1
|
Wei WJ, Hong YL, Deng Y, Wang GL, Qiu JT, Pan F. Research progress on the development of hepatocyte growth factor/c-Met signaling pathway in gastric cancer: A review. World J Gastrointest Oncol 2024; 16:3397-3409. [PMID: 39171189 PMCID: PMC11334049 DOI: 10.4251/wjgo.v16.i8.3397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-Met, play important roles in the occurrence, development, and treatment of gastric cancer (GC). This review explored the function of the HGF/c-Met signaling pathway in GC and its potential targeted therapeutic mechanisms. As one of the most common malignant tumors worldwide, GC has a complex pathogenesis and limited therapeutic options. Therefore, a thorough understanding of the molecular mechanism of GC is very important for the development of new therapeutic methods. The HGF/c-Met signaling pathway plays an important role in the proliferation, migration, and invasion of GC cells and has become a new therapeutic target. This review summarizes the current research progress on the role of HGF/c-Met in GC and discusses targeted therapeutic strategies targeting this signaling pathway, providing new ideas and directions for the treatment of GC.
Collapse
Affiliation(s)
- Wu-Jie Wei
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Ya-Li Hong
- Department of Cardiovascular, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Yi Deng
- Intensive Care Unit, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Guan-Liang Wang
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Jiang-Tao Qiu
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, Beijing 100084, China
| | - Fang Pan
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| |
Collapse
|
2
|
Wang LM, Zhang WW, Qiu YY, Wang F. Ferroptosis regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. World J Gastrointest Oncol 2024; 16:2781-2792. [PMID: 38994139 PMCID: PMC11236228 DOI: 10.4251/wjgo.v16.i6.2781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world, and its occurrence and development involve complex biological processes. Iron death, as a new cell death mode, has attracted wide attention in recent years. However, the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear. AIM To explore the role of iron death in the development of gastric cancer, reveal its relationship with lipid peroxidation, and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer. METHODS The process of iron death in gastric cancer cells was simulated by cell culture model, and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry. The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology. In addition, a mouse model of gastric cancer was established, and the role of iron death in vivo was studied by histology and immunohistochemistry, and the level of lipid peroxidation was detected. These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer. RESULTS Iron death was significantly activated in gastric cancer cells, and at the same time, associated lipid peroxidation levels increased significantly. Through high-throughput sequencing analysis, it was found that iron death regulated the expression of several genes related to lipid metabolism. In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation. CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. The activation of iron death significantly increased lipid peroxidation levels, revealing its regulatory mechanism inside the cell.
Collapse
Affiliation(s)
- Lan-Mei Wang
- Department of Clinical Laboratory, Anqiu People's Hospital, Weifang 262123, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Gastroenterology, Feicheng People's Hospital, Tai’an 271600, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Fang Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
3
|
Lau DK, Collin JP, Mariadason JM. Clinical Developments and Challenges in Treating FGFR2-Driven Gastric Cancer. Biomedicines 2024; 12:1117. [PMID: 38791079 PMCID: PMC11118914 DOI: 10.3390/biomedicines12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Recent advances in the treatment of gastric cancer (GC) with chemotherapy, immunotherapy, anti-angiogenic therapy and targeted therapies have yielded some improvement in survival outcomes; however, metastatic GC remains a lethal malignancy and amongst the leading causes of cancer-related mortality worldwide. Importantly, the ongoing molecular characterisation of GCs continues to uncover potentially actionable molecular targets. Among these, aberrant FGFR2-driven signalling, predominantly arising from FGFR2 amplification, occurs in approximately 3-11% of GCs. However, whilst several inhibitors of FGFR have been clinically tested to-date, there are currently no approved FGFR-directed therapies for GC. In this review, we summarise the significance of FGFR2 as an actionable therapeutic target in GC, examine the recent pre-clinical and clinical data supporting the use of small-molecule inhibitors, antibody-based therapies, as well as novel approaches such as proteolysis-targeting chimeras (PROTACs) for targeting FGFR2 in these tumours, and discuss the ongoing challenges and opportunities associated with their clinical development.
Collapse
Affiliation(s)
- David K. Lau
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Oncology, Monash Health, Clayton, VIC 3168, Australia
| | - Jack P. Collin
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - John M. Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| |
Collapse
|
4
|
Zhang Y, Shen L, Peng Z. Advances in MET tyrosine kinase inhibitors in gastric cancer. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0044. [PMID: 38727001 PMCID: PMC11208904 DOI: 10.20892/j.issn.2095-3941.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/11/2024] [Indexed: 06/29/2024] Open
Abstract
Gastric cancer is among the most frequently occurring cancers and a leading cause of cancer-related deaths globally. Because gastric cancer is highly heterogenous and comprised of different subtypes with distinct molecular and clinical characteristics, the management of gastric cancer calls for better-defined, biomarker-guided, molecular-based treatment strategies. MET is a receptor tyrosine kinase mediating important physiologic processes, such as embryogenesis, tissue regeneration, and wound healing. However, mounting evidence suggests that aberrant MET pathway activation contributes to tumour proliferation and metastasis in multiple cancer types, including gastric cancer, and is associated with poor patient outcomes. As such, MET-targeting therapies are being actively developed and promising progress has been demonstrated, especially with MET tyrosine kinase inhibitors. This review aims to briefly introduce the role of MET alterations in gastric cancer and summarize in detail the current progress of MET tyrosine kinase inhibitors in this disease area with a focus on savolitinib, tepotinib, capmatinib, and crizotinib. Building on current knowledge, this review further discusses existing challenges in MET alterations testing, possible resistance mechanisms to MET inhibitors, and future directions of MET-targeting therapies.
Collapse
Affiliation(s)
- Yifan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
5
|
Xu J, Yu B, Wang F, Yang J. Xenograft and organoid models in developing precision medicine for gastric cancer (Review). Int J Oncol 2024; 64:41. [PMID: 38390969 PMCID: PMC10919760 DOI: 10.3892/ijo.2024.5629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Gastric cancer (GC), a highly heterogeneous disease, has diverse histological and molecular subtypes. For precision medicine, well‑characterized models encompassing the full spectrum of subtypes are necessary. Patient‑derived tumor xenografts and organoids serve as important preclinical models in GC research. The main advantage of these models is the retention of phenotypic and genotypic heterogeneity present in parental tumor tissues. Utilizing diverse sequencing techniques and preclinical models for GC research facilitates accuracy in predicting personalized clinical responses to anti‑cancer treatments. The present review summarizes the latest advances of these two preclinical models in GC treatment and drug response assessment.
Collapse
Affiliation(s)
- Jiao Xu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bixin Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Phase I Clinical Trial Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Lee J, Lee G, Park HS, Jeong BK, Gong G, Jeong JH, Lee HJ. Factors associated with engraftment success of patient-derived xenografts of breast cancer. Breast Cancer Res 2024; 26:49. [PMID: 38515107 PMCID: PMC10956311 DOI: 10.1186/s13058-024-01794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) models serve as a valuable tool for the preclinical evaluation of novel therapies. They closely replicate the genetic, phenotypic, and histopathological characteristics of primary breast tumors. Despite their promise, the rate of successful PDX engraftment is various in the literature. This study aimed to identify the key factors associated with successful PDX engraftment of primary breast cancer. METHODS We integrated clinicopathological data with morphological attributes quantified using a trained artificial intelligence (AI) model to identify the principal factors affecting PDX engraftment. RESULTS Multivariate logistic regression analyses demonstrated that several factors, including a high Ki-67 labeling index (Ki-67LI) (p < 0.001), younger age at diagnosis (p = 0.032), post neoadjuvant chemotherapy (NAC) (p = 0.006), higher histologic grade (p = 0.039), larger tumor size (p = 0.029), and AI-assessed higher intratumoral necrosis (p = 0.027) and intratumoral invasive carcinoma (p = 0.040) proportions, were significant factors for successful PDX engraftment (area under the curve [AUC] 0.905). In the NAC group, a higher Ki-67LI (p < 0.001), lower Miller-Payne grade (p < 0.001), and reduced proportion of intratumoral normal breast glands as assessed by AI (p = 0.06) collectively provided excellent prediction accuracy for successful PDX engraftment (AUC 0.89). CONCLUSIONS We found that high Ki-67LI, younger age, post-NAC status, higher histologic grade, larger tumor size, and specific morphological attributes were significant factors for predicting successful PDX engraftment of primary breast cancer.
Collapse
Affiliation(s)
- Jongwon Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - GunHee Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | | | - Byung-Kwan Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
- NeogenTC Corp., Seoul, South Korea.
| |
Collapse
|
7
|
Gao J, Lan J, Liao H, Yang F, Qiu P, Jin F, Wang S, Shen L, Chao T, Zhang C, Zhu Y. Promising preclinical patient-derived organoid (PDO) and xenograft (PDX) models in upper gastrointestinal cancers: progress and challenges. BMC Cancer 2023; 23:1205. [PMID: 38062430 PMCID: PMC10702130 DOI: 10.1186/s12885-023-11434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal (GI) cancers (gastric cancer, oesophageal cancer, liver cancer, colorectal cancer, etc.) are the most common cancers with the highest morbidity and mortality in the world. The therapy for most GI cancers is difficult and is associated with a poor prognosis. In China, upper GI cancers, mainly gastric cancer (GC) and oesophageal cancer (EC), are very common due to Chinese people's characteristics, and more than half of patients are diagnosed with distant metastatic or locally advanced disease. Compared to other solid cancers, such as lung cancer and breast cancer, personalized therapies, especially targeted therapy and immunotherapy, in GC and EC are relatively lacking, leading to poor prognosis. For a long time, most studies were carried out by using in vitro cancer cell lines or in vivo cell line-derived xenograft models, which are unable to reproduce the characteristics of tumours derived from patients, leading to the possible misguidance of subsequent clinical validation. The patient-derived models represented by patient-derived organoid (PDO) and xenograft (PDX) models, known for their high preservation of patient tumour features, have emerged as a very popular platform that has been widely used in numerous studies, especially in the research and development of antitumour drugs and personalized medicine. Herein, based on some of the available published literature, we review the research and application status of PDO and PDX models in GC and EC, as well as detail their future challenges and prospects, to promote their use in basic and translational studies or personalized therapy.
Collapse
Affiliation(s)
- Jing Gao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jianqiang Lan
- Guangdong Research Center of Organoid Engineering and Technology, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, China
| | - Haiyan Liao
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fang Yang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Pei Qiu
- Guangdong Research Center of Organoid Engineering and Technology, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, China
| | - Feng Jin
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Shubin Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University- Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lin Shen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, China.
| | - Cheng Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, No. 52 Fucheng Road, Haidian District, Beijing, China.
| | - Yu Zhu
- Guangdong Research Center of Organoid Engineering and Technology, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou, China.
| |
Collapse
|
8
|
Byeon S, Jung J, Kim ST, Kim KM, Lee J. Clinical Implication of Concurrent Amplification of MET and FGFR2 in Metastatic Gastric Cancer. Biomedicines 2023; 11:3172. [PMID: 38137393 PMCID: PMC10740780 DOI: 10.3390/biomedicines11123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND c-mesenchymal epithelial transition factor receptor (c-MET) and fibroblast growth factor receptor 2 (FGFR2) amplification have been identified as factors associated with advanced stage and poor prognosis in gastric cancer (GC). While they are typically considered mutually exclusive, concurrent amplifications have been reported in a small subset of GC patients. METHODS in this retrospective study, we analyzed the clinical outcomes of GC patients with MET and FGFR2 amplification using the next-generation sequencing (NGS) database cohort at Samsung Medical Center, which included a total of 2119 patients between October 2019 and April 2021. RESULTS Of 2119 cancer patients surveyed, the number of GC patients was 614 (29.0%). Out of 614 GC patients, 39 (6.4%) had FGFR2 amplification alone, 22 (3.6%) had MET amplification, and 2 GC patients (0.3%) had concurrent FGFR2 and MET amplification. Two patients with concurrent FGFR2 and MET amplification did not respond to first-line chemotherapy. These two patients had significantly shorter overall survival (3.6 months) compared to patients with FGFR2 or MET amplification alone (13.6 months and 8.4 months, respectively) (p = 0.004). Lastly, we tested the existence of FGFR2 and MET in tumor specimens from different organ sites. Initially, the NGS was tested in a primary tumor specimen from stomach cancer, where the MET copy number was 14.1 and the FGFR2 copy number was 5.3. We confirmed that both MET and FGFR2 were highly amplified in the primary tumor using FISH (MET-CEP7 ratio = 5 and FGFR2-CEP7 ratio = 3). However, although the MET copy number was normal in peritoneal seeding using FISH, FGFR2 remained amplified using FISH (FGFR2-CEP7 ratio = 7) with high FGFR2 protein overexpression. Hence, there was intra-patient molecular heterogeneity. CONCLUSIONS our findings suggest that concurrent amplification of FGFR2 and MET in GC patients is associated with clinical aggressiveness and may contribute to non-responsiveness to chemotherapy or targeted therapy.
Collapse
Affiliation(s)
- Seonggyu Byeon
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul 07804, Republic of Korea;
| | - Jaeyun Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea;
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| |
Collapse
|
9
|
Zeng M, Ruan Z, Tang J, Liu M, Hu C, Fan P, Dai X. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int 2023; 23:120. [PMID: 37344821 DOI: 10.1186/s12935-023-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Establishing appropriate preclinical models is essential for cancer research. Evidence suggests that cancer is a highly heterogeneous disease. This follows the growing use of cancer models in cancer research to avoid these differences between xenograft tumor models and patient tumors. In recent years, a patient-derived xenograft (PDX) tumor model has been actively generated and applied, which preserves both cell-cell interactions and the microenvironment of tumors by directly transplanting cancer tissue from tumors into immunodeficient mice. In addition to this, the advent of alternative hosts, such as zebrafish hosts, or in vitro models (organoids and microfluidics), has also facilitated the advancement of cancer research. However, they still have a long way to go before they become reliable models. The development of immunodeficient mice has enabled PDX to become more mature and radiate new vitality. As one of the most reliable and standard preclinical models, the PDX model in immunodeficient mice (PDX-IM) exerts important effects in drug screening, biomarker development, personalized medicine, co-clinical trials, and immunotherapy. Here, we focus on the development procedures and application of PDX-IM in detail, summarize the implications that the evolution of immunodeficient mice has brought to PDX-IM, and cover the key issues in developing PDX-IM in preclinical studies.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Ruan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxi Tang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Zhou Y, Sun S, Ling T, Chen Y, Zhou R, You Q. The role of fibroblast growth factor 18 in cancers: functions and signaling pathways. Front Oncol 2023; 13:1124520. [PMID: 37228502 PMCID: PMC10203589 DOI: 10.3389/fonc.2023.1124520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Fibroblast growth factor 18(FGF18) is a member of the fibroblast growth factor family (FGFs). FGF18 is a class of bioactive substances that can conduct biological signals, regulate cell growth, participate in tissue repair and other functions, and can promote the occurrence and development of different types of malignant tumors through various mechanisms. In this review, we focus on recent studies of FGF18 in the diagnosis, treatment, and prognosis of tumors in digestive, reproductive, urinary, respiratory, motor, and pediatric systems. These findings suggest that FGF18 may play an increasingly important role in the clinical evaluation of these malignancies. Overall, FGF18 can function as an important oncogene at different gene and protein levels, and can be used as a potential new therapeutic target and prognostic biomarker for these tumors.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Sizheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Ling
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzhen Chen
- Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rongzhong Zhou
- Department of Ophthalmology, Zaoyang First People’s Hosipital, Zaoyang, China
| | - Qiang You
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Yu X, Chen Y, Lu J, He K, Chen Y, Ding Y, Jin K, Wang H, Zhang H, Wang H, Teng L. Patient-derived xenograft models for gastrointestinal tumors: A single-center retrospective study. Front Oncol 2022; 12:985154. [PMID: 36465411 PMCID: PMC9716308 DOI: 10.3389/fonc.2022.985154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) models have shown a great efficiency in preclinical and translational applications. Gastrointestinal (GI) tumors have a strong heterogeneity, and the engraftment rate of PDX models remarkably vary. However, the clinicopathological and molecular characteristics affecting the engraftment rate still remain elusive. METHODS A total of 312 fresh tumor tissue samples from patients with GI cancer were implanted into immunodeficient mice. The median follow-up time of patients was 37 months. Patients' characteristics were compared in terms of PDX growth and overall survival. PDX models of 3-6 generations were used for drug evaluation. RESULTS In total, 171 (54.8%, 171/312) PDX models were established, including 85 PDX models of colorectal cancer, 21 PDX models of esophageal cancer, and 65 PDX models of gastric cancer. Other than tumor site, histology, differentiation degree, and serum alpha-fetoprotein (AFP) level, no significant differences were found between transplantation of xenografts and patients' characteristics. For patients who had undergone neoadjuvant therapy, the incidence of tumor formation was higher in those with progressive disease (PD) or stable disease (SD). In gastric cancer, the results showed a higher transplantation rate in deficient mismatch repair (dMMR) tumors, and Ki-67 could be an important factor affecting the engraftment rate. The gene mutation status of RAS and BRAF, two important molecular markers in colorectal cancer, showed a high degree of consistency between patients' tumors and PDXs. However, no significant effects of these two mutations on PDX engraftment rate were observed. More importantly, in this study although KRAS mutations were detected in two clinical cases, evident tumor inhibition was still observed after cetuximab treatment in both PDX models and patients. CONCLUSION A large-scale PDX model including 171 cases was successfully established for GI tumors in our center. The relationship between clinicopathological and molecular features and engraftment rates were clarified. Furthermore, this resource provides us with profound insights into tumor heterogeneity, making these models valuable for PDX-guided treatment decisions, and offering the PDX model as a great tool for personalized treatment and translation research.
Collapse
Affiliation(s)
- Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuifeng He
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Qin S, Wang Z, Huang C, Huang P, Li D. Serine protease PRSS23 drives gastric cancer by enhancing tumor associated macrophage infiltration via FGF2. Front Immunol 2022; 13:955841. [PMID: 36189305 PMCID: PMC9520605 DOI: 10.3389/fimmu.2022.955841] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Serine proteases has been considered to be closely associated with the inflammatory response and tumor progression. As a novel serine protease, the biological function of PRSS23 is rarely studied in cancers. In this study, the prognostic significance of PRSS23 was analyzed in two-independent gastric cancer (GC) cohorts. PRSS23 overexpression was clinically correlated with poor prognosis and macrophage infiltration of GC patients. Loss-of-function study verified that PRSS23 plays oncogenic role in GC. RNA-seq, qRT-PCR, western blotting and ELISA assay confirmed that serine protease PRSS23 positively regulated FGF2 expression and secretion. Single-cell analysis and gene expression correlation analysis showed that PRSS23 and FGF2 were high expressed in fibroblasts, and highly co-expressed with the biomarkers of tumor associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and mesenchymal cells. Functional analysis confirmed PRSS23/FGF2 was required for TAM infiltration. Rescue assay further verified that PRSS23 promotes GC progression and TAM infiltration through FGF2. Survival analysis showed that high infiltration of M1-macrophage predicted favorable prognosis, while high infiltration level of M2-macrophage predicted poor prognosis in GC. Our finding highlights that PRSS23 promotes TAM infiltration through regulating FGF2 expression and secretion, thereby resulting in a poor prognosis.
Collapse
Affiliation(s)
- Shanshan Qin
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Zidi Wang
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Congcong Huang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Pan Huang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| | - Dandan Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Laboratory of Tumor Biology, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
13
|
Wu X, Liu Z, Gan C, Wei W, Zhang Q, Liu H, Que H, Su X, Yue L, He H, Ouyang L, Ye T. Design, synthesis and biological evaluation of a series of novel pyrrolo[2,3-d]pyrimidin/pyrazolo[3,4-d]pyrimidin-4-amine derivatives as FGFRs-dominant multi-target receptor tyrosine kinase inhibitors for the treatment of gastric cancer. Bioorg Chem 2022; 127:105965. [PMID: 35759882 DOI: 10.1016/j.bioorg.2022.105965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023]
Abstract
Gastric cancer is the second most lethal cancer across the world. With the progress in therapeutic approaches, the 5-year survival rate of early gastric cancer can reach > 95%. However, the prognosis and survival time of advanced gastric cancer is still somber. Therefore, more effective targeted therapies for gastric cancer treatment are urgently needed. FGFR, VEGFR and other receptor tyrosine kinases have recently been suggested as potential targets for gastric cancer treatment. We herein report the discovery of pyrrolo[2,3-d]pyrimidin/pyrazolo[3,4-d]pyrimidin-4-amine derivatives as a new class of FGFRs-dominant multi-target receptor tyrosine kinase inhibitors. SAR assessment identified the most active compounds 8f and 8k, which showed excellent inhibitory activity against a variety of receptor tyrosine kinases. Moreover, 8f and 8k displayed excellent potency in the SNU-16 gastric cancer cell line. Furthermore, 8f and 8k could inhibit FGFR1 phosphorylation and downstream signaling pathways as well as induce cell apoptosis. In vivo, 8f and 8k suppress tumor growth in the SNU-16 xenograft model without inducing obvious toxicity. These findings raise the possibility that compounds 8f and 8k might serve as potential agents for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiuli Wu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihao Liu
- Laboratory of Emergency Medicine, Department of Emergency Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cailin Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Wei
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianyu Zhang
- West China School of Public Health and Healthy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hanyun Que
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualong He
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
14
|
Zeng M, Pi C, Li K, Sheng L, Zuo Y, Yuan J, Zou Y, Zhang X, Zhao W, Lee RJ, Wei Y, Zhao L. Patient-Derived Xenograft: A More Standard "Avatar" Model in Preclinical Studies of Gastric Cancer. Front Oncol 2022; 12:898563. [PMID: 35664756 PMCID: PMC9161630 DOI: 10.3389/fonc.2022.898563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Despite advances in diagnosis and treatment, gastric cancer remains the third most common cause of cancer-related death in humans. The establishment of relevant animal models of gastric cancer is critical for further research. Due to the complexity of the tumor microenvironment and the genetic heterogeneity of gastric cancer, the commonly used preclinical animal models fail to adequately represent clinically relevant models of gastric cancer. However, patient-derived models are able to replicate as much of the original inter-tumoral and intra-tumoral heterogeneity of gastric cancer as possible, reflecting the cellular interactions of the tumor microenvironment. In addition to implanting patient tissues or primary cells into immunodeficient mouse hosts for culture, the advent of alternative hosts such as humanized mouse hosts, zebrafish hosts, and in vitro culture modalities has also facilitated the advancement of gastric cancer research. This review highlights the current status, characteristics, interfering factors, and applications of patient-derived models that have emerged as more valuable preclinical tools for studying the progression and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Lin Sheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ying Zuo
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yonggen Zou
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing, China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Bae J, Choi YS, Cho G, Jang SJ. The Patient-Derived Cancer Organoids: Promises and Challenges as Platforms for Cancer Discovery. Cancers (Basel) 2022; 14:cancers14092144. [PMID: 35565273 PMCID: PMC9105149 DOI: 10.3390/cancers14092144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The cancer burden is rapidly increasing in most countries, and thus, new anticancer drugs for effective cancer therapy must be developed. Cancer model systems that recapitulate the biological processes of human cancers are one of the cores of the drug development process. PDCO has emerged as a unique model that preserves the genetic, physiological, and histologic characteristics of original cancer, including inter- and intratumoral heterogeneities. Due to these advantages, the PCDO model is increasingly investigated for anticancer drug screening and efficacy testing, preclinical patient stratification, and precision medicine for selecting the most effective anticancer therapy for patients. Here, we review the prospects and limitations of PDCO compared to the conventional cancer models. With advances in culture success rates, co-culture systems with the tumor microenvironment, organoid-on-a-chip technology, and automation technology, PDCO will become the most promising model to develop anticancer drugs and precision medicine.
Collapse
Affiliation(s)
- JuneSung Bae
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Yun Sik Choi
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Gunsik Cho
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Se Jin Jang
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-498-2644; Fax: +82-2-498-2655
| |
Collapse
|
16
|
Multicellular Modelling of Difficult-to-Treat Gastrointestinal Cancers: Current Possibilities and Challenges. Int J Mol Sci 2022; 23:ijms23063147. [PMID: 35328567 PMCID: PMC8955095 DOI: 10.3390/ijms23063147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cancers affecting the gastrointestinal system are highly prevalent and their incidence is still increasing. Among them, gastric and pancreatic cancers have a dismal prognosis (survival of 5–20%) and are defined as difficult-to-treat cancers. This reflects the urge for novel therapeutic targets and aims for personalised therapies. As a prerequisite for identifying targets and test therapeutic interventions, the development of well-established, translational and reliable preclinical research models is instrumental. This review discusses the development, advantages and limitations of both patient-derived organoids (PDO) and patient-derived xenografts (PDX) for gastric and pancreatic ductal adenocarcinoma (PDAC). First and next generation multicellular PDO/PDX models are believed to faithfully generate a patient-specific avatar in a preclinical setting, opening novel therapeutic directions for these difficult-to-treat cancers. Excitingly, future opportunities such as PDO co-cultures with immune or stromal cells, organoid-on-a-chip models and humanised PDXs are the basis of a completely new area, offering close-to-human models. These tools can be exploited to understand cancer heterogeneity, which is indispensable to pave the way towards more tumour-specific therapies and, with that, better survival for patients.
Collapse
|
17
|
Karalis JD, Yoon LY, Hammer STG, Hong C, Zhu M, Nassour I, Ju MR, Xiao S, Castro-Dubon EC, Agrawal D, Suarez J, Reznik SI, Mansour JC, Polanco PM, Yopp AC, Zeh HJ, Hwang TH, Zhu H, Porembka MR, Wang SC. Lenvatinib inhibits the growth of gastric cancer patient-derived xenografts generated from a heterogeneous population. J Transl Med 2022; 20:116. [PMID: 35255940 PMCID: PMC8900296 DOI: 10.1186/s12967-022-03317-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lenvatinib is a multitargeted tyrosine kinase inhibitor that is being tested in combination with immune checkpoint inhibitors to treat advanced gastric cancer; however, little data exists regarding the efficacy of lenvatinib monotherapy. Patient-derived xenografts (PDX) are established by engrafting human tumors into immunodeficient mice. The generation of PDXs may be hampered by growth of lymphomas. In this study, we compared the use of mice with different degrees of immunodeficiency to establish PDXs from a diverse cohort of Western gastric cancer patients. We then tested the efficacy of lenvatinib in this system. METHODS PDXs were established by implanting gastric cancer tissue into NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) or Foxn1nu (nude) mice. Tumors from multiple passages from each PDX line were compared histologically and transcriptomically. PDX-bearing mice were randomized to receive the drug delivery vehicle or lenvatinib. After 21 days, the percent tumor volume change (%Δvtumor) was calculated. RESULTS 23 PDX models were established from Black, non-Hispanic White, Hispanic, and Asian gastric cancer patients. The engraftment rate was 17% (23/139). Tumors implanted into NSG (16%; 18/115) and nude (21%; 5/24) mice had a similar engraftment rate. The rate of lymphoma formation in nude mice (0%; 0/24) was lower than in NSG mice (20%; 23/115; p < 0.05). PDXs derived using both strains maintained histologic and gene expression profiles across passages. Lenvatinib treatment (mean %Δvtumor: -33%) significantly reduced tumor growth as compared to vehicle treatment (mean %Δvtumor: 190%; p < 0.0001). CONCLUSIONS Nude mice are a superior platform than NSG mice for generating PDXs from gastric cancer patients. Lenvatinib showed promising antitumor activity in PDXs established from a diverse Western patient population and warrants further investigation in gastric cancer.
Collapse
Affiliation(s)
- John D Karalis
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lynn Y Yoon
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Suntrea T G Hammer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changjin Hong
- Department of Artificial Intelligence and Informatics, Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | - Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ibrahim Nassour
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Michelle R Ju
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shu Xiao
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Esther C Castro-Dubon
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deepak Agrawal
- Department of Internal Medicine, University of Texas at Austin, Austin, TX, USA
| | - Jorge Suarez
- Department of Gastroenterology and Hepatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott I Reznik
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John C Mansour
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patricio M Polanco
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam C Yopp
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Herbert J Zeh
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tae Hyun Hwang
- Department of Artificial Intelligence and Informatics, Department of Immunology, Mayo Clinic, Jacksonville, FL, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew R Porembka
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sam C Wang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
18
|
Schrumpf T, Behrens HM, Haag J, Krüger S, Röcken C. FGFR2 overexpression and compromised survival in diffuse-type gastric cancer in a large central European cohort. PLoS One 2022; 17:e0264011. [PMID: 35167603 PMCID: PMC8846517 DOI: 10.1371/journal.pone.0264011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The significance of fibroblast growth factor receptor 2 (FGFR2) in gastric cancer (GC) has been studied predominantly in Asian patient cohorts. Data on White patients are scarce. Here, we aimed to independently validate the expression and putative tumor biological significance of FGFR2 in a large non-Asian GC cohort. Immunohistochemistry (IHC) was performed on large-area tissue sections from 493 patients with GC and evaluated using the HScore. GCs with moderate and strong FGFR2 expression were studied for Fgfr2 amplification using chromogenic in situ hybridization (CISH). Median overall survival was determined using the Kaplan–Meier method. The majority [240 (99.1%)] of FGFR2-positive GCs showed a variable combination of staining intensities with marked intratumoral heterogeneity, including weak [198 (40.2%) cases], moderate [145 (29.4%)], and strong [108 (21.9%)] staining in diverse combinations. 250 (50.9%) GCs expressed no FGFR2. Fgfr2 gene amplification was found in 40% of selected cases with high protein expression and was also heterogeneous at the cell level. FGFR2 protein expression did not correlate with patient survival in the entire cohort However, using different cutoff values, a negative correlation between FGFR2-expression and patient outcome was found for diffuse-type GC. FGFR2 expression was associated with a lower tumor grade and intestinal phenotype (p≤0.0001). FGFR2–positive diffuse-type GCs classify a small subset of patients with a poor tumor specific survival (5.29±1.3 vs. 14.67±1.9 months; p = 0.004).
Collapse
Affiliation(s)
- Thorben Schrumpf
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hans-Michael Behrens
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jochen Haag
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sandra Krüger
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Dept. of Pathology, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Kiel, Germany
- * E-mail:
| |
Collapse
|
19
|
Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View. Cancers (Basel) 2021; 13:cancers13205216. [PMID: 34680363 PMCID: PMC8533881 DOI: 10.3390/cancers13205216] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Systemic treatment comprising chemotherapy and targeted therapy is the standard of care in advanced/metastatic gastric cancer. Comprehensive molecular characterization of gastric adenocarcinomas by the TCGA Consortium and ACRG has resulted in the definition of distinct molecular subtypes. These efforts have in parallel built a basis for the development of novel molecularly stratified treatment approaches. Based on this molecular characterization, an increasing number of specific genomic alterations can potentially serve as treatment targets. Consequently, the development of promising compounds is ongoing. In this review, key molecular alterations in gastric and gastroesophageal junction cancers will be addressed. Finally, the current status of the translation of targeted therapy towards clinical applications will be reviewed.
Collapse
|
20
|
Venkatasamy A, Guerin E, Blanchet A, Orvain C, Devignot V, Jung M, Jung AC, Chenard MP, Romain B, Gaiddon C, Mellitzer G. Ultrasound and Transcriptomics Identify a Differential Impact of Cisplatin and Histone Deacetylation on Tumor Structure and Microenvironment in a Patient-Derived In Vivo Model of Gastric Cancer. Pharmaceutics 2021; 13:1485. [PMID: 34575561 PMCID: PMC8467189 DOI: 10.3390/pharmaceutics13091485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/06/2023] Open
Abstract
The reasons behind the poor efficacy of transition metal-based chemotherapies (e.g., cisplatin) or targeted therapies (e.g., histone deacetylase inhibitors, HDACi) on gastric cancer (GC) remain elusive and recent studies suggested that the tumor microenvironment could contribute to the resistance. Hence, our objective was to gain information on the impact of cisplatin and the pan-HDACi SAHA (suberanilohydroxamic acid) on the tumor substructure and microenvironment of GC, by establishing patient-derived xenografts of GC and a combination of ultrasound, immunohistochemistry, and transcriptomics to analyze. The tumors responded partially to SAHA and cisplatin. An ultrasound gave more accurate tumor measures than a caliper. Importantly, an ultrasound allowed a noninvasive real-time access to the tumor substructure, showing differences between cisplatin and SAHA. These differences were confirmed by immunohistochemistry and transcriptomic analyses of the tumor microenvironment, identifying specific cell type signatures and transcription factor activation. For instance, cisplatin induced an "epithelial cell like" signature while SAHA favored a "mesenchymal cell like" one. Altogether, an ultrasound allowed a precise follow-up of the tumor progression while enabling a noninvasive real-time access to the tumor substructure. Combined with transcriptomics, our results underline the different intra-tumoral structural changes caused by both drugs that impact differently on the tumor microenvironment.
Collapse
Affiliation(s)
- Aina Venkatasamy
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
- IHU-Strasbourg (Institut Hospitalo-Universitaire), 67091 Strasbourg, France
| | - Eric Guerin
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Anais Blanchet
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Christophe Orvain
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Véronique Devignot
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | | | - Alain C. Jung
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
- Laboratoire de Biologie Tumorale, ICANS, 67200 Strasbourg, France
| | - Marie-Pierre Chenard
- Pathology Department, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
| | - Benoit Romain
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
- Digestive Surgery Department, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Christian Gaiddon
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| | - Georg Mellitzer
- Streinth Lab (Stress Response and Innovative Therapies), Strasbourg University, Inserm UMR_S 1113 IRFAC (Interface Recherche Fondamental et Appliquée à la Cancérologie), 67200 Strasbourg, France; (A.V.); (E.G.); (A.B.); (C.O.); (V.D.); (A.C.J.); (B.R.)
| |
Collapse
|
21
|
Establishment and characterization of an ovarian yolk sac tumor patient-derived xenograft model. Pediatr Surg Int 2021; 37:1031-1040. [PMID: 34031745 DOI: 10.1007/s00383-021-04895-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE The lack of appropriate preclinical models of ovarian yolk sac tumor (OYST) is currently hindering the pursuit of new methods of treatment and investigation of the pathogenesis of the disease. We developed and characterized an OYST patient-derived xenograft (PDX) model in this study. METHODS Tumor fragments from a patient with an OYST were implanted subcutaneously into BALB/c Nude mice. Engrafted xenografts were compared with the original tumor according to histology, immunohistochemistry, humanized identified, and drug efficacy testing with in vivo treatment programs. RESULTS There was a high degree of histologic and immunohistochemical (IHC) resemblance between the established PDX model and its corresponding human tumors. Bleomycin, etoposide, and cisplatin (JEB) chemotherapy regimens were effective in clinical patients and were effective in the OYST PDX model; therefore, the effect of PDX intervention was consistent with clinical outcomes of OYSTs. CONCLUSION We have successfully established an OYST PDX model. This OYST model preserves the basic molecular features of the primary human tumor, thereby providing a valuable method to preclinically evaluate new treatments and explore disease pathogenesis.
Collapse
|
22
|
Lu J, Ding Y, Chen Y, Jiang J, Chen Y, Huang Y, Wu M, Li C, Kong M, Zhao W, Wang H, Zhang J, Li Z, Lu Y, Yu X, Jin K, Zhou D, Zhou T, Teng F, Zhang H, Zhou Z, Wang H, Teng L. Whole-exome sequencing of alpha-fetoprotein producing gastric carcinoma reveals genomic profile and therapeutic targets. Nat Commun 2021; 12:3946. [PMID: 34168152 PMCID: PMC8225795 DOI: 10.1038/s41467-021-24170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Alpha-fetoprotein producing gastric carcinoma (AFPGC) is a rare and aggressive subtype of gastric cancer. However, little is known about the genomic features of this disease. We perform whole-exome sequencing analysis of AFPGC, and identify 34 significantly mutated genes. Somatic copy number alterations analysis reveals several significant focal amplifications (e.g. 19q12, 17q12) and focal deletions (e.g. 1p36.11, 9p21.3), and some of these negatively affect the patient prognosis. Comparative analyses reveal that AFPGC has distinct genomic features from gastric cancer of The Cancer Genome Atlas as well as four molecular subtypes. Several frequently altered genes with potential as therapeutic targets are identified in AFPGC. Further analysis reveals that AFPGC with amplification of CCNE1 at 19q12 and/or ERBB2 at 17q12 show poorer survival and more aggressive. Subsequently, based on our established patient-derived xenograft models for AFPGC, translational research is performed and the therapeutic value of targeting CCNE1 and ERBB2 is validated. In this work, we provide an understanding of genomic characteristics of AFPGC and propose a platform to explore and validate the genome-guided personalized treatment for this disease.
Collapse
Affiliation(s)
- Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengjie Wu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengzhi Li
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenyi Zhao
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongqi Li
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ketao Jin
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianhua Zhou
- Institute of Gastroenterology, Cancer center, Zhejiang University, Hangzhou, China
| | - Fei Teng
- Hangzhou Oncocare Co. Ltd, Hangzhou, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences and Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China.
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
23
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
24
|
Chen C, Lin W, Huang Y, Chen X, Wang H, Teng L. The Essential Factors of Establishing Patient-derived Tumor Model. J Cancer 2021; 12:28-37. [PMID: 33391400 PMCID: PMC7738839 DOI: 10.7150/jca.51749] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022] Open
Abstract
Establishing an applicable preclinical model is vital for translational cancer research. Patient-derived xenograft has been important preclinical model systems and widely used for cancer research. Patient-derived xenograft models that represent the tumors of the patients are necessary to better translate research discoveries and to test potential therapeutic approaches. However, research in this field is hampered by the limited engraftment rate. In this review, we go over a large number of researches on patient-derived xenograft transplantation and firstly systematically summarize the main factors in methodology to successfully establish models. These results will be applied to the development of patient-derived xenograft leading to better preclinical research.
Collapse
Affiliation(s)
- Chuanzhi Chen
- Department of Surgical Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wu Lin
- Department of Surgical Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yingying Huang
- Department of Surgical Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangliu Chen
- Department of Surgical Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haohao Wang
- Department of Surgical Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lisong Teng
- Department of Surgical Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
25
|
Mechanisms of Efficacy of the FGFR1–3 Inhibitor AZD4547 in Pediatric Solid Tumor Models. Invest New Drugs 2020; 38:1677-1686. [DOI: 10.1007/s10637-020-00933-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
|
26
|
Du X, He K, Huang Y, Xu Z, Kong M, Zhang J, Cao J, Teng L. Establishment of a novel human cell line retaining the characteristics of the original pancreatic adenocarcinoma, and evaluation of MEK as a therapeutic target. Int J Oncol 2020; 56:761-771. [PMID: 32124956 PMCID: PMC7010221 DOI: 10.3892/ijo.2020.4965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a lethal solid malignancy with limited therapeutic options. The development of novel therapeutic drugs requires adequate new cell line models. A new pancreatic cancer cell line, designated PDXPC1, was established from one pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft. The PDXPC1 cells were stably cultured for >2 years and had a stable short tandem repeat profile. The PDXPC1 cell line retained the key mutations of the primary tumor, along with the epithelial origin and other important protein expression. The PDXPC1 cells induced rapid in vivo tumor growth, both subcutaneously and orthotopically, in a mouse model with an elevated CA199 level. The PDXPC1 cells showed weak growth, invasion and migration potency compared to another pancreatic cancer cell line, but were relatively resistant to multiple anti-cancer drugs. Interestingly, the MEK inhibitor trametinib significantly inhibited the proliferation of PDXPC1 cells, and not that of Panc-1 cells, by inactivating MEK/ERK/MYC signaling and activating the apoptotic pathway via Bcl-2 degradation. In conclusion, the PDXPC1 cell line, capturing the major characteristics of the primary tumor, may be a suitable tool for studying the underlying mechanisms of chemo-resistance in PDAC and developing new targeted therapeutic options.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Kuifeng He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhenzhen Xu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
27
|
Carpenter R, Oh HJ, Ham IH, Kim D, Hur H, Lee J. Scaffold-Assisted Ectopic Transplantation of Internal Organs and Patient-Derived Tumors. ACS Biomater Sci Eng 2019; 5:6667-6678. [PMID: 33423485 DOI: 10.1021/acsbiomaterials.9b00978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenotransplantation of human tissues into immunodeficient mice has emerged as an invaluable preclinical model to study human biology and disease progression and predict clinical response. The most common anatomical site for tissue transplantation is the subcutaneous pocket due to simple surgical procedures and accessibility for gross monitoring and advanced imaging modalities. However, subcutaneously implanted tissues initially experience a sharp change in oxygen and nutrient supply and increased mechanical deformation. During this acute phase of tissue integration to the host vasculature, substantial cell death and tissue fibrosis occur limiting engraftment efficiency. Previously, we demonstrated that the implantation of inverted colloidal crystal hydrogel scaffolds triggers proangiogenic and immunomodulatory functions without characteristic foreign body encapsulation. In this study, we examine the use of this unique host response to improve the ectopic transplantation of tissues to the subcutaneous site. Scaffold-assisted tissues preserved morphological features and blood vessel density compared to native tissues, whereas scaffold-free tissues collapsed and were less vascularized. Notably, the supporting biomaterial scaffold modulated the foreign body response to reduce the localization of Ly6G+ cells within the transplanted tissues. Cotransplantation of patient-derived gastric cancer with a scaffold resulted in a comparable level of engraftment to conventional methods; however, detailed immunohistological characterization revealed significantly better retention of proliferative cells (Ki67+) and human immune cells (CD45+) by the end of the study. We envision that leveraging the immunomodulatory properties of biomaterial interfaces can be an attractive strategy to improve the functional engraftment of xenotransplants and accelerate individualized diagnostics and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - Daeyoung Kim
- Department of Mathematics & Statistics, University of Massachusetts, Amherst, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
28
|
Okada S, Vaeteewoottacharn K, Kariya R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells 2019; 8:E889. [PMID: 31412684 PMCID: PMC6721637 DOI: 10.3390/cells8080889] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022] Open
Abstract
Patient-derived xenograft (PDX) models are created by engraftment of patient tumor tissues into immunocompetent mice. Since a PDX model retains the characteristics of the primary patient tumor including gene expression profiles and drug responses, it has become the most reliable in vivo human cancer model. The engraftment rate increases with the introduction of Non-obese diabetic Severe combined immunodeficiency (NOD/SCID)-based immunocompromised mice, especially the NK-deficient NOD strains NOD/SCID/interleukin-2 receptor gamma chain(IL2Rγ)null (NOG/NSG) and NOD/SCID/Jak3(Janus kinase 3)null (NOJ). Success rates differ with tumor origin: gastrointestinal tumors acquire a higher engraftment rate, while the rate is lower for breast cancers. Subcutaneous transplantation is the most popular method to establish PDX, but some tumors require specific environments, e.g., orthotropic or renal capsule transplantation. Human hormone treatment is necessary to establish hormone-dependent cancers such as prostate and breast cancers. PDX mice with human hematopoietic and immune systems (humanized PDX) are powerful tools for the analysis of tumor-immune system interaction and evaluation of immunotherapy response. A PDX biobank equipped with patients' clinical data, gene-expression patterns, mutational statuses, tumor tissue architects, and drug responsiveness will be an authoritative resource for developing specific tumor biomarkers for chemotherapeutic predictions, creating individualized therapy, and establishing precise cancer medicine.
Collapse
Affiliation(s)
- Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan.
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Kulthida Vaeteewoottacharn
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Department of Biochemistry, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
29
|
Jeon J, Cheong JH. Clinical Implementation of Precision Medicine in Gastric Cancer. J Gastric Cancer 2019; 19:235-253. [PMID: 31598369 PMCID: PMC6769368 DOI: 10.5230/jgc.2019.19.e25] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/28/2019] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies in the world. Currently, clinical treatment decisions are mostly made based on the extent of the tumor and its anatomy, such as tumor-node-metastasis staging. Recent advances in genome-wide molecular technology have enabled delineation of the molecular characteristics of GC. Based on this, efforts have been made to classify GC into molecular subtypes with distinct prognosis and therapeutic response. Simplified algorithms based on protein and RNA expressions have been proposed to reproduce the GC classification in the clinical field. Furthermore, a recent study established a single patient classifier (SPC) predicting the prognosis and chemotherapy response of resectable GC patients based on a 4-gene real-time polymerase chain reaction assay. GC patient stratification according to SPC will enable personalized therapeutic strategies in adjuvant settings. At the same time, patient-derived xenografts and patient-derived organoids are now emerging as novel preclinical models for the treatment of GC. These models recapitulate the complex features of the primary tumor, which is expected to facilitate both drug development and clinical therapeutic decision making. An integrated approach applying molecular patient stratification and patient-derived models in the clinical realm is considered a turning point in precision medicine in GC.
Collapse
Affiliation(s)
- Jaewook Jeon
- Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Biochemistry & Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Establishment of Novel Gastric Cancer Patient-Derived Xenografts and Cell Lines: Pathological Comparison between Primary Tumor, Patient-Derived, and Cell-Line Derived Xenografts. Cells 2019; 8:cells8060585. [PMID: 31207870 PMCID: PMC6627523 DOI: 10.3390/cells8060585] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Patient-derived xenograft (PDX) models have been recognized as being more suitable for predicting therapeutic efficacy than cell-culture models. However, there are several limitations in applying PDX models in preclinical studies, including their availability—especially for cancers such as gastric cancer—that are not frequently encountered in Western countries. In addition, the differences in morphology between primary, PDX, and tumor cell line-derived xenograft (CDX) models have not been well established. In this study, we aimed to establish a series of gastric cancer PDXs and cell-lines from a relatively large number of gastric cancer patients. We also investigated the clinicopathological factors associated with the establishment of PDX and CDX models, and compared the histology between the primary tumor, PDX, and CDX that originated from the same patient. We engrafted 232 gastric cancer tissues into immune-deficient mice subcutaneously and successfully established 35 gastric cancer PDX models (15.1% success rate). Differentiated type adenocarcinomas (DAs, 19.4%) were more effectively established than poorly differentiated type adenocarcinomas (PDAs, 10.8%). For establishing CDXs, the success rate was less influenced by histological differentiation grade (DA vs. PDA, 12.1% vs. 9.8%). In addition, concordance of histological differentiation grade between primary tumors and PDXs was significant (p < 0.01), while concordance between primary tumors and CDXs was not. Among clinicopathological factors investigated, pathological nodal metastasis status (pN) was significantly associated with the success rate of PDX establishment. Although establishing cell lines from ascites fluid was more efficient (41.2%, 7/17) than resected tissues, it should be noted that all CDXs from ascites fluid had the PDA phenotype. In conclusion, we established 35 PDX and 32 CDX models from 249 gastric cancer patients; among them, 21 PDX/CDX models were established from the same patients. Our findings may provide helpful insights for establishing PDX and CDX models not only from gastric but from other cancer types, as well as select preclinical models for developing new therapeutics.
Collapse
|
31
|
Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S, Ishikawa K, Kawasaki K, Togasaki K, Takahashi S, Sukawa Y, Ishida H, Sugimoto S, Kawakubo H, Kim J, Kitagawa Y, Sekine S, Koo BK, Kanai T, Sato T. Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis. Cell 2019; 174:856-869.e17. [PMID: 30096312 DOI: 10.1016/j.cell.2018.07.027] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/29/2018] [Accepted: 07/21/2018] [Indexed: 12/17/2022]
Abstract
Recent sequencing analyses have shed light on heterogeneous patterns of genomic aberrations in human gastric cancers (GCs). To explore how individual genetic events translate into cancer phenotypes, we established a biological library consisting of genetically engineered gastric organoids carrying various GC mutations and 37 patient-derived organoid lines, including rare genomically stable GCs. Phenotype analyses of GC organoids revealed divergent genetic and epigenetic routes to gain Wnt and R-spondin niche independency. An unbiased phenotype-based genetic screening identified a significant association between CDH1/TP53 compound mutations and the R-spondin independency that was functionally validated by CRISPR-based knockout. Xenografting of GC organoids further established the feasibility of Wnt-targeting therapy for Wnt-dependent GCs. Our results collectively demonstrate that multifaceted genetic abnormalities render human GCs independent of the stem cell niche and highlight the validity of the genotype-phenotype screening strategy in gaining deeper understanding of human cancers.
Collapse
Affiliation(s)
- Kosaku Nanki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kohta Toshimitsu
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ai Takano
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masayuki Fujii
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mariko Shimokawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuki Ohta
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mami Matano
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Takashi Seino
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shingo Nishikori
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga 520-0106, Japan
| | - Keiko Ishikawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenta Kawasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazuhiro Togasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Sirirat Takahashi
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yasutaka Sukawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroki Ishida
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shinya Sugimoto
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, 1030, Austria
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, 1030, Austria
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
32
|
Electrostatic explanation of D1228V/H/N-induced c-Met resistance and sensitivity to type I and type II kinase inhibitors in targeted gastric cancer therapy. J Mol Model 2019; 25:13. [DOI: 10.1007/s00894-018-3893-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/04/2018] [Indexed: 01/28/2023]
|
33
|
Battaglin F, Naseem M, Puccini A, Lenz HJ. Molecular biomarkers in gastro-esophageal cancer: recent developments, current trends and future directions. Cancer Cell Int 2018; 18:99. [PMID: 30008616 PMCID: PMC6042434 DOI: 10.1186/s12935-018-0594-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Gastro-esophageal adenocarcinomas (GEA) represent a severe global health burden and despite improvements in the multimodality treatment of these malignancies the prognosis of patients remains poor. HER2 overexpression/amplification has been the first predictive biomarker approved in clinical practice to guide patient selection for targeted treatment with trastuzumab in advanced gastric and gastro-esophageal junction cancers. More recently, immunotherapy has been approved for the treatment of GEA and PD-L1 expression is now a biomarker required for the administration of pembrolizumab in these diseases. Significant progress has been made in recent years in dissecting the genomic makeup of GEA in order to identify distinct molecular subtypes linked to distinct patterns of molecular alterations. GEA have been found to be highly heterogeneous malignances, representing a challenge for biomarkers discovery and targeted treatment development. The current review focuses on an overview of established and novel promising biomarkers in GEA, covering recent molecular classifications from TCGA and ACRG. Main elements of molecular heterogeneity are discussed, as well as emerging mechanisms of primary and secondary resistance to HER2 targeted treatment and recent biomarker-driven trials. Future perspectives on the role of epigenetics, miRNA/lncRNA and liquid biopsy, and patient-derived xenograft models as a new platform for molecular-targeted drug discovery in GEA are presented. Our knowledge on the genomic landscape of GEA continues to evolve, uncovering the high heterogeneity and deep complexity of these tumors. The availability of new technologies and the identification of promising novel biomarker will be critical to optimize targeted treatment development in a setting where therapeutic options are currently lacking. Nevertheless, clinical validation of novel biomarkers and treatment strategies still represents an issue.
Collapse
Affiliation(s)
- Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
- Oncologia Medica 1, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
| |
Collapse
|
34
|
Li M, Qian Z, Ma X, Lin X, You Y, Li Y, Chen T, Jiang H. MiR-628-5p decreases the tumorigenicity of epithelial ovarian cancer cells by targeting at FGFR2. Biochem Biophys Res Commun 2017; 495:2085-2091. [PMID: 29229394 DOI: 10.1016/j.bbrc.2017.12.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 01/02/2023]
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs which are 19-24 nucleotides in length. MiRNAs play a vital role in the whole process of tumour development, but how they influence the tumourigenecity of epithelial ovarian cancer (EOC)cells is rarely researched. In our study, it was verified that miR-628-5p decreased the stem like cell percentage of EOC cells by inducing their apoptosis. The animal experiments showed that miR-628-5p decreased the tumourigenecity of EOC cells. Besides, we found miR-628-5p targeted at and down-regulated the expression of fibroblast growth factor receptor 2 (FGFR2). FGFR2 expressed higher in ovarian cancer tissues and was correlated with worse prognosis. Our findings indicated that miR-628-5pplays an important role in ovarian cancer stem cell driven tumorigenesis.
Collapse
Affiliation(s)
- Ming Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Zhimin Qian
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xiaoling Ma
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xiaolong Lin
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yanan You
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yiying Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Hua Jiang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200011, China.
| |
Collapse
|