1
|
Barachini S, Pardini E, Burzi IS, Sardo Infirri G, Montali M, Petrini I. Molecular and Functional Key Features and Oncogenic Drivers in Thymic Carcinomas. Cancers (Basel) 2023; 16:166. [PMID: 38201593 PMCID: PMC10778094 DOI: 10.3390/cancers16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Thymic epithelial tumors, comprising thymic carcinomas and thymomas, are rare neoplasms. They differ in histology, prognosis, and association with autoimmune diseases such as myasthenia gravis. Thymomas, but not thymic carcinomas, often harbor GTF2I mutations. Mutations of CDKN2A, TP53, and CDKN2B are the most common thymic carcinomas. The acquisition of mutations in genes that control chromatin modifications and epigenetic regulation occurs in the advanced stages of thymic carcinomas. Anti-angiogenic drugs and immune checkpoint inhibitors targeting the PD-1/PD-L1 axis have shown promising results for the treatment of unresectable tumors. Since thymic carcinomas are frankly aggressive tumors, this report presents insights into their oncogenic drivers, categorized under the established hallmarks of cancer.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Eleonora Pardini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Irene Sofia Burzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Gisella Sardo Infirri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Marina Montali
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Iacopo Petrini
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
G protein subunit gamma 5 promotes the proliferation, metastasis and glycolysis of breast cancer cells through the Wnt/β-catenin pathway. Anticancer Drugs 2022; 33:1004-1011. [PMID: 36255067 DOI: 10.1097/cad.0000000000001394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
GNG5 is suggested to exert a critical effect on tumor development in human beings; however, its function and related mechanism within breast cancer (BC) are still unclear. In this regard, the present work focused on identifying and evaluating GNG5's function and revealing its possible molecular mechanism. Subcutaneous tumorigenesis model of nude mice and in-vitro cell model was established. The relationship between GNG5 expression and BC was studied through knockdown and overexpression experiments. The proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of liver cancer cell lines overexpressing or silencing GNG5 were detected. Furthermore, the pathway mechanism of GNG5 was evaluated at the molecular level and was performed to further verify the possible targets and mechanisms of action. In comparison with that in normal tissue, GNG5 level within BC tissue was higher. In addition, GNG5 overexpression stimulated BC cell proliferation, invasion, migration and EMT. BC cells with reduced GNG5 expression exhibited significant decreases in glucose uptake, lactate levels, and ATP concentrations. In addition, GNG5 knockdown inhibited Wnt/β-catenin signaling. This study indicates that GNG5 may generate a vital function in BC. The results of the current work demonstrated GNG5's effect on BC pathological process, also providing a reference for developing new targeted therapies for BC.
Collapse
|
3
|
Liu L, Chen Y, Lin X, Wu M, Li J, Xie Q, Sferra TJ, Han Y, Liu H, Cao L, Yao M, Peng J, Shen A. Upregulation of SNTB1 correlates with poor prognosis and promotes cell growth by negative regulating PKN2 in colorectal cancer. Cancer Cell Int 2021; 21:547. [PMID: 34663329 PMCID: PMC8524951 DOI: 10.1186/s12935-021-02246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most highly malignant tumors and has a complicated pathogenesis. A preliminary study identified syntrophin beta 1 (SNTB1) as a potential oncogene in CRC. However, the clinical significance, biological function, and underlying mechanisms of SNTB1 in CRC remain largely unknown. Thus, the present study aimed to investigate the role of SNTB1 in CRC. Methods The expression profile of SNTB1 in CRC samples was evaluated by database analysis, cDNA array, tissue microarray, quantitative real-time PCR (qPCR), and immunohistochemistry. SNTB1 expression in human CRC cells was silenced using short hairpin RNAs (shRNA)/small interfering RNAs (siRNA) and its mRNA and protein levels were assessed by qPCR and/or western blotting. Cell viability, survival, cell cycle, and apoptosis were determined by the CCK-8 assay, colony formation, and flow cytometry assays, respectively. A xenograft nude mouse model of CRC was established to validate the roles of SNTB1 in vivo. Immunohistochemistry and TUNEL staining were used to determine the expression of SNTB1, PCNA, and cell apoptosis in tissue samples. Isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the differentially expressed proteins after knockdown of SNTB1 in CRC cells. Silence of protein kinase N2 (PKN2) using si-PNK2 was performed for rescue experiments. Results SNTB1 expression was increased in CRC tissues compared with adjacent noncancerous tissues and the increased SNTB1 expression was associated with shorter overall survival of CRC patients. Silencing of SNTB1 suppressed cell viability and survival, induced cell cycle arrest and apoptosis in vitro, and inhibited the growth of CRC cells in vivo. Further elucidation of the regulation of STNB1 on CRC growth by iTRAQ analysis identified 210 up-regulated and 55 down-regulated proteins in CRC cells after SNTB knockdown. A PPI network analysis identified PKN2 as a hub protein and was up-regulated in CRC cells after SNTB1 knockdown. Western-blot analysis further confirmed that SNTB1 knockdown significantly up-regulated PKN2 protein expression in CRC cells and decreased the phosphorylation of both ERK1/2 and AKT. Moreover, rescue experiments indicated that PKN2 knockdown significantly rescued SNTB1 knockdown-mediated decrease in cell viability, survival, and increase of cell cycle arrest at G0/G1 phase and apoptosis of CRC cells. Conclusions These findings indicate that SNTB1 is overexpressed in CRC. Elevated SNTB1 levels are correlated with shorter patient survival. Importantly, SNTB1 promotes tumor growth and progression of CRC, possibly by reducing the expression of PKN2 and activating the ERK and AKT signaling pathway. Our study highlights the potential of SNTB1 as a new prognostic factor and therapeutic target for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02246-7.
Collapse
Affiliation(s)
- Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China
| | - Youqin Chen
- Department of Pediatrics, Case Western Reserve University School of Medicine, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China
| | - Thomas J Sferra
- Department of Pediatrics, Case Western Reserve University School of Medicine, UH Rainbow Babies and Children's Hospital, Cleveland, OH, 44106, USA
| | - Yuying Han
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China
| | - Huixin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China
| | - Liujing Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China
| | - Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China. .,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China. .,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Minhou Shangjie, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
4
|
Ishida A, Yamada Y, Ishida Y, Yoshizawa A, Nakajima D, Date H, Marx A, Haga H. A primary thymic adenocarcinoma with two components that traced distinct evolutionary trajectories. Pathol Int 2021; 71:849-855. [PMID: 34583424 DOI: 10.1111/pin.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Even though it is a rare subtype, identifying the genetic features of thymic adenocarcinoma is valuable for a multifaceted understanding of thymic epithelial tumors. We experienced a female patient with thymic adenocarcinoma associated with thymic cysts. The tumor consisted of a solid whitish lesion (lesion-1) and a large cystic lesion with small papillary nodules (lesion-2). Microscopically, lesion-1 exhibited poorly differentiated adenocarcinoma accompanying numerous inflammatory cell infiltrates, and lesion-2 (the nodules within the cystic lesion) exhibited enteric-type adenocarcinoma. Consistent with the histological difference, whole-exome sequencing revealed that these two components exhibited distinct genetic features, except for only a few shared mutations, including CDKN2A truncation. Lesion-1 exhibited microsatellite instability-high signature with high mutation burden, for which immune checkpoint inhibitors might apply; and lesion-2 exhibited whole-genome doubling with KRAS hotspot mutation. Our case presents novel genetic features of thymic adenocarcinoma and demonstrates that distinct mutational processes can be operative within a single tumor.
Collapse
Affiliation(s)
- Ayami Ishida
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yosuke Yamada
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Yoshihiro Ishida
- Department of Dermatology, Kyoto University Hospital, Kyoto, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hironori Haga
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
5
|
Ji G, Ren R, Fang X. Identification and Characterization of Non-Coding RNAs in Thymoma. Med Sci Monit 2021; 27:e929727. [PMID: 34219124 PMCID: PMC8268976 DOI: 10.12659/msm.929727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Thymoma is the most common tumor of the anterior mediastinum, and can be caused by infrequent malignancies arising from the epithelial cells of the thymus. Unfortunately, blood-based diagnostic markers are not currently available. High-throughput sequencing technologies, such as RNA-seq with next-generation sequencing, have facilitated the detection and characterization of both coding and non-coding RNAs (ncRNAs), which play significant roles in genomic regulation, transcriptional and post-transcriptional regulation, and imprinting and epigenetic modification. The knowledge about fusion genes and ncRNAs in thymomas is scarce. MATERIAL AND METHODS For this study, we gathered large-scale RNA-seq data belonging to samples from 25 thymomas and 25 healthy thymus specimens and analyzed them to identify fusion genes, lncRNAs, and miRNAs. RESULTS We found 21 fusion genes, including KMT2A-MAML2, HADHB-REEP1, COQ3-CGA, MCM4-SNTB1, and IFT140-ACTN4, as the most frequent and significant in thymomas. We also detected 65 differentially-expressed lncRNAs in thymomas, including AFAP1-AS1, LINC00324, ADAMTS9-AS1, VLDLR-AS1, LINC00968, and NEAT1, that have been validated with the TCGA database. Moreover, we identified 1695 miRNAs from small RNA-seq data that were overexpressed in thymomas. Our network analysis of the lncRNA-mRNA-miRNA regulation axes identified a cluster of miRNAs upregulated in thymomas, that can trigger the expression of target protein-coding genes, and lead to the disruption of several biological pathways, including the PI3K-Akt signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. CONCLUSIONS Our results show that overexpression of this miRNA cluster activates PI3K-Akt, FoxO, HIF-1, and Rap-1 signaling pathways, suggesting pathway inhibitors may be therapeutic candidates against thymoma.
Collapse
Affiliation(s)
- Guanglei Ji
- First Department of Thoracic Surgery, Linyi Cancer Hospital, Linyi, Shandong, PR China
| | - Rongrong Ren
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Xichao Fang
- Second Department of Thoracic Surgery, Linyi Cancer Hospital, Linyi, Shandong, PR China
| |
Collapse
|
6
|
Matsumoto Y, Tsukamoto T, Chinen Y, Shimura Y, Sasaki N, Nagoshi H, Sato R, Adachi H, Nakano M, Horiike S, Kuroda J, Taki T, Tashiro K, Taniwaki M. Detection of novel and recurrent conjoined genes in non-Hodgkin B-cell lymphoma. J Clin Exp Hematop 2021; 61:71-77. [PMID: 33883344 PMCID: PMC8265495 DOI: 10.3960/jslrt.20033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For this study, we investigated comprehensive expression of conjoined genes (CGs) in
non-Hodgkin B-cell lymphoma (B-NHL) cell line KPUM-UH1 by using paired-end RNA sequencing.
Furthermore, we analyzed the expression of these transcripts in an additional 21 cell lines, 37
primary samples of various malignancies and peripheral blood mononuclear cells of four normal
individuals. Seventeen CGs were detected in KPUM-UH1: CTBS-GNG5,
SRP9-EPHX1, RMND5A-ANAPC, OTX1-EHBP1,
ATF2-CHN1, PRKAA1-TTC33, LARP1-MRPL22,
LOC105379697-BAK1, TIAM2-SCAF8,
SPAG1-VPS13B, WBP1L-CNNM2, NARS2-GAB2,
CTSC-RAB38, VAMP1-CD27-AS1, LRRC37A2-NSF,
UBA2-WTIP and ZNF600-ZNF611. To our knowledge, 10 of these
genes have not been previously reported. The various characteristics of the CGs included in-
and out-of-frame fusions, chimeras involving non-coding RNA and transcript variants. A finding
of note was that LARP1-MRPL2 was characterized as in-frame fusion and was
recurrently expressed in B-NHL samples. In this study, variety of CGs was expressed both in
malignant and normal cells, some of which might be specific to lymphoma.
Collapse
Affiliation(s)
- Yosuke Matsumoto
- Department of Hematology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Taku Tsukamoto
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiaki Chinen
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Hematology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Yuji Shimura
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nana Sasaki
- Department of Hematology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Hisao Nagoshi
- Department of Hematology and Oncology, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Sato
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Adachi
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masakazu Nakano
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeo Horiike
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Junya Kuroda
- Division of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiko Taki
- Department of Medical Technology, Kyorin University Faculty of Health Science, Tokyo, Japan
| | - Kei Tashiro
- Department of Genomic Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masafumi Taniwaki
- Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Zheng YW, Bai LL, Jiang GY, Lin XY, Liu Y, Xu HT. Thymic adenocarcinoma accompanied by type A thymoma and pulmonary minimally invasive adenocarcinoma and harboring distinct gene alterations: A case report. Medicine (Baltimore) 2021; 100:e25254. [PMID: 33847622 PMCID: PMC8052068 DOI: 10.1097/md.0000000000025254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Thymic adenocarcinoma is an extremely rare thymic carcinoma. The exact genetic alteration associated with thymic adenocarcinoma is unclear. Here, we report a case of thymic adenocarcinoma accompanied by type A thymoma and pulmonary minimally invasive adenocarcinoma (MIA). PATIENT CONCERNS A 53-year-old woman presented with multiple nodules in the mediastinum and lung. Thoracic computed tomography revealed nodules in the anterior superior mediastinum and anterior mediastinum near the right pericardium and ground-glass opacity (GGO) in the right superior lobe of the lung. DIAGNOSIS The tumor in the anterior superior mediastinum was diagnosed as primary thymic papillary adenocarcinoma. The tumor in the anterior mediastinum near the right pericardium was diagnosed as type A thymoma. The GGO of the right superior lobe of the lung was diagnosed as a MIA. INTERVENTION The patient underwent thoracoscopic mediastinal tumor resection and partial lobectomy in our hospital. OUTCOMES The postoperative course was uneventful. The patient is alive and free of the disease for 22 months after diagnosis. LESSONS Thyroid transcription factor 1 (TTF-1) was positive in this case of thymic adenocarcinoma, which indicated that a thymic adenocarcinoma with TTF-1-positive may not necessarily be a metastasis of lung or thyroid adenocarcinoma. The positive staining of CD5 and CD117 can help us to confirm the thymic origin. Molecular genetic analysis indicated that these tumors harbored different mutations. The thymic adenocarcinoma and type A thymoma both had the mutation of KMT2A, but the mutation sites were different. KMT2A mutation may be a common genetic change in thymic tumorigenesis. The genetic alterations disclosed in this study will help expand the understanding of thymic tumors.
Collapse
Affiliation(s)
- Yi-Wen Zheng
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang
| | - Lin-Lin Bai
- Department of Pathology, Shenyang 242 Hospital, Shenyang, China
| | - Gui-Yang Jiang
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang
| | - Xu-Yong Lin
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang
| | - Yang Liu
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang
| | - Hong-Tao Xu
- Department of Pathology, the First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang
| |
Collapse
|
8
|
Kakegawa S, Matsumoto I, Tamura M, Takata M, Yoshida S, Saito D, Tanaka Y, Takemura H, Ooi A. Semi-comprehensive analysis of gene amplification in thymic malignant tumors using multiplex ligation-dependent probe amplification and fluorescence in situ hybridization. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1035-1044. [PMID: 32509076 PMCID: PMC7270679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Research on the amplification of oncogenes in thymic malignant tumor is limited. In this study, we aimed to determine the gene amplification status of receptor tyrosine kinases and other cell regulator genes in thymic malignant tumors, with a view toward the future introduction of molecular targeted therapy. In addition, we examined the usefulness of multiplex, ligation-dependent probe amplification (MLPA) in the semi-comprehensive detection of these gene amplifications. The participants of this study were nine patients with thymic carcinoma and one patient with atypical carcinoid who underwent resection at our department from 1999 to 2016. Twenty-four oncogenes (MDM4, MYCN, ALK, PDGFRA, KIT, KDR, DHFR, EGFR, MET, SMO, BRAF, FGFR1, MYC, ABL1, RET, CCND1, CCND2, CDK4, MDM2, AURKB, ERBB2, TOP2A, AURKA, AR) were analyzed for amplification by MLPA. In cases where amplification by MLPA was suspected, confirmation was performed by fluorescence in situ hybridization (FISH). Immunostaining for detected oncoproteins and p53 were performed in cases with confirmed oncogene amplification. MYC (2/10, 20%) and MDM2 (1/10, 10%) amplifications were detected using MLPA and FISH. Immunostaining in both cases was positive. The MDM2-amplified tumor relapsed and spread rapidly after operation despite the use of post-operative chemo-radiotherapy. MYC amplification may be involved in the carcinogenesis of thymic malignant tumors. In addition, MDM2 amplification may be a concern in the increased malignancy.
Collapse
Affiliation(s)
- Seiichi Kakegawa
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Science, Kanazawa UniversityIshikawa, Japan
| | - Isao Matsumoto
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Science, Kanazawa UniversityIshikawa, Japan
| | - Masaya Tamura
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Science, Kanazawa UniversityIshikawa, Japan
| | - Munehisa Takata
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Science, Kanazawa UniversityIshikawa, Japan
| | - Shuhei Yoshida
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Science, Kanazawa UniversityIshikawa, Japan
| | - Daisuke Saito
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Science, Kanazawa UniversityIshikawa, Japan
| | - Yusuke Tanaka
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Science, Kanazawa UniversityIshikawa, Japan
| | - Hirofumi Takemura
- Department of Thoracic, Cardiovascular and General Surgery, Graduate School of Medical Science, Kanazawa UniversityIshikawa, Japan
| | - Akishi Ooi
- Department of Molecular and Cellular Pathology, Graduate School of Medical Science, Kanazawa UniversityIshikawa, Japan
| |
Collapse
|
9
|
Jin C, Yan C, Zhang Y, Zhang YX, Jiang JH, Ding JY. A mutational profile in multiple thymic squamous cell carcinoma. Gland Surg 2020; 8:691-697. [PMID: 32042677 DOI: 10.21037/gs.2019.11.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Multiple thymic squamous cell carcinoma (TSCC) is a rare thymic epithelial tumor with a dismal prognosis. Mutational profiles of multiple TSCC may expand our understanding of tumorigenesis and treatment options for these tumors. Methods We sequenced the whole exomes of 3 TSCC nodules from a multiple TSCC patient and a paired peripheral blood sample and identified single-nucleotide variants and small insertions and deletions, and also performed gene ontological and pathway analyses. Results The 3 TSCC nodules were subjected to hematoxylin-eosin staining, and the results showed that these 3 nodules were highly similar with respect to histology. We identified 116, 94 and 98 non-synonymous somatic mutations in the 3 TSCC nodules, and 34 mutations, including mutations in TP53 and ARID1A, among others, were present in all 3 TSCC nodules. We then performed immunohistochemistry to assess two selected genes, TP53 and ARID1A, and found that the 3 TSCC nodules expressed similar levels of TP53 and ARID1A. Further gene ontological analysis and pathway analysis revealed that the 3 TSCC nodules also had similar significantly enriched pathways based on the identified genetic alterations. These results demonstrated that the 3 multiple TSCC nodules were spatially independent of each other but were highly similar with respect to histological sources and genetic characteristics, suggesting that 2 TSCC nodules were likely metastases of the third nodule. Conclusions These findings suggest that TSCC cells can be transferred to other sites inside the thymus and that total thymectomy is a good treatment option for thymic epithelial tumors.
Collapse
Affiliation(s)
- Chun Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Yan
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong-Xing Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Primary thymic adenocarcinomas: a clinicopathological and immunohistochemical study of 16 cases with emphasis on the morphological spectrum of differentiation. Hum Pathol 2018; 74:73-82. [DOI: 10.1016/j.humpath.2018.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/31/2017] [Accepted: 01/05/2018] [Indexed: 01/02/2023]
|