1
|
Wang Y, Wang B, Cao W, Xu X. TGF-β-activated circRYK drives glioblastoma progression by increasing VLDLR mRNA expression and stability in a ceRNA- and RBP-dependent manner. J Exp Clin Cancer Res 2024; 43:73. [PMID: 38454465 PMCID: PMC10921701 DOI: 10.1186/s13046-024-03000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The TGF-β signalling pathway is intricately associated with the progression of glioblastoma (GBM). The objective of this study was to examine the role of circRNAs in the TGF-β signalling pathway. METHODS In our research, we used transcriptome analysis to search for circRNAs that were activated by TGF-β. After confirming the expression pattern of the selected circRYK, we carried out in vitro and in vivo cell function assays. The underlying mechanisms were analysed via RNA pull-down, luciferase reporter, and RNA immunoprecipitation assays. RESULTS CircRYK expression was markedly elevated in GBM, and this phenotype was strongly associated with a poor prognosis. Functionally, circRYK promotes epithelial-mesenchymal transition and GSC maintenance in GBM. Mechanistically, circRYK sponges miR-330-5p and promotes the expression of the oncogene VLDLR. In addition, circRYK could enhance the stability of VLDLR mRNA via the RNA-binding protein HuR. CONCLUSION Our findings show that TGF-β promotes epithelial-mesenchymal transition and GSC maintenance in GBM through the circRYK-VLDLR axis, which may provide a new therapeutic target for the treatment of GBM.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China
| | - Binbin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China
| | - Wenping Cao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China.
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210000, China.
| |
Collapse
|
2
|
Okamoto S, Miyano K, Choshi T, Sugisawa N, Nishiyama T, Kotouge R, Yamamura M, Sakaguchi M, Kinoshita R, Tomonobu N, Katase N, Sasaki K, Nishina S, Hino K, Kurose K, Oka M, Kubota H, Ueno T, Hirai T, Fujiwara H, Kawai C, Itadani M, Morihara A, Matsushima K, Kanegasaki S, Hoffman RM, Yamauchi A, Kuribayashi F. Inhibition of pancreatic cancer-cell growth and metastasis in vivo by a pyrazole compound characterized as a cell-migration inhibitor by an in vitro chemotaxis assay. Biomed Pharmacother 2022; 155:113733. [DOI: 10.1016/j.biopha.2022.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
|
3
|
Miquel M, Zhang S, Pilarsky C. Pre-clinical Models of Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:748631. [PMID: 34778259 PMCID: PMC8578999 DOI: 10.3389/fcell.2021.748631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a hostile solid malignancy coupled with an extremely high mortality rate. Metastatic disease is already found in most patients at the time of diagnosis, resulting in a 5-year survival rate below 5%. Improved comprehension of the mechanisms leading to metastasis is pivotal for the development of new targeted therapies. A key field to be improved are modeling strategies applied in assessing cancer progression, since traditional platforms fail in recapitulating the complexity of PDAC. Consequently, there is a compelling demand for new preclinical models that mirror tumor progression incorporating the pressure of the immune system, tumor microenvironment, as well as molecular aspects of PDAC. We suggest the incorporation of 3D organoids derived from genetically engineered mouse models or patients as promising new tools capable to transform PDAC pre-clinical modeling and access new frontiers in personalized medicine.
Collapse
Affiliation(s)
- Maria Miquel
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Shuman Zhang
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Pilarsky
- Department of Surgery, University Hospital, Erlangen, Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Chen S, Chen Y, Wen Y, Cai W, Zhu P, Yuan W, Li Y, Fan X, Wan Y, Li F, Zhuang J, Jiang Z, Wu X, Wang Y. miR-590-5p targets RMND5A and promotes migration in pancreatic adenocarcinoma cell lines. Oncol Lett 2021; 22:532. [PMID: 34079591 PMCID: PMC8156640 DOI: 10.3892/ol.2021.12793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Required for meiotic nuclear division 5 homolog A (RMND5A) functions as an E3 ubiquitin ligase. To date, few studies have investigated the role of RMND5A in cancer. In the present study, the expression levels of RMND5A in multiple types of cancer were analyzed using the Gene Expression Profiling Interactive Analysis platform. The results revealed that RMND5A was highly expressed and associated with overall survival in patients with pancreatic adenocarcinoma (PAAD). A wound-healing assay revealed that RMND5A overexpression significantly increased cell migration in the PAAD cell lines AsPC-1 and PANC-1. In silico analysis predicted that RMND5A was a potential target of microRNA(miR)-590-5p. Further in vitro experiments demonstrated that overexpression of miR-590-5p downregulated the expression levels of RMND5A and decreased the migratory ability of the AsPC-1 and PANC-1 cell lines. In addition, overexpression of miR-590-5p attenuated the promoting effects of RMND5A on the migration of AsPC-1 and PANC-1 cells. The results of the present study may further elucidate the mechanisms underlying PAAD progression and provide novel targets for the treatment of PAAD.
Collapse
Affiliation(s)
- Sixing Chen
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yu Chen
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yao Wen
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Wanwan Cai
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Wuzhou Yuan
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yongqing Li
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiongwei Fan
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yongqi Wan
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Fang Li
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, P.R. China
| | - Zhigang Jiang
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Xiushan Wu
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yuequn Wang
- The Center for Heart Development, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
5
|
Etman SM, Mehanna RA, Bary AA, Elnaggar YSR, Abdallah OY. Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer. Int J Biol Macromol 2021; 170:284-297. [PMID: 33340624 DOI: 10.1016/j.ijbiomac.2020.12.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a devastating gastrointestinal tumor with limited Chemotherapeutic options. Treatment is restricted by its poor vascularity and dense surrounding stroma. Quinacrine is a repositioned drug with an anticancer activity but suffers a limited ability to reach tumor cells. This could be enhanced using nanotechnology by the preparation of quinacrine-loaded Undaria pinnatifida fucoidan nanoparticles. The system exploited fucoidan as both a delivery system of natural origin and active targeting ligand. Lactoferrin was added as a second active targeting ligand. Single and dual-targeted particles prepared through nanoprecipitation and ionic interaction respectively were appraised. Both particles showed a size lower than 200 nm, entrapment efficiency of 80% and a pH-dependent release of the drug in the acidic environment of the tumor. The anticancer activity of quinacrine was enhanced by 5.7 folds in dual targeted particles compared to drug solution with a higher ability to inhibit migration and invasion of cancer. In vivo, these particles showed a 68% reduction in tumor volume compared to only 20% for drug solution. In addition, they showed a higher animals' survival rate with no hepatotoxicity. Hence, these particles could be an effective option for the eradication of pancreatic cancer cells.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Egypt
| | - Amany Abdel Bary
- Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Head of International Publication and Nanotechnology Center INCC, Department of Pharmaceutics, Faculty of Pharmacy, Pharos University of Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
6
|
Miyano K, Okamoto S, Yamauchi A, Kajikawa M, Kiyohara T, Taura M, Kawai C, Kuribayashi F. Constitutive activity of NADPH oxidase 1 (Nox1) that promotes its own activity suppresses the colon epithelial cell migration. Free Radic Res 2020; 54:640-648. [PMID: 32924676 DOI: 10.1080/10715762.2020.1823383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Superoxide producing NADPH oxidase 1 (Nox1), abundantly expressed in the colon epithelium, plays a crucial role in mucosal host defenses. In this study, we found that pre-treatment of cells with edaravone, a free radical scavenger, inhibited Nox1 constitutive activity even after washout without affecting Nox1 trafficking to the plasma membrane and membrane recruitment of the cytosolic regulators Noxo1 and Noxa1. These results suggest that a Nox1-derived product is involved in the step that initiates the electron transfer reaction after the formation of the Nox1-Noxo1-Noxa1 complex. Furthermore, we show that the mean migration directionality and velocity of epithelial cells were significantly enhanced by the inhibition of constitutive Nox1 activity. Thus, the constitutive Nox1 activity limits undesired cell migration in resting cells while participating in a positive feedback loop toward its own oxidase activity.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, Machida, Japan
| | - Takuya Kiyohara
- Department of Cerebrovascular Disease and Neurology, Hakujyuji Hospital, Fukuoka, Japan
| | - Masahiko Taura
- Department of Otorhinolaryngology, Faculty of medicine, Fukuoka University, Fukuoka, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | | |
Collapse
|
7
|
Miyano K, Okamoto S, Yamauchi A, Kawai C, Kajikawa M, Kiyohara T, Tamura M, Taura M, Kuribayashi F. The NADPH oxidase NOX4 promotes the directed migration of endothelial cells by stabilizing vascular endothelial growth factor receptor 2 protein. J Biol Chem 2020; 295:11877-11890. [PMID: 32616654 DOI: 10.1074/jbc.ra120.014723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Directed migration of endothelial cells (ECs) is an important process during both physiological and pathological angiogenesis. The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the EC surface is necessary for directed migration of these cells. Here, we used TAXIScan, an optically accessible real-time horizontal cell dynamics assay approach, and demonstrate that reactive oxygen species (ROS)-producing NADPH oxidase 4 (NOX4), which is abundantly expressed in ECs, mediates VEGF/VEGFR-2-dependent directed migration. We noted that a continuous supply of endoplasmic reticulum (ER)-retained VEGFR-2 to the plasma membrane is required to maintain VEGFR-2 at the cell surface. siRNA-mediated NOX4 silencing decreased the ER-retained form of VEGFR-2, resulting in decreased cell surface expression levels of the receptor. We also found that ER-localized NOX4 interacts with ER-retained VEGFR-2 and thereby stabilizes this ER-retained form at the protein level in the ER. We conclude that NOX4 contributes to the directed migration of ECs by maintaining VEGFR-2 levels at their surface.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, Tokyo, Japan
| | - Takuya Kiyohara
- Department of Cerebrovascular Disease and Neurology, Hakujyuji Hospital, Fukuoka, Japan
| | - Minoru Tamura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Ehime, Japan
| | - Masahiko Taura
- Department of Otorhinolaryngology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | |
Collapse
|
8
|
Bajkowska K, Sumardika IW, Tomonobu N, Chen Y, Yamamoto KI, Kinoshita R, Murata H, Gede Yoni Komalasari NL, Jiang F, Yamauchi A, Winarsa Ruma IM, Kasano-Camones CI, Inoue Y, Sakaguchi M. Neuroplastinβ-mediated upregulation of solute carrier family 22 member 18 antisense (SLC22A18AS) plays a crucial role in the epithelial-mesenchymal transition, leading to lung cancer cells' enhanced motility. Biochem Biophys Rep 2020; 22:100768. [PMID: 32490214 PMCID: PMC7261704 DOI: 10.1016/j.bbrep.2020.100768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Our recent study revealed an important role of the neuroplastin (NPTN)β downstream signal in lung cancer dissemination in the lung. The molecular mechanism of the signal pathway downstream of NPTNβ is a serial activation of the key molecules we identified: tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) adaptor, nuclear factor (NF)IA/NFIB heterodimer transcription factor, and SAM pointed-domain containing ETS transcription factor (SPDEF). The question of how dissemination is controlled by SPDEF under the activated NPTNβ has not been answered. Here, we show that the NPTNβ-SPDEF-mediated induction of solute carrier family 22 member 18 antisense (SLC22A18AS) is definitely required for the epithelial-mesenchymal transition (EMT) through the NPTNβ pathway in lung cancer cells. In vitro, the induced EMT is linked to the acquisition of active cellular motility but not growth, and this is correlated with highly disseminative tumor progression in vivo. The publicly available data also show the poor survival of SLC22A18AS-overexpressing lung cancer patients. Taken together, these data highlight a crucial role of SLC22A18AS in lung cancer dissemination, which provides novel input of this molecule to the signal cascade of NPTNβ. Our findings contribute to a better understanding of NPTNβ-mediated lung cancer metastasis.
Collapse
Affiliation(s)
- Karolina Bajkowska
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- University of Surrey, 11 Osterley Court, London TW7 4PX, England, UK
| | - I. Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ken-ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki-shi, Okayama 701-0192, Japan
| | | | - Carlos Ichiro Kasano-Camones
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| |
Collapse
|
9
|
Etman SM, Abdallah OY, Elnaggar YSR. Novel fucoidan based bioactive targeted nanoparticles from Undaria Pinnatifida for treatment of pancreatic cancer. Int J Biol Macromol 2020; 145:390-401. [PMID: 31881303 DOI: 10.1016/j.ijbiomac.2019.12.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Fucoidan is a marine polymer extracted from diverse types of brown algae. This polysaccharide showed great potential towards treatment of different types of cancer. In this study, the activity of fucoidan extracted from Undaria Pinnatifida was investigated against pancreatic cancer (one of the most life-threatening cancers). Then, in an attempt to enhance the polymer's activity against cancer cells, conversion the polymer solution to nanoparticles was suggested to enhance its delivery through pancreatic cancer surrounding stroma. Novel fucoidan based nanoparticles were elaborated by polyelectrolyte interaction with the positively charged, active targeting ligand lactoferrin. The formulation was optimized through the interplay between different factors. Effect of fucoidan solution along with its blank nanoparticles was tested on the viability of pancreatic cancer cells and its migration and invasion abilities. Results confirmed the cytotoxic ability of fucoidan against pancreatic cancer. IC50 value decreased by 2.3 folds when the polymer was converted to nanoparticles. The prepared nanosystems showed an enhanced ability to prevent pancreatic cancer cells' migration and invasion. Results suggested the potential of using these nanoparticles as bioactive dual-targeted system either blank or loaded with different anticancer agents for treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Samar M Etman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Egypt; Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University of Alexandria, Egypt.
| |
Collapse
|
10
|
Ayres Pereira M, Chio IIC. Metastasis in Pancreatic Ductal Adenocarcinoma: Current Standing and Methodologies. Genes (Basel) 2019; 11:E6. [PMID: 31861620 PMCID: PMC7016631 DOI: 10.3390/genes11010006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is an extremely aggressive disease with a high metastatic potential. Most patients are diagnosed with metastatic disease, at which the five-year survival rate is only 3%. A better understanding of the mechanisms that drive metastasis is imperative for the development of better therapeutic interventions. Here, we take the reader through our current knowledge of the parameters that support metastatic progression in pancreatic ductal adenocarcinoma, and the experimental models that are at our disposal to study this process. We also describe the advantages and limitations of these models to study the different aspects of metastatic dissemination.
Collapse
Affiliation(s)
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| |
Collapse
|
11
|
Kinoshita R, Sato H, Yamauchi A, Takahashi Y, Inoue Y, Sumardika IW, Chen Y, Tomonobu N, Araki K, Shien K, Tomida S, Torigoe H, Namba K, Kurihara E, Ogoshi Y, Murata H, Yamamoto KI, Futami J, Putranto EW, Ruma IMW, Yamamoto H, Soh J, Hibino T, Nishibori M, Kondo E, Toyooka S, Sakaguchi M. Newly developed anti-S100A8/A9 monoclonal antibody efficiently prevents lung tropic cancer metastasis. Int J Cancer 2018; 145:569-575. [PMID: 30414170 DOI: 10.1002/ijc.31982] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 10/11/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022]
Abstract
The metastatic dissemination of cancer cells to remote areas of the body is the most problematic aspect in cancer patients. Among cancers, melanomas are notoriously difficult to treat due to their significantly high metastatic potential even during early stages. Hence, the establishment of advanced therapeutic approaches to regulate metastasis is required to overcome the melanoma disease. An accumulating mass of evidence has indicated a critical role of extracellular S100A8/A9 in melanoma distant metastasis. Lung S100A8/A9 is induced by melanoma cells from distant organs and it attracts these cells to its enriched lung environment since melanoma cells possess several receptors that sense the S100A8/A9 ligand. We hence aimed to develop a neutralizing antibody against S100A8/A9 that would efficiently block melanoma lung metastasis. Our protocol provided us with one prominent antibody, Ab45 that efficiently suppressed not only S100A8/A9-mediated melanoma mobility but also lung tropic melanoma metastasis in a mouse model. This prompted us to make chimeric Ab45, a chimera antibody consisting of mouse Ab45-Fab and human IgG2-Fc. Chimeric Ab45 also showed significant inhibition of the lung metastasis of melanoma. From these results, we have high hopes that the newly produced antibody will become a potential biological tool to block melanoma metastasis in future clinical settings.
Collapse
Affiliation(s)
- Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Sato
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Yuta Takahashi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Inoue
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, Maebashi, Gunma, Japan
| | - I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Araki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Department of Bioinformatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidejiro Torigoe
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kei Namba
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eisuke Kurihara
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Ogoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Endy Widya Putranto
- Department of Child Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - I Made Winarsa Ruma
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junichi Soh
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiko Hibino
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
12
|
Reduction of Real-Time Imaging of M1 Macrophage Chemotaxis toward Damaged Muscle Cells is PI3K-Dependent. Antioxidants (Basel) 2018; 7:antiox7100138. [PMID: 30297636 PMCID: PMC6210562 DOI: 10.3390/antiox7100138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022] Open
Abstract
Macrophages migrate and invade into damaged muscle rapidly and are important for muscle repair and subsequent regeneration. The exact cellular and biological events that cause macrophage migration toward injured muscle are not completely understood. In this study, the effect of macrophage differentiation on the chemotactic capability to invade local damaged muscle was investigated using an in vitro model of muscle injury. We used C2C12 cell myoblasts and J774 cell macrophages, and the "killed-C2C12" cells were combined with live C2C12 cells as a partially damaged muscle model. The cultured J774 cells, with or without lipopolysaccharide (LPS), were treated with Ly294002 (Ly), which is an inhibitor of phosphoinositide 3-kinase (PI3K). In order to evaluate the polarization effect of LPS stimulation on J774 cells, expression of cell surface Toll-like receptor 4 (TLR4), CD11c and CCR2, and expression of F-actin intensity, were analyzed by flow cytometry. The real-time horizontal chemotaxis assay of J774 cells was tested using the TAXIScan device. The expressions of TLR4, CD11c, and F-actin intensity in LPS-treated cells were significantly higher than those in Ctrl cells. In LPS-treated cells, the chemotactic activity toward damaged muscle cells completely disappeared. Moreover, the reduced chemotaxis depended far more on directionality than velocity. However, Ly treatment reversed the reduced chemotactic activity of the LPS-treated cells. In addition, cell-adhesion and F-actin intensity, but not CCR2 expression, in LPS-treated cells, was significantly reduced by Ly treatment. Taken together, our results suggest that the PI3K/Akt activation state drives migration behavior towards damaged muscle cells.
Collapse
|
13
|
Toh YC, Raja A, Yu H, van Noort D. A 3D Microfluidic Model to Recapitulate Cancer Cell Migration and Invasion. Bioengineering (Basel) 2018; 5:E29. [PMID: 29642502 PMCID: PMC6027283 DOI: 10.3390/bioengineering5020029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023] Open
Abstract
We have developed a microfluidic-based culture chip to simulate cancer cell migration and invasion across the basement membrane. In this microfluidic chip, a 3D microenvironment is engineered to culture metastatic breast cancer cells (MX1) in a 3D tumor model. A chemo-attractant was incorporated to stimulate motility across the membrane. We validated the usefulness of the chip by tracking the motilities of the cancer cells in the system, showing them to be migrating or invading (akin to metastasis). It is shown that our system can monitor cell migration in real time, as compare to Boyden chambers, for example. Thus, the chip will be of interest to the drug-screening community as it can potentially be used to monitor the behavior of cancer cell motility, and, therefore, metastasis, in the presence of anti-cancer drugs.
Collapse
Affiliation(s)
- Yi-Chin Toh
- Department of Biomedical Engineering, 4 Engineering Drive, National University of Singapore, Singapore 117853, Singapore.
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore.
| | - Anju Raja
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore.
- Integrated Health Information Systems (IHiS), 6 Serangoon North Avenue 5, Singapore 554910, Singapore.
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117597, Singapore.
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore.
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore.
- NUS Graduate Programme in Bioengineering, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Gastroenterology Department, Southern Medical University, Guangzhou 510515, China.
| | - Danny van Noort
- Division of Biotechnology, IFM, Linköping University, Linköping 58183, Sweden.
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| |
Collapse
|