1
|
Nucleic acid therapy in pediatric cancer. Pharmacol Res 2022; 184:106441. [PMID: 36096420 DOI: 10.1016/j.phrs.2022.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
The overall survival, progress free survival, and life quality of cancer patients have improved due to the advance in minimally invasive surgery, precision radiotherapy, and various combined chemotherapy in the last decade. Furthermore, the discovery of new types of therapeutics, such as immune checkpoint inhibitors and immune cell therapies have facilitated both patients and doctors to fight with cancers. Moreover, in the context of the development in biocompatible and cell type targeting nano-carriers as well as nucleic acid-based drugs for initiating and enhancing the anti-tumor response have come to the age. The treatment paradigms utilization of nucleic acids, including short interfering RNA (siRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA), can target specific protein expression to achieve the therapeutic effects. Over ten nucleic acid therapeutics have been approved by the FDA and EMA in rare diseases and genetic diseases as well as dozens of registered clinical trails for varies cancers. Though generally less dangerous of pediatric cancers than adult cancers was observed during the past decades, yet pediatric cancers accounted for a significant proportion of child deaths which hurt those family very deeply. Therefore, it is necessary to pay more attention for improving the treatment of pediatric cancer and discovering new nucleic acid therapeutics which may help to improve the therapeutic effect and prognoses in turns to ameliorate the survival period and quality of life for children patient. In this review, we focus on the nucleic acid therapy in pediatric cancers.
Collapse
|
2
|
Wu W, Liu Z, Ma X. jSRC: a flexible and accurate joint learning algorithm for clustering of single-cell RNA-sequencing data. Brief Bioinform 2021; 22:bbaa433. [PMID: 33535230 PMCID: PMC7953970 DOI: 10.1093/bib/bbaa433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 02/01/2023] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) explores the transcriptome of genes at cell level, which sheds light on revealing the heterogeneity and dynamics of cell populations. Advances in biotechnologies make it possible to generate scRNA-seq profiles for large-scale cells, requiring effective and efficient clustering algorithms to identify cell types and informative genes. Although great efforts have been devoted to clustering of scRNA-seq, the accuracy, scalability and interpretability of available algorithms are not desirable. In this study, we solve these problems by developing a joint learning algorithm [a.k.a. joints sparse representation and clustering (jSRC)], where the dimension reduction (DR) and clustering are integrated. Specifically, DR is employed for the scalability and joint learning improves accuracy. To increase the interpretability of patterns, we assume that cells within the same type have similar expression patterns, where the sparse representation is imposed on features. We transform clustering of scRNA-seq into an optimization problem and then derive the update rules to optimize the objective of jSRC. Fifteen scRNA-seq datasets from various tissues and organisms are adopted to validate the performance of jSRC, where the number of single cells varies from 49 to 110 824. The experimental results demonstrate that jSRC significantly outperforms 12 state-of-the-art methods in terms of various measurements (on average 20.29% by improvement) with fewer running time. Furthermore, jSRC is efficient and robust across different scRNA-seq datasets from various tissues. Finally, jSRC also accurately identifies dynamic cell types associated with progression of COVID-19. The proposed model and methods provide an effective strategy to analyze scRNA-seq data (the software is coded using MATLAB and is free for academic purposes; https://github.com/xkmaxidian/jSRC).
Collapse
Affiliation(s)
- Wenming Wu
- School of Computer Science and Technology, Xidian University, Xi’an, 710071, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Zhongshan Road, Guangzhou, 510080, China
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi’an, 710071, China
| |
Collapse
|
3
|
Ning MY, Cheng ZL, Zhao J. MicroRNA-448 targets SATB1 to reverse the cisplatin resistance in lung cancer via mediating Wnt/β-catenin signalling pathway. J Biochem 2021; 168:41-51. [PMID: 32525527 DOI: 10.1093/jb/mvaa024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
This study aims to examine whether miR-448 reverses the cisplatin (DDP) resistance in lung cancer by modulating SATB1. QRT-PCR and immunohistochemistry were used to examine the miR-448 and SATB1 expressions in DDP-sensitive and -resistant lung cancer patients. A microarray was used to investigate the cytoplasmic/nucleic ratio (C/N ratios) of genes in A549 cells targeted by miR-448, followed by Dual-luciferase reporter gene assay. A549/DDP cells were transfected with miR-448 mimics/inhibitors with or without SATB1 siRNA followed by MTT assay, Edu staining, flow cytometry, qRT-PCR and western blotting. MiR-448 was lower but SATB1 was increased in DDP-resistant patients and A549/DDP cells. And the patients showed low miR-448 expression or SATB1 positive expression had poor prognosis. SATB1, as a target gene with higher C/N ratios (>1), was found negatively regulated by miR-448. Besides, miR-448 inhibitors increased resistance index of A549/DDP cells, promoted cell proliferation, increased cell distribution in S phrase, declined cell apoptosis and activated Wnt/β-catenin pathway. However, SATB1 siRNA could reverse the above effect caused by miR-448 inhibitors. MiR-448 targeting SATB1 to counteract the DDP resistance of lung cancer cells via Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Mei-Ying Ning
- Department of Pharmacy, Cangzhou Central Hospital, No.16 Xinhua West Road, Yunhe District, Cangzhou 061001, China
| | - Zhao-Lin Cheng
- Department of Pharmacy, Cangzhou People's Hospital, No.7 Qingchi Road, Xinhua District, Cangzhou 061000, China
| | - Jing Zhao
- Department of Pharmacy, Cangzhou Central Hospital, No.16 Xinhua West Road, Yunhe District, Cangzhou 061001, China
| |
Collapse
|
4
|
SATB1-Mediated Upregulation of the Oncogenic Receptor Tyrosine Kinase HER3 Antagonizes MET Inhibition in Gastric Cancer Cells. Int J Mol Sci 2020; 22:ijms22010082. [PMID: 33374770 PMCID: PMC7796274 DOI: 10.3390/ijms22010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
MET-amplified gastric cancer cells are extremely sensitive to MET inhibition in vitro, whereas clinical efficacy of MET inhibitors is disappointing. The compensatory activation of other oncogenic growth factor receptors may serve as an underlying mechanism of resistance. In this study, we analyzed the role of HER receptors, in particular HER3 and its ligand heregulin, in this respect. This also included the chromatin-organizer protein SATB1, as an established regulator of HER expression in other tumor entities. In a panel of MET-amplified gastric carcinoma cell lines, cell growth under anchorage-dependent and independent conditions was studied upon inhibitor treatment or siRNA-mediated knockdown. Expression analyses were performed using RT-qPCR, FACS, and immunoblots. Signal transduction was monitored via antibody arrays and immunoblots. As expected, MET inhibition led to a growth arrest and inhibition of MAPK signaling. Strikingly, however, this was accompanied by a rapid and profound upregulation of the oncogenic receptor HER3. This finding was determined as functionally relevant, since HER3 activation by HRG led to partial MET inhibitor resistance, and MAPK/Akt signaling was even found enhanced upon HRG+MET inhibitor treatment compared to HRG alone. SATB1 was identified as mediator of HER3 upregulation. Concomitantly, SATB1 knockdown prevented upregulation of HER3, thus abrogating the HRG-promoted rescue from MET inhibition. Taken together, our results introduce the combined HER3/MET inhibition as strategy to overcome resistance towards MET inhibitors.
Collapse
|
5
|
Long Noncoding RNA KCNQ1OT1 Confers Gliomas Resistance to Temozolomide and Enhances Cell Growth by Retrieving PIM1 From miR-761. Cell Mol Neurobiol 2020; 42:695-708. [PMID: 32897512 DOI: 10.1007/s10571-020-00958-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/30/2020] [Indexed: 12/17/2022]
Abstract
Many studies have found that the dysregulation of long noncoding RNA (lncRNA) contributed to cancer initiation, progression, and recurrence via multiple signaling pathways. However, the underlying mechanisms of lncRNA in temozolomide (TMZ)-resistant gliomas were not well understood, hindering the improvement of TMZ-based therapies. The present study demonstrated that the lncRNA KCNQ1OT1 increased in TMZ-resistant glioma cells compared to the TMZ-sensitive cells. The introduction of KCNQ1OT1 promoted cell viability, clonogenicity, and rhodamine 123 efflux while hampering TMZ-induced apoptosis. Moreover, KCNQ1OT1 directly sponged miR-761, which decreased in TMZ-resistant sublines. The overexpression of miR-761 attenuated cell viability and clonogenicity, while triggering apoptosis and rhodamine 123 accumulation post-TMZ exposure, leading to a response to TMZ. The interaction between miR-761 and 3'-untranslated region of PIM1 attenuated PIM1-mediated signaling cascades. Furthermore, the knockdown of KCNQ1OT1 augmented the TMZ-induced tumor regression in TMZ-resistant U251 mouse models. Briefly, the present study evaluated that KCNQ1OT1 conferred TMZ resistance by releasing PIM1 expression from miR-761, resulting in the upregulation of PIM-mediated MDR1, c-Myc, and Survivin. The present findings demonstrated that the interplay of KCNQ1OT1: miR-761: PIM1 regulated chemoresistance in gliomas and provided a promising therapeutic target for TMZ-resistant glioma patients.
Collapse
|
6
|
SATB1 as oncogenic driver and potential therapeutic target in head & neck squamous cell carcinoma (HNSCC). Sci Rep 2020; 10:8615. [PMID: 32451408 PMCID: PMC7248088 DOI: 10.1038/s41598-020-65077-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/26/2020] [Indexed: 01/05/2023] Open
Abstract
The Special AT-rich sequence binding protein 1 (SATB1) is a genome organizer protein that controls gene expression of numerous genes by regulating chromatin architecture and targeting chromatin-remodeling/-modifying enzymes onto specific chromatin regions. SATB1 is overexpressed in various tumors. In head and neck squamous cell carcinoma (HNSCC), SATB1 upregulation is correlated with TNM classification, metastasis, poor prognosis and reduced overall survival. In this paper, we comprehensively analyze cellular and molecular effects of SATB1 in a large set of primary cell lines from primary HNSCC or metastases, using RNAi-mediated knockdown in vitro and, therapeutically, in tumor xenograft mouse models in vivo. In a series of 15 cell lines, major differences in SATB1 levels are observed. In various 2-D and 3-D assays, growth inhibition upon efficient siRNA-mediated SATB1 knockdown depends on the cell line rather than initial SATB1 levels. Inhibitory effects are found to be based on cell cycle deceleration, apoptosis induction, decreased HER3 and Heregulin A&B expression, and effects on EMT genes. In vivo, systemic treatment of tumor xenograft-bearing mice with siRNAs formulated in polymeric nanoparticles inhibits tumor growth of two HNSCC xenograft models, resulting from therapeutic SATB1 reduction and concomitant decrease of proliferation and induction of apoptosis. In conclusion, SATB1 represents a promising target in HNSCC, affecting crucial cellular processes and molecular pathways.
Collapse
|
7
|
Friedrich M, Wiedemann K, Reiche K, Puppel SH, Pfeifer G, Zipfel I, Binder S, Köhl U, Müller GA, Engeland K, Aigner A, Füssel S, Fröhner M, Peitzsch C, Dubrovska A, Rade M, Christ S, Schreiber S, Hackermüller J, Lehmann J, Toma MI, Muders MH, Sommer U, Baretton GB, Wirth M, Horn F. The Role of lncRNAs TAPIR-1 and -2 as Diagnostic Markers and Potential Therapeutic Targets in Prostate Cancer. Cancers (Basel) 2020; 12:E1122. [PMID: 32365858 PMCID: PMC7280983 DOI: 10.3390/cancers12051122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023] Open
Abstract
In search of new biomarkers suitable for the diagnosis and treatment of prostate cancer, genome-wide transcriptome sequencing was carried out with tissue specimens from 40 prostate cancer (PCa) and 8 benign prostate hyperplasia patients. We identified two intergenic long non-coding transcripts, located in close genomic proximity, which are highly expressed in PCa. Microarray studies on a larger cohort comprising 155 patients showed a profound diagnostic potential of these transcripts (AUC~0.94), which we designated as tumor associated prostate cancer increased lncRNA (TAPIR-1 and -2). To test their therapeutic potential, knockdown experiments with siRNA were carried out. The knockdown caused an increase in the p53/TP53 tumor suppressor protein level followed by downregulation of a large number of cell cycle- and DNA-damage repair key regulators. Furthermore, in radiation therapy resistant tumor cells, the knockdown leads to a renewed sensitization of these cells to radiation treatment. Accordingly, in a preclinical PCa xenograft model in mice, the systemic application of nanoparticles loaded with siRNA targeting TAPIR-1 significantly reduced tumor growth. These findings point to a crucial role of TAPIR-1 and -2 in PCa.
Collapse
Affiliation(s)
- Maik Friedrich
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Karolin Wiedemann
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Kristin Reiche
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Sven-Holger Puppel
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Gabriele Pfeifer
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
| | - Ivonne Zipfel
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
| | - Stefanie Binder
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
| | - Ulrike Köhl
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Gerd A. Müller
- Molecular Oncology, Medical School University of Leipzig, Semmelweisstr. 14, D-04103 Leipzig, Germany; (G.A.M.); (K.E.)
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Kurt Engeland
- Molecular Oncology, Medical School University of Leipzig, Semmelweisstr. 14, D-04103 Leipzig, Germany; (G.A.M.); (K.E.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, Leipzig University, Härtelstr. 16–18, D-04107 Leipzig, Germany;
| | - Susanne Füssel
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (S.F.); (M.F.); (M.W.)
| | - Michael Fröhner
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (S.F.); (M.F.); (M.W.)
- Zeisigwaldklinik BETHANIEN, Zeisigwaldstraße 101, D-09130 Chemnitz, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, D-01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - Anna Dubrovska
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, D-01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, D-01328 Dresden, Germany
| | - Michael Rade
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Sabina Christ
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| | - Stephan Schreiber
- Helmholtz Centre for Environmental Research—UFZ, Young Investigators Group Bioinformatics & Transcriptomics, Permoserstr. 15, D-04318 Leipzig, Germany; (S.S.); (J.H.)
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research—UFZ, Young Investigators Group Bioinformatics & Transcriptomics, Permoserstr. 15, D-04318 Leipzig, Germany; (S.S.); (J.H.)
| | - Jörg Lehmann
- Department of Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology, GLP Test Facility, Perlickstr. 1, D-04103 Leipzig, Germany;
| | - Marieta I. Toma
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (M.I.T.); (M.H.M.); (U.S.); (G.B.B.)
- Institute of Pathology, Universitätsklinikum Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany
| | - Michael H. Muders
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (M.I.T.); (M.H.M.); (U.S.); (G.B.B.)
- Rudolf-Becker-Laboratory for Prostate Cancer Research, Institute of Pathology, Universitätsklinikum Bonn, Venusberg-Campus 1, D-53127 Bonn, Germany
| | - Ulrich Sommer
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (M.I.T.); (M.H.M.); (U.S.); (G.B.B.)
| | - Gustavo B. Baretton
- Institute of Pathology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (M.I.T.); (M.H.M.); (U.S.); (G.B.B.)
| | - Manfred Wirth
- Department of Urology, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (S.F.); (M.F.); (M.W.)
| | - Friedemann Horn
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Johannisallee 30, D-04103 Leipzig, Germany; (K.W.); (K.R.); (G.P.); (I.Z.); (S.B.); (U.K.); (F.H.)
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, RIBOLUTION Biomarker Center Perlickstr. 1, D-04103 Leipzig, Germany; (S.-H.P.); (M.R.); (S.C.)
| |
Collapse
|
8
|
Geraldo LHM, Garcia C, da Fonseca ACC, Dubois LGF, de Sampaio e Spohr TCL, Matias D, de Camargo Magalhães ES, do Amaral RF, da Rosa BG, Grimaldi I, Leser FS, Janeiro JM, Macharia L, Wanjiru C, Pereira CM, Moura-Neto V, Freitas C, Lima FRS. Glioblastoma Therapy in the Age of Molecular Medicine. Trends Cancer 2019; 5:46-65. [DOI: 10.1016/j.trecan.2018.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
|
9
|
Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomed Pharmacother 2018; 104:87-93. [DOI: 10.1016/j.biopha.2018.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
|
10
|
Zhenjiang L, Rao M, Luo X, Valentini D, von Landenberg A, Meng Q, Sinclair G, Hoffmann N, Karbach J, Altmannsberger HM, Jäger E, Peredo IH, Dodoo E, Maeurer M. Cytokine Networks and Survivin Peptide-Specific Cellular Immune Responses Predict Improved Survival in Patients With Glioblastoma Multiforme. EBioMedicine 2018; 33:49-56. [PMID: 30049387 PMCID: PMC6085502 DOI: 10.1016/j.ebiom.2018.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE We investigated serum cytokine and T-cell responses directed against tumour-associated antigens (TAAs) in association with survival of patients with glioblastoma multiforme (GBM). PATIENTS AND METHODS Peripheral blood from 205 treatment-naïve patients with glioma (GBM = 145; non-GBM = 60) was obtained on the day of surgery to measure (i) circulating T-cells reacting to viral antigens and TAAs, in the presence or absence of cytokine conditioning with IL-2/IL-15/IL-21 or IL-2/IL-7, and (ii) serum cytokine levels (IL-4, IL-5, IL-6, TNF-α, IFN-γ and IL-17A). Patients were followed-up for at least 1000 days post-surgery. Survivin protein and gene expression in resected GBM tumour tissue were confirmed by immunohistochemistry and real-time polymerase chain reaction, respectively. Antigen-specific T-cell responses were gauged by ICS (intracellular cytokine production). Associations between patient survival and immunological reactivity patterns were analysed using univariate and multivariate statistics. RESULTS Approximately 2% of patients with GBM and 18% of patients with non-GBM glioma, were alive beyond 1000 days of surgery. Univariate analysis indicated that the combination of three cytokines (IL-4/IL-5/IL-6, p = .0022; IFN-γ/TNF-α/IL-17A, p = .0083) but not a 'partial' combination of these cytokines, the IFN-γ immune response to EBV-EBNA-1 (p < .0001) as well as T-cell responses to the survivin97-111 peptide (p = .0152) correlated with longer survival among patients with GBM. Multivariate analysis identified survivin97-111-directed IFN-γ production with IL-2/IL-15/IL-21 conditioning (p = .024), and the combined presence of serum IFN-γ/TNF-α/IL-17a (p = .003) as independent predictors of survival. CONCLUSION Serum cytokine patterns and lymphocyte reactivity to survivin97-111, particularly with IL-2, IL-15 and IL-21 conditioning may be instrumental in predicting survival among patients with GBM. This has implications for clinical follow-up of patients with GBM and the targeted development of immunotherapy for patients with CNS tumours.
Collapse
Affiliation(s)
- Liu Zhenjiang
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohua Luo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Anna von Landenberg
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qingda Meng
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georges Sinclair
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Nina Hoffmann
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Karbach
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | | | - Elke Jäger
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | - Inti Harvey Peredo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
The Special AT-rich Sequence Binding Protein 1 (SATB1) and its role in solid tumors. Cancer Lett 2018; 417:96-111. [DOI: 10.1016/j.canlet.2017.12.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
12
|
Aigner A, Kögel D. Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs? Nanomedicine (Lond) 2017; 13:89-103. [PMID: 29199893 DOI: 10.2217/nnm-2017-0230] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nanomedicines allow for the delivery of small interfering RNAs (siRNAs) that are otherwise barely suitable as therapeutics for inducing RNA interference (RNAi). In preclinical studies on siRNA-based glioma treatment in vivo, various groups of nanoparticle systems, routes of administration and target genes have been explored. Targeted delivery by functionalization of nanoparticles with a ligand for crossing the blood-brain barrier and/or for enhanced target cell transfection has been described as well. Focusing on nanoparticle developments in the last approximately 10 years, this review article gives a comprehensive overview of nanoparticle systems for siRNA delivery into glioma and of preclinical in vivo studies. Furthermore, it discusses various target genes and highlights promising strategies with regard to target gene selection and combination therapies.
Collapse
Affiliation(s)
- Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology & Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|