1
|
Li Y, Jin T, Liu N, Wang J, Qin Z, Yin S, Zhang Y, Fu Z, Wu Y, Wang Y, Liu Y, Yang M, Pang A, Sun J, Wang Y, Yang X. A short peptide exerts neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKβ/NF-κB axis. J Neuroinflammation 2023; 20:53. [PMID: 36855153 PMCID: PMC9972639 DOI: 10.1186/s12974-023-02739-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Despite considerable efforts, ischemic stroke (IS) remains a challenging clinical problem. Therefore, the discovery of effective therapeutic and targeted drugs based on the underlying molecular mechanism is crucial for effective IS treatment. METHODS A cDNA-encoding peptide was cloned from RNA extracted from Rana limnocharis skin, and the mature amino acid sequence was predicted and synthesized. Hemolysis and acute toxicity of the peptide were tested. Furthermore, its neuroprotective properties were evaluated using a middle cerebral artery occlusion/reperfusion (MCAO/R) model in rats and an oxygen-glucose deprivation/reperfusion (OGD/R) model in neuron-like PC12 cells. The underlying molecular mechanisms were explored using microRNA (miRNA) sequencing, quantitative real-time polymerase chain reaction, dual-luciferase reporter gene assay, and western blotting. RESULTS A new peptide (NP1) with an amino acid sequence of 'FLPAAICLVIKTC' was identified. NP1 showed no obvious toxicities in vivo and in vitro and was able to cross the blood-brain barrier. Intraperitoneal administration of NP1 (10 nmol/kg) effectively reduced the volume of cerebral infarction and relieved neurological dysfunction in MCAO/R model rats. Moreover, NP1 significantly alleviated the decrease in viability and increase in apoptosis of neuron-like PC12 cells induced by OGD/R. NP1 effectively suppressed inflammation by reducing interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels in vitro and in vivo. Furthermore, NP1 up-regulated the expression of miR-6328, which, in turn, down-regulated kappa B kinase β (IKKβ). IKKβ reduced the phosphorylation of nuclear factor-kappa B p65 (NF-κB p65) and inhibitor of NF-κB (I-κB), thereby inhibiting activation of the NF-κB pathway. CONCLUSIONS The newly discovered non-toxic peptide NP1 ('FLPAAICLVIKTC') exerted neuroprotective effects on cerebral ischemia-reperfusion injury by reducing inflammation via the miR-6328/IKKβ/NF-κB axis. Our findings not only provide an exogenous peptide drug candidate and endogenous small nucleic acid drug candidate but also a new drug target for the treatment of IS. This study highlights the importance of peptides in the development of new drugs, elucidation of pathological mechanisms, and discovery of new drug targets.
Collapse
Affiliation(s)
- Yilin Li
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Tao Jin
- Department of Orthopedics, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, 650032 Yunnan China
| | - Naixin Liu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Junsong Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zihan Qin
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Saige Yin
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yingxuan Zhang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zhe Fu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yutong Wu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yinglei Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yixiang Liu
- grid.413059.a0000 0000 9952 9510Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504 Yunnan China
| | - Meifeng Yang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Ailan Pang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650031, Yunnan, China.
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources and Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission and Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504, Yunnan, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
2
|
Pangath M, Unnikrishnan L, Throwba PH, Vasudevan K, Jayaraman S, Li M, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. The Epigenetic Correlation among Ovarian Cancer, Endometriosis and PCOS: A Review. Crit Rev Oncol Hematol 2022; 180:103852. [DOI: 10.1016/j.critrevonc.2022.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
|
3
|
Giordano G, Ferioli E, Tafuni A. The Role of Mesothelin Expression in Serous Ovarian Carcinoma: Impacts on Diagnosis, Prognosis, and Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14092283. [PMID: 35565412 PMCID: PMC9103848 DOI: 10.3390/cancers14092283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Mesothelin (MSLN) is a protein expressed in the mesothelial cell lining of the pleura, peritoneum, and pericardium; its biological functions in normal cells are still unknown. Experimental studies using knockout mice have suggested that this molecule does not play an important role in development and reproduction. In contrast, it has been observed that this molecule is produced in abnormal amounts in several malignant neoplasms, such as mesotheliomas and pancreatic adenocarcinomas. Many molecular studies have also demonstrated that mesothelin is overexpressed in HSOCs. Here, we discuss the current knowledge of mesothelin and focus on its role in clinical and pathological diagnoses, as well as its impact on the prognosis of HSOC. Moreover, regarding the binding of MSLN to the ovarian cancer antigen CA125, which has been demonstrated in many studies, we also report on signal transduction pathways that may play an important role in the spread and neoplastic progression of this lethal neoplasm. Given that mesothelin is overexpressed in many solid tumours and has antigenic properties, this molecule could be considered an antigenic target for the treatment of many malignancies. Consequently, we also review the literature to report on mesothelin-targeting therapies for HSOC that have been recently investigated in many clinical studies.
Collapse
|
4
|
Skryabin GO, Komelkov AV, Zhordania KI, Bagrov DV, Vinokurova SV, Galetsky SA, Elkina NV, Denisova DA, Enikeev AD, Tchevkina EM. Extracellular Vesicles from Uterine Aspirates Represent a Promising Source for Screening Markers of Gynecologic Cancers. Cells 2022; 11:cells11071064. [PMID: 35406627 PMCID: PMC8997481 DOI: 10.3390/cells11071064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are key factors of intercellular communication, performing both local and distant transfers of bioactive molecules. The increasingly obvious role of EVs in carcinogenesis, similarity of molecular signatures with parental cells, precise selection and high stability of cargo molecules make exosomes a promising source of liquid biopsy markers for cancer diagnosis. The uterine cavity fluid, unlike blood, urine and other body fluids commonly used to study EVs, is of local origin and therefore enriched in EVs secreted by cells of the female reproductive tract. Here, we show that EVs, including those corresponding to exosomes, could be isolated from individual samples of uterine aspirates (UA) obtained from epithelial ovarian cancer (EOC) patients and healthy donors using the ultracentrifugation technique. First, the conducted profiling of small RNAs (small RNA-seq) from UA-derived EVs demonstrated the presence of non-coding RNA molecules belonging to various classes. The analysis of the miRNA content in EVs from UA performed on a pilot sample revealed significant differences in the expression levels of a number of miRNAs in EVs obtained from EOC patients compared to healthy individuals. The results open up prospects for using UA-derived EVs as a source of markers for the diagnostics of gynecological cancers, including EOC.
Collapse
Affiliation(s)
- Gleb O. Skryabin
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Andrey V. Komelkov
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
- Correspondence: ; Tel.: +7-926-482-9147
| | - Kirill I. Zhordania
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Dmitry V. Bagrov
- Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 111234 Moscow, Russia;
| | - Svetlana V. Vinokurova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Sergey A. Galetsky
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Nadezhda V. Elkina
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Darya A. Denisova
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Adel D. Enikeev
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| | - Elena M. Tchevkina
- Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye sh. 24, 115478 Moscow, Russia; (G.O.S.); (K.I.Z.); (S.V.V.); (S.A.G.); (N.V.E.); (D.A.D.); (A.D.E.); (E.M.T.)
| |
Collapse
|
5
|
Dong K, Zhang W, Cheng S, Shu W, Zhao R, Wang H. The Progress of the Specific and Rapid Genetic Detection Methods for Ovarian Cancer Diagnosis and Treatment. Technol Cancer Res Treat 2022; 21:15330338221114497. [PMID: 36062718 PMCID: PMC9446467 DOI: 10.1177/15330338221114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer is a public health problem that threatens human health. Due to the lack of
specific and rapid diagnosis and treatment methods, the 5-year survival rate of
patients has not been effectively improved in the past 10 years. Abnormal gene
expression is closely related to the occurrence and development of cancer.
Cancer diagnosis and treatment methods based on genetic testing have received
extensive attention in recent years. It is essential to explore specific and
rapid cancer genetic testing methods. Taking ovarian cancer as an example, we
reviewed the progress of specific and rapid nucleic acid detection methods
related to cancer risk assessment, low-abundance mutation detection, and
methylation detection, to provide new strategies and ideas for related
research.
Collapse
Affiliation(s)
- Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, 12403Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Zhang Y, Wang Y, Zeng L, Liu Y, Sun H, Li S, Wang S, Shu L, Liu N, Yin S, Wang J, Ni D, Wu Y, Yang Y, He L, Meng B, Yang X. Amphibian-derived peptide homodimer OA-GL17d promotes skin wound regeneration through the miR-663a/TGF-β1/Smad axis. BURNS & TRAUMA 2022; 10:tkac032. [PMID: 35832307 PMCID: PMC9273405 DOI: 10.1093/burnst/tkac032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/08/2022] [Indexed: 11/29/2022]
Abstract
Background Amphibian-derived peptides exhibit considerable potential in the discovery and development of new therapeutic interventions for clinically challenging chronic skin wounds. MicroRNAs (miRNAs) are also considered promising targets for the development of effective therapies against skin wounds. However, further research in this field is anticipated. This study aims to identify and provide a new peptide drug candidate, as well as to explore the underlying miRNA mechanisms and possible miRNA drug target for skin wound healing. Methods A combination of Edman degradation, mass spectrometry and cDNA cloning were adopted to determine the amino acid sequence of a peptide that was fractionated from the secretion of Odorrana andersonii frog skin using gel-filtration and reversed-phase high-performance liquid chromatography. The toxicity of the peptide was evaluated by Calcein-AM/propidium iodide (PI) double staining against human keratinocytes (HaCaT cells), hemolytic activity against mice blood cells and acute toxicity against mice. The stability of the peptide in plasma was also evaluated. The prohealing potency of the peptide was determined by MTS, scratch healing and a Transwell experiment against HaCaT cells, full-thickness injury wounds and scald wounds in the dorsal skin of mice. miRNA transcriptome sequencing analysis, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting were performed to explore the molecular mechanisms. Results A novel peptide homodimer (named OA-GL17d) that contains a disulfide bond between the 16th cysteine residue of the peptide monomer and the sequence ‘GLFKWHPRCGEEQSMWT’ was identified. Analysis showed that OA-GL17d exhibited no hemolytic activity or acute toxicity, but effectively promoted keratinocyte proliferation and migration and strongly stimulated the repair of full-thickness injury wounds and scald wounds in the dorsal skin of mice. Mechanistically, OA-GL17d decreased the level of miR-663a to increase the level of transforming growth factor-β1 (TGF-β1) and activate the subsequent TGF-β1/Smad signaling pathway, thereby resulting in accelerated skin wound re-epithelialization and granular tissue formation. Conclusions Our results suggest that OA-GL17d is a new peptide drug candidate for skin wound repair. This study emphasizes the importance of exogenous peptides as molecular probes for exploring competing endogenous RNA mechanisms and indicates that miR-663a may be an effective target for promoting skin repair.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
- Yunnan MinZu University , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
| | - Lin Zeng
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming 650223, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
- Yunnan MinZu University , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
| | - Huiling Sun
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Siyu Wang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
- Yunnan MinZu University , State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, , Kunming 650504, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Junsong Wang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Dan Ni
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Yutong Wu
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Ying Yang
- Endocrinology Department of Affiliated Hospital of Yunnan University , Kunming 650021, Yunnan, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University , Kunming, 650500, Yunnan, China
| | - Buliang Meng
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
- Kunming Medical University , Faculty of Basic Medical Science, , Kunming 650500, Yunnan, China
| |
Collapse
|
7
|
Giamougiannis P, Martin-Hirsch PL, Martin FL. The evolving role of MUC16 (CA125) in the transformation of ovarian cells and the progression of neoplasia. Carcinogenesis 2021; 42:327-343. [PMID: 33608706 DOI: 10.1093/carcin/bgab010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
Abstract
MUC16 (the cancer antigen CA125) is the most commonly used serum biomarker in epithelial ovarian cancer, with increasing levels reflecting disease progression. It is a transmembrane glycoprotein with multiple isoforms, undergoing significant changes through the metastatic process. Aberrant glycosylation and cleavage with overexpression of a small membrane-bound fragment consist MUC16-related mechanisms that enhance malignant potential. Even MUC16 knockdown can induce an aggressive phenotype but can also increase susceptibility to chemotherapy. Variable MUC16 functions help ovarian cancer cells avoid immune cytotoxicity, survive inside ascites and form metastases. This review provides a comprehensive insight into MUC16 transformations and interactions, with description of activated oncogenic signalling pathways, and adds new elements on the role of its differential glycosylation. By following the journey of the molecule from pre-malignant states to advanced stages of disease it demonstrates its behaviour, in relation to the phenotypic shifts and progression of ovarian cancer. Additionally, it presents proposed differences of MUC16 structure in normal/benign conditions and epithelial ovarian malignancy.
Collapse
Affiliation(s)
- Panagiotis Giamougiannis
- Department of Gynaecological Oncology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK.,School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Pierre L Martin-Hirsch
- Department of Gynaecological Oncology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK.,Division of Cancer Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
8
|
Choi PW, Bahrampour A, Ng SK, Liu SK, Qiu W, Xie F, Kuo WP, Kwong J, Hales KH, Hales DB, Wong KK, Norwitz ER, Chow CK, Berkowitz RS, Ng SW. Characterization of miR-200 family members as blood biomarkers for human and laying hen ovarian cancer. Sci Rep 2020; 10:20071. [PMID: 33208870 PMCID: PMC7674435 DOI: 10.1038/s41598-020-77068-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-200 (miR-200) family is highly expressed in ovarian cancer. We evaluated the levels of family members relative to the internal control miR-103a in ovarian cancer and control blood specimens collected from American and Hong Kong Chinese institutions, as well as from a laying hen spontaneous ovarian cancer model. The levels of miR-200a, miR-200b and miR-200c were significantly elevated in all human cancer versus all control blood samples. Further analyses showed significantly higher miR-200 levels in Chinese control (except miR-429) and cancer (except miR-200a and miR141) samples than their respective American counterparts. Subtype-specific analysis showed that miR-200b had an overall elevated level in serous cancer compared with controls, whereas miR-429 was significantly elevated in clear cell and endometrioid cancer versus controls. MiR-429 was also significantly elevated in cancer versus control in laying hen plasma samples, consistent with the fact that endometrioid tumor is the prevalent type in this species. A neural network model consisting of miR-200a/200b/429/141 showed an area under the curve (AUC) value of 0.904 for American ovarian cancer prediction, whereas a model consisting of miR-200b/200c/429/141 showed an AUC value of 0.901 for Chinese women. Hence, miR-200 is informative as blood biomarkers for both human and laying hen ovarian cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,MedTimes Molecular Laboratory Limited, Medtimes Medical Group Limited, Unit B, 7/F Roxy Industrial Centre, Kwai Chung, Hong Kong, China.,WomenX Biotech Limited, Kowloon, Hong Kong, China
| | - Abbas Bahrampour
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Nathan, QLD, 4111, Australia.,Faculty of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Shu-Kay Ng
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Nathan, QLD, 4111, Australia
| | - Sze Kei Liu
- WomenX Biotech Limited, Kowloon, Hong Kong, China
| | - Wei Qiu
- CloudHealth Genomics Limited, Shanghai, China
| | - Fang Xie
- CloudHealth Genomics Limited, Shanghai, China
| | | | - Joseph Kwong
- Department of Obstetrics and Gynecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Karen H Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - Dale B Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA.,Department of Physiology, Biochemistry and Molecular Biology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Chun Kin Chow
- MedTimes Molecular Laboratory Limited, Medtimes Medical Group Limited, Unit B, 7/F Roxy Industrial Centre, Kwai Chung, Hong Kong, China.
| | - Ross S Berkowitz
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shu-Wing Ng
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA. .,Tufts Medical Center, Tufts University School of Medicine, 800 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
9
|
Choi PW, So WW, Yang J, Liu S, Tong KK, Kwan KM, Kwok JSL, Tsui SKW, Ng SK, Hales KH, Hales DB, Welch WR, Crum CP, Fong WP, Berkowitz RS, Ng SW. MicroRNA-200 family governs ovarian inclusion cyst formation and mode of ovarian cancer spread. Oncogene 2020; 39:4045-4060. [PMID: 32214198 DOI: 10.1038/s41388-020-1264-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022]
Abstract
Epidemiologic and histopathologic findings and the laying hen model support the long-standing incessant ovulation hypothesis and cortical inclusion cyst involvement in sporadic ovarian cancer development. MicroRNA-200 (miR-200) family is highly expressed in ovarian cancer. Herewith, we show that ovarian surface epithelial (OSE) cells with ectopic miR-200 expression formed stabilized cysts in three-dimensional (3D) organotypic culture with E-cadherin fragment expression and steroid hormone pathway activation, whereas ovarian cancer 3D cultures with miR-200 knockdown showed elevated TGF-β expression, mitotic spindle disorientation, increased lumenization, disruption of ROCK-mediated myosin II phosphorylation, and SRC signaling, which led to histotype-dependent loss of collective movement in tumor spread. Gene expression profiling revealed that epithelial-mesenchymal transition and hypoxia were the top enriched gene sets regulated by miR-200 in both OSE and ovarian cancer cells. The molecular changes uncovered by the in vitro studies were verified in both human and laying hen ovarian cysts and tumor specimens. As miR-200 is also essential for ovulation, our results of estrogen pathway activation in miR-200-expressing OSE cells add another intriguing link between incessant ovulation and ovarian carcinogenesis.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Wing So
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Junzheng Yang
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shubai Liu
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ka Kui Tong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Center for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jamie S-L Kwok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen K W Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shu-Kay Ng
- School of Medicine and Menzies Health Institute Queensland, Griffith University, Nathan, QLD, 4111, Australia
| | - Karen H Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - Dale B Hales
- Department of Obstetrics/Gynecology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA.,Department of Physiology, Biochemistry & Molecular Biology, Southern Illinois School of Medicine, Carbondale, IL, 62901, USA
| | - William R Welch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ross S Berkowitz
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shu-Wing Ng
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Obstetrics and Gynecology, Mother Infant Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111, USA
| |
Collapse
|
10
|
Hunt AL, Pierobon M, Baldelli E, Oliver J, Mitchell D, Gist G, Bateman NW, Larry Maxwell G, Petricoin EF, Conrads TP. The impact of ultraviolet- and infrared-based laser microdissection technology on phosphoprotein detection in the laser microdissection-reverse phase protein array workflow. Clin Proteomics 2020; 17:9. [PMID: 32165870 PMCID: PMC7061469 DOI: 10.1186/s12014-020-09272-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Reversible protein phosphorylation represents a key mechanism by which signals are transduced in eukaryotic cells. Dysregulated phosphorylation is also a hallmark of carcinogenesis and represents key drug targets in the precision medicine space. Thus, methods that preserve phosphoprotein integrity in the context of clinical tissue analyses are crucially important in cancer research. Here we investigated the impact of UV laser microdissection (UV LMD) and IR laser capture microdissection (IR LCM) on phosphoprotein abundance of key cancer signaling protein targets assessed by reverse-phase protein microarray (RPPA). Tumor epithelial cells from consecutive thin sections obtained from four high-grade serous ovarian cancers were harvested using either UV LMD or IR LCM methods. Phosphoprotein abundances for ten phosphoproteins that represent important drug targets were assessed by RPPA and revealed no significant differences in phosphoprotein integrity from those obtained using higher-energy UV versus the lower-energy IR laser methods.
Collapse
Affiliation(s)
- Allison L. Hunt
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Julie Oliver
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Dave Mitchell
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Glenn Gist
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 720A Rockledge Drive, Suite 100, Bethesda, MD 20817 USA
| | - G. Larry Maxwell
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA USA
| | - Thomas P. Conrads
- Women’s Service Line, Inova Health System, 3300 Gallows Rd., Falls Church, VA 22042 USA
- Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889 USA
- 3289 Woodburn Rd, Suite 375, Annandale, VA 22003 USA
| |
Collapse
|
11
|
Marí-Alexandre J, Carcelén AP, Agababyan C, Moreno-Manuel A, García-Oms J, Calabuig-Fariñas S, Gilabert-Estellés J. Interplay Between MicroRNAs and Oxidative Stress in Ovarian Conditions with a Focus on Ovarian Cancer and Endometriosis. Int J Mol Sci 2019; 20:ijms20215322. [PMID: 31731537 PMCID: PMC6862266 DOI: 10.3390/ijms20215322] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer and endometriosis are two distinct gynaecological conditions that share many biological aspects incuding proliferation, invasion of surrounding tissue, inflammation, inhibition of apoptosis, deregulation of angiogenesis and the ability to spread at a distance. miRNAs are small non-coding RNAs (19–22 nt) that act as post-transcriptional modulators of gene expression and are involved in several of the aforementioned processes. In addition, a growing body of evidence supports the contribution of oxidative stress (OS) to these gynaecological diseases: increased peritoneal OS due to the decomposition of retrograde menstruation blood facilitates both endometriotic lesion development and fallopian tube malignant transformation leading to high-grade serous ovarian cancer (HGSOC). Furthermore, as HGSOC develops, increased OS levels are associated with chemoresistance. Finally, continued bleeding within ovarian endometrioma raises OS levels and contributes to the development of endometriosis-associated ovarian cancer (EAOC). Therefore, this review aims to address the need for a better understanding of the dialogue between miRNAs and oxidative stress in the pathophysiology of ovarian conditions: endometriosis, EAOC and HGSOC.
Collapse
Affiliation(s)
- Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Correspondence: ; Tel.: +34-96-313-1893 (ext. 437211)
| | | | - Cristina Agababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
| | - Javier García-Oms
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
- Department of Pathology, Universitat de València, 46010 València, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 46014 València, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
- Department of Paediatrics, Obstetrics and Gynaecology, University of València, 46010 València, Spain
| |
Collapse
|
12
|
Gao H, Li X, Zhan G, Zhu Y, Yu J, Wang J, Li L, Wu W, Liu N, Guo X. Long noncoding RNA MAGI1-IT1 promoted invasion and metastasis of epithelial ovarian cancer via the miR-200a/ZEB axis. Cell Cycle 2019; 18:1393-1406. [PMID: 31122127 PMCID: PMC6592227 DOI: 10.1080/15384101.2019.1618121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy, and its vulnerability to metastasis contributes to the poor outcomes of EOC patients. Long noncoding RNAs (lncRNAs) were verified to play a pivotal role in EOC metastasis. However, the potential role of lncRNA membrane-associated guanylate kinase inverted 1 (MAGI1) intronic transcript (MAGI1-IT1) in EOC is largely unknown. In this study, the function and mechanisms of MAGI1-IT1 in EOC metastasis were explored profoundly. First, MAGI1-IT1 expression was found to be significantly decreased in overexpressing miR-200a EOC cells. Second, MAGI1-IT1 expression was remarkably increased in metastatic EOC tissues, and high MAGI1-IT1 was dramatically associated with EOC FIGO III-IV stage; in addition, MAGI1-IT1 might be related to EOC dissemination via epithelial-mesenchymal transition (EMT). Next, a series of gain- and loss-of-function assays verified that, although MAGI1-IT1 has no significant role in EOC proliferation and subcutaneous xenograft growth, the upregulation of MAGI1-IT1 can remarkably facilitate EOC EMT phenotype, cells migration and invasion ability and intraperitoneal metastasis in nude mice, while downregulation of MAGI1-IT1 led to the opposite effect in vitro. Moreover, MAGI1-IT1 was validated to promote EOC metastasis through upregulation of ZEB1 and ZEB2 by competitively binding miR-200a, and the restrictive effects of MAGI1-IT1 depletion on EOC metastasis could be reversed by inhibition of miR-200a and upregulation of ZEB1 and ZEB2. Collectively, these results suggest that MAGI1-IT1 may work as a ceRNA in promoting EOC metastasis through miR-200a and ZEB1/2 and may be a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Hao Gao
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Xiaofeng Li
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Guangxi Zhan
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Yong Zhu
- b Department of Obstetrics and Gynecology , Central Theater of the Chinese PLA , Wuhan , China
| | - Jing Yu
- c Department of Pathology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Jiapo Wang
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Li Li
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Weimin Wu
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Na Liu
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| | - Xiaoqing Guo
- a Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital , Tongji University School of Medicine , Shanghai , China
| |
Collapse
|