
- Division of Hematology/Oncology, Children's Hospital of Pittsburgh of UPMC and The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15224, USA
| |
Collapse
|