1
|
Tanaka R, Kimura K, Eguchi S, Ohira G, Tanaka S, Amano R, Tanaka H, Yashiro M, Ohira M, Kubo S. Interleukin-8 produced from cancer-associated fibroblasts suppresses proliferation of the OCUCh-LM1 cancer cell line. BMC Cancer 2022; 22:748. [PMID: 35804329 PMCID: PMC9270823 DOI: 10.1186/s12885-022-09847-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play an important role in cancer growth by interacting with cancer cells, but their effects differ depending on the type of cancer. This study investigated the role of CAFs in biliary tract cancers (BTCs), compared with pancreatic ductal adenocarcinoma (PDAC) as a comparison cohort. METHODS We retrospectively evaluated alpha-smooth muscle actin (αSMA) expression in CAFs from 114 cases of PDAC and 154 cases of BTCs who underwent surgical treatment at our institution from 1996 to 2017. CAFs were isolated from resected specimens of BTC and PDAC, and tested for the effects of their supernatants and cytokines on cancer cell proliferation. RESULTS PDAC patients with positive αSMA expression showed significantly shorter overall survival and recurrence-free survival than αSMA-negative patients (p = 0.003, p = 0.009, respectively). BTC patients with positive αSMA expression showed better recurrence-free survival than αSMA-negative patients (p = 0.03). CAF-conditioned medium suppressed the proliferation of cancer cells for only OCUCh-LM1 cells and not PDAC cells. Blockage of Interleukin-8 (IL-8) or its receptor C-X-C motif chemokine receptor 2 (CXCR2) by antibodies canceled the suppressive effect of the IL-8. CONCLUSIONS CAFs are a good prognostic factor in BTC, but not for PDAC. Moreover, CAF-produced Interleukin-8 suppresses the proliferation of OCUCh-LM1 cell lines.
Collapse
Affiliation(s)
- Ryota Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kenjiro Kimura
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan.
| | - Shimpei Eguchi
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Go Ohira
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Shogo Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Ryosuke Amano
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| | - Hiroaki Tanaka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
- Cancer Center for Translational Research, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaichi Ohira
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abenoku, Osaka, 545-8585, Japan
| |
Collapse
|
2
|
Cytoglobin attenuates pancreatic cancer growth via scavenging reactive oxygen species. Oncogenesis 2022; 11:23. [PMID: 35504863 PMCID: PMC9065067 DOI: 10.1038/s41389-022-00389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
Pancreatic cancer is a highly challenging malignancy with extremely poor prognosis. Cytoglobin (CYGB), a hemeprotein involved in liver fibrosis and cancer development, is expressed in pericytes of all organs. Here, we examined the role of CYGB in the development of pancreatic cancer. CYGB expression appeared predominately in the area surrounding adenocarcinoma and negatively correlated with tumor size in patients with pancreatic cancer. Directly injecting 7, 12-dimethylbenz[a]anthracene into the pancreatic tail in wild-type mice resulted in time-dependent induction of severe pancreatitis, fibrosis, and oxidative damage, which was rescued by Cygb overexpression in transgenic mice. Pancreatic cancer incidence was 93% in wild-type mice but only 55% in transgenic mice. Enhanced CYGB expression in human pancreatic stellate cells in vitro reduced cellular collagen synthesis, inhibited cell activation, increased expression of antioxidant-related genes, and increased CYGB secretion into the medium. Cygb-overexpressing or recombinant human CYGB (rhCYGB) -treated MIA PaCa-2 cancer cells exhibited dose-dependent cell cycle arrest at the G1 phase, diminished cell migration, and reduction in colony formation. RNA sequencing in rhCYGB-treated MIA PaCa-2 cells revealed downregulation of cell cycle and oxidative phosphorylation pathways. An increase in MIA PaCa-2 cell proliferation and reactive oxygen species production by H2O2 challenge was blocked by rhCYGB treatment or Cygb overexpression. PANC-1, OCUP-A2, and BxPC-3 cancer cells showed similar responses to rhCYGB. Known antioxidants N-acetyl cysteine and glutathione also inhibited cancer cell growth. These results demonstrate that CYGB suppresses pancreatic stellate cell activation, pancreatic fibrosis, and tumor growth, suggesting its potential therapeutic application against pancreatic cancer.
Collapse
|
3
|
Owusu-Ansah KG, Song G, Chen R, Edoo MIA, Li J, Chen B, Wu J, Zhou L, Xie H, Jiang D, Zheng S. COL6A1 promotes metastasis and predicts poor prognosis in patients with pancreatic cancer. Int J Oncol 2019; 55:391-404. [PMID: 31268154 PMCID: PMC6615918 DOI: 10.3892/ijo.2019.4825] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers worldwide with a high mortality rate. Prognosis remains poor even in this era of advanced medicine mainly due to early metastasis and invasion. The present study aimed to explore and validate predictors of distant metastasis and prognosis in pancreatic cancer. In our preliminary experiment, we established a novel metastatic pancreatic cancer cell line BxPC-M8 from parent BxPC-3 cells. Via whole genome sequencing, RT-qPCR, western blotting, migration and invasion assays, we initially found that BxPC-M8 shared similar biological characteristics to BxPC-3, but only differed in enhanced metastatic and invasive capabilities with a significant increase in collagen type VI α1 chain (COL6A1) expression. Knockdown of COL6A1 via small interfering RNA led to a significant decrease in migration and invasion of BxPC-M8 cells, suggesting suppressed epithelial-mesenchymal transition. Furthermore, a significant increase in COL6A1 expression was observed in cancerous tissue compared with paracancerous tissue (40.7 vs 3.7, P=0.001). Additionally, its expression was observed to be significantly associated with distant metastasis and vascular invasion at the time of surgery. Multivariate analysis revealed that COL6A1 expression (hazard ratio 1.90, 95% confidence interval 1.04-3.47, P=0.037) is an independent predictor of overall survival (OS). The median OS observed for COL6A1+ and COL6A1− patients was found to be 8±4 and 14±7 months (P=0.021), respectively. Of note, we identified that COL6A1 expression in tissue samples was associated with significantly reduced OS (P=0.001), demonstrating that COL6A1 may serve an important role in the metastatic process and could be considered as a predictor of poor outcomes in patients with pancreatic cancer. In addition, our findings suggest that COL6A1 could be an indicator of distant metastasis and a valid prognostic predictor in such patients; however, further investigation is required.
Collapse
Affiliation(s)
- Kwabena Gyabaah Owusu-Ansah
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guangyuan Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ronggao Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Muhammad Ibrahim Alhadi Edoo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Li
- Key Laboratory of Combined Multi‑organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310003, P.R. China
| | - Bingjie Chen
- Key Laboratory of Combined Multi‑organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Donghai Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
4
|
Liu ZY, Xu GL, Tao HH, Yang YQ, Fan YZ. Establishment and characterization of a novel highly aggressive gallbladder cancer cell line, TJ-GBC2. Cancer Cell Int 2017; 17:20. [PMID: 28194091 PMCID: PMC5299695 DOI: 10.1186/s12935-017-0388-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/28/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human gallbladder cancer (GBC) is an aggressive malignant neoplasm with a poor prognosis. The development of ideal tools for example tumor cell lines for investigating biological behavior, metastatic mechanism and potential treatment in GBCs is essential. In present study, we established and characterized a GBC cell line derived from primary tumor. METHODS Primary culture method was used to establish this cell line from a primary GBC. Light and electron microscopes, flow cytometry, chromosome analysis, heterotransplantation and immunohistochemistry were used to characterize the epidemic tumor characteristics and phenotypes of this cell line. RESULTS A novel GBC cell line, named TJ-GBC2, was successfully established from primary GBC. This cell line had characteristic epithelial tumor morphology and phenotypes in consistent with primary GBC, such as polygon and irregular cell shape, increased CA19-9 and AFP levels, and positive expression of CK7, CK8, CK19 and E-cadherin with negative vimentin. Moreover, about 25% of the cells were in the S-G2/M phase; abnormity in structure and number of chromosome with a peak number of 90-105 and 80% hypertetraploid were observed. Furthermore, this cell line had higher invasion and highest migration abilities compared to other GBC cell lines; and metastatic-related marker MMP9 and nm23 were positively expressed. CONCLUSIONS A novel highly aggressive GBC cell line TJ-GBC2 was successfully established from primary GBC. TJ-GBC2 cell line may be efficient tool for further investigating the biological behaviors, metastatic mechanism and potential targeted therapy of human GBC.
Collapse
Affiliation(s)
- Zhong-Yan Liu
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065 People's Republic of China
| | - Guo-Li Xu
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065 People's Republic of China
| | - Hui-Hong Tao
- Laboratory of Tumor Cytology, Tongji University School of Medicine, Tongji University, Shanghai, 200092 People's Republic of China
| | - Yao-Qin Yang
- Laboratory of Tumor Cytology, Tongji University School of Medicine, Tongji University, Shanghai, 200092 People's Republic of China
| | - Yue-Zu Fan
- Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, 200065 People's Republic of China
| |
Collapse
|