1
|
Saranya KR, Vimina ER. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features. Comput Biol Chem 2024; 112:108175. [PMID: 39191166 DOI: 10.1016/j.compbiolchem.2024.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Cancer drug response (CDR) prediction is an important area of research that aims to personalize cancer therapy, optimizing treatment plans for maximum effectiveness while minimizing potential negative effects. Despite the advancements in Deep learning techniques, the effective integration of multi-omics data for drug response prediction remains challenging. In this paper, a regression method using Deep ResNet for CDR (DRN-CDR) prediction is proposed. We aim to explore the potential of considering sole cancer genes in drug response prediction. Here the multi-omics data such as gene expressions, mutation data, and methylation data along with the molecular structural information of drugs were integrated to predict the IC50 values of drugs. Drug features are extracted by employing a Uniform Graph Convolution Network, while Cell line features are extracted using a combination of Convolutional Neural Network and Fully Connected Networks. These features are then concatenated and fed into a deep ResNet for the prediction of IC50 values between Drug - Cell line pairs. The proposed method yielded higher Pearson's correlation coefficient (rp) of 0.7938 with lowest Root Mean Squared Error (RMSE) value of 0.92 when compared with similar methods of tCNNS, MOLI, DeepCDR, TGSA, NIHGCN, DeepTTA, GraTransDRP and TSGCNN. Further, when the model is extended to a classification problem to categorize drugs as sensitive or resistant, we achieved AUC and AUPR measures of 0.7623 and 0.7691, respectively. The drugs such as Tivozanib, SNX-2112, CGP-60474, PHA-665752, Foretinib etc., exhibited low median IC50 values and were found to be effective anti-cancer drugs. The case studies with different TCGA cancer types also revealed the effectiveness of SNX-2112, CGP-60474, Foretinib, Cisplatin, Vinblastine etc. This consistent pattern strongly suggests the effectiveness of the model in predicting CDR.
Collapse
Affiliation(s)
- K R Saranya
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India
| | - E R Vimina
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| |
Collapse
|
2
|
Gutierrez JJG, Lau E, Dharmapalan S, Parker M, Chen Y, Álvarez MA, Wang D. Multi-output prediction of dose-response curves enables drug repositioning and biomarker discovery. NPJ Precis Oncol 2024; 8:209. [PMID: 39304771 DOI: 10.1038/s41698-024-00691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Drug response prediction is hampered by uncertainty in the measures of response and selection of doses. In this study, we propose a probabilistic multi-output model to simultaneously predict all dose-responses and uncover their biomarkers. By describing the relationship between genomic features and chemical properties to every response at every dose, our multi-output Gaussian Process (MOGP) models enable assessment of drug efficacy using any dose-response metric. This approach was tested across two drug screening studies and ten cancer types. Kullback-leibler divergence measured the importance of each feature and identified EZH2 gene as a novel biomarker of BRAF inhibitor response. We demonstrate the effectiveness of our MOGP models in accurately predicting dose-responses in different cancer types and when there is a limited number of drug screening experiments for training. Our findings highlight the potential of MOGP models in enhancing drug development pipelines by reducing data requirements and improving precision in dose-response predictions.
Collapse
Affiliation(s)
- Juan-José Giraldo Gutierrez
- National Heart and Lung Institute, Imperial College London, London, UK.
- Department of Computer Science, The University of Sheffield, Sheffield, UK.
| | - Evelyn Lau
- Institute for Human Development and Potential, Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Subhashini Dharmapalan
- Department of Computer Science, The University of Sheffield, Sheffield, UK
- Institute for Human Development and Potential, Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Melody Parker
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Yurui Chen
- Institute for Human Development and Potential, Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
- Department of Mathematics, National University of Singapore, Singapore, Republic of Singapore
| | - Mauricio A Álvarez
- Department of Computer Science, The University of Manchester, Manchester, UK
| | - Dennis Wang
- National Heart and Lung Institute, Imperial College London, London, UK.
- Department of Computer Science, The University of Sheffield, Sheffield, UK.
- Institute for Human Development and Potential, Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore.
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore.
| |
Collapse
|
3
|
Xu M, Zhu Z, Zhao Y, He K, Huang Q, Zhao Y. RedCDR: Dual Relation Distillation for Cancer Drug Response Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1468-1479. [PMID: 38776197 DOI: 10.1109/tcbb.2024.3404262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Based on multi-omics data and drug information, predicting the response of cancer cell lines to drugs is a crucial area of research in modern oncology, as it can promote the development of personalized treatments. Despite the promising performance achieved by existing models, most of them overlook the variations among different omics and lack effective integration of multi-omics data. Moreover, the explicit modeling of cell line/drug attribute and cell line-drug association has not been thoroughly investigated in existing approaches. To address these issues, we propose RedCDR, a dual relation distillation model for cancer drug response (CDR) prediction. Specifically, a parallel dual-branch architecture is designed to enable both the independent learning and interactive fusion feasible for cell line/drug attribute and cell line-drug association information. To facilitate the adaptive interacting integration of multi-omics data, the proposed multi-omics encoder introduces the multiple similarity relations between cell lines and takes the importance of different omics data into account. To accomplish knowledge transfer from the two independent attribute and association branches to their fusion, a dual relation distillation mechanism consisting of representation distillation and prediction distillation is presented. Experiments conducted on the GDSC and CCLE datasets show that RedCDR outperforms previous state-of-the-art approaches in CDR prediction.
Collapse
|
4
|
Sun YY, Hsieh CY, Wen JH, Tseng TY, Huang JH, Oyang YJ, Huang HC, Juan HF. scDrug+: predicting drug-responses using single-cell transcriptomics and molecular structure. Biomed Pharmacother 2024; 177:117070. [PMID: 38964180 DOI: 10.1016/j.biopha.2024.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024] Open
Abstract
Predicting drug responses based on individual transcriptomic profiles holds promise for refining prognosis and advancing precision medicine. Although many studies have endeavored to predict the responses of known drugs to novel transcriptomic profiles, research into predicting responses for newly discovered drugs remains sparse. In this study, we introduce scDrug+, a comprehensive pipeline that seamlessly integrates single-cell analysis with drug-response prediction. Importantly, scDrug+ is equipped to predict the response of new drugs by analyzing their molecular structures. The open-source tool is available as a Docker container, ensuring ease of deployment and reproducibility. It can be accessed at https://github.com/ailabstw/scDrugplus.
Collapse
Affiliation(s)
- Yih-Yun Sun
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan; Taiwan AI Labs, Taipei 10351, Taiwan
| | | | - Jian-Hung Wen
- Taiwan AI Labs, Taipei 10351, Taiwan; Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Tzu-Yang Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan; Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | - Yen-Jen Oyang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| | - Hsueh-Fen Juan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan; Taiwan AI Labs, Taipei 10351, Taiwan; Department of Life Science, National Taiwan University, Taipei 106, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan; Center for Advanced Computing and Imaging in Biomedicine, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
5
|
Lenhof K, Eckhart L, Rolli LM, Lenhof HP. Trust me if you can: a survey on reliability and interpretability of machine learning approaches for drug sensitivity prediction in cancer. Brief Bioinform 2024; 25:bbae379. [PMID: 39101498 PMCID: PMC11299037 DOI: 10.1093/bib/bbae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
With the ever-increasing number of artificial intelligence (AI) systems, mitigating risks associated with their use has become one of the most urgent scientific and societal issues. To this end, the European Union passed the EU AI Act, proposing solution strategies that can be summarized under the umbrella term trustworthiness. In anti-cancer drug sensitivity prediction, machine learning (ML) methods are developed for application in medical decision support systems, which require an extraordinary level of trustworthiness. This review offers an overview of the ML landscape of methods for anti-cancer drug sensitivity prediction, including a brief introduction to the four major ML realms (supervised, unsupervised, semi-supervised, and reinforcement learning). In particular, we address the question to what extent trustworthiness-related properties, more specifically, interpretability and reliability, have been incorporated into anti-cancer drug sensitivity prediction methods over the previous decade. In total, we analyzed 36 papers with approaches for anti-cancer drug sensitivity prediction. Our results indicate that the need for reliability has hardly been addressed so far. Interpretability, on the other hand, has often been considered for model development. However, the concept is rather used intuitively, lacking clear definitions. Thus, we propose an easily extensible taxonomy for interpretability, unifying all prevalent connotations explicitly or implicitly used within the field.
Collapse
Affiliation(s)
- Kerstin Lenhof
- Center for Bioinformatics, Chair for Bioinformatics, Saarland Informatics Campus (E2.1) Saarland University, Campus, D-66123 Saarbrücken, Saarland, Germany
| | - Lea Eckhart
- Center for Bioinformatics, Chair for Bioinformatics, Saarland Informatics Campus (E2.1) Saarland University, Campus, D-66123 Saarbrücken, Saarland, Germany
| | - Lisa-Marie Rolli
- Center for Bioinformatics, Chair for Bioinformatics, Saarland Informatics Campus (E2.1) Saarland University, Campus, D-66123 Saarbrücken, Saarland, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Chair for Bioinformatics, Saarland Informatics Campus (E2.1) Saarland University, Campus, D-66123 Saarbrücken, Saarland, Germany
| |
Collapse
|
6
|
Yang X, Tang X, Li C, Han H. Singular value thresholding two-stage matrix completion for drug sensitivity discovery. Comput Biol Chem 2024; 110:108071. [PMID: 38718497 DOI: 10.1016/j.compbiolchem.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 05/27/2024]
Abstract
Incomplete data presents significant challenges in drug sensitivity analysis, especially in critical areas like oncology, where precision is paramount. Our study introduces an innovative imputation method designed specifically for low-rank matrices, addressing the crucial challenge of data completion in anticancer drug sensitivity testing. Our method unfolds in two main stages: Initially, the singular value thresholding algorithm is employed for preliminary matrix completion, establishing a solid foundation for subsequent steps. Then, the matrix rows are segmented into distinct blocks based on hierarchical clustering of correlation coefficients, applying singular value thresholding to the largest block, which has been proved to possess the largest entropy. This is followed by a refined data restoration process, where the reconstructed largest block is integrated into the initial matrix completion to achieve the final matrix completion. Compared to other methods, our approach not only improves the accuracy of data restoration but also ensures the integrity and reliability of the imputed values, establishing it as a robust tool for future drug sensitivity analysis.
Collapse
Affiliation(s)
- Xuemei Yang
- School of Mathematics and Statistics, Xianyang Normal University, Xianyang, 712000, China.
| | - Xiaoduan Tang
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China.
| | - Chun Li
- College of Elementary Education, Hainan Normal University, Haikou 571158, China; Key Laboratory of Data Science and Intelligence Education of Ministry of Education, Hainan Normal University, Haikou 571158, China.
| | - Henry Han
- The Laboratory of Data Science and Artificial Intelligence Innovation, Department of Computer Science, School of Engineering and Computer Science, Baylor University, Waco, TX 76798 USA.
| |
Collapse
|
7
|
Dey V, Ning X. Improving Anticancer Drug Selection and Prioritization via Neural Learning to Rank. J Chem Inf Model 2024; 64:4071-4088. [PMID: 38740382 PMCID: PMC11134508 DOI: 10.1021/acs.jcim.3c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Personalized cancer treatment requires a thorough understanding of complex interactions between drugs and cancer cell lines in varying genetic and molecular contexts. To address this, high-throughput screening has been used to generate large-scale drug response data, facilitating data-driven computational models. Such models can capture complex drug-cell line interactions across various contexts in a fully data-driven manner. However, accurately prioritizing the most effective drugs for each cell line still remains a significant challenge. To address this, we developed multiple neural ranking approaches that leverage large-scale drug response data across multiple cell lines from diverse cancer types. Unlike existing approaches that primarily utilize regression and classification techniques for drug response prediction, we formulated the objective of drug selection and prioritization as a drug ranking problem. In this work, we proposed multiple pairwise and listwise neural ranking methods that learn latent representations of drugs and cell lines and then use those representations to score drugs in each cell line via a learnable scoring function. Specifically, we developed neural pairwise and listwise ranking methods, Pair-PushC and List-One on top of the existing methods, pLETORg and ListNet, respectively. Additionally, we proposed a novel listwise ranking method, List-All, that focuses on all the effective drugs instead of the top effective drug, unlike List-One. We also provide an exhaustive empirical evaluation with state-of-the-art regression and ranking baselines on large-scale data sets across multiple experimental settings. Our results demonstrate that our proposed ranking methods mostly outperform the best baselines with significant improvements of as much as 25.6% in terms of selecting truly effective drugs within the top 20 predicted drugs (i.e., hit@20) across 50% test cell lines. Furthermore, our analyses suggest that the learned latent spaces from our proposed methods demonstrate informative clustering structures and capture relevant underlying biological features. Moreover, our comprehensive evaluation provides a thorough and objective comparison of the performance of different methods (including our proposed ones).
Collapse
Affiliation(s)
- Vishal Dey
- Department
of Computer Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
| | - Xia Ning
- Department
of Computer Science and Engineering, The
Ohio State University, Columbus, Ohio 43210, United States
- Biomedical
Informatics, The Ohio State University, Columbus, Ohio 43210, United States
- Translational
Data Analytics Institute, The Ohio State
University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Eckhart L, Lenhof K, Rolli LM, Lenhof HP. A comprehensive benchmarking of machine learning algorithms and dimensionality reduction methods for drug sensitivity prediction. Brief Bioinform 2024; 25:bbae242. [PMID: 38797968 PMCID: PMC11128483 DOI: 10.1093/bib/bbae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
A major challenge of precision oncology is the identification and prioritization of suitable treatment options based on molecular biomarkers of the considered tumor. In pursuit of this goal, large cancer cell line panels have successfully been studied to elucidate the relationship between cellular features and treatment response. Due to the high dimensionality of these datasets, machine learning (ML) is commonly used for their analysis. However, choosing a suitable algorithm and set of input features can be challenging. We performed a comprehensive benchmarking of ML methods and dimension reduction (DR) techniques for predicting drug response metrics. Using the Genomics of Drug Sensitivity in Cancer cell line panel, we trained random forests, neural networks, boosting trees and elastic nets for 179 anti-cancer compounds with feature sets derived from nine DR approaches. We compare the results regarding statistical performance, runtime and interpretability. Additionally, we provide strategies for assessing model performance compared with a simple baseline model and measuring the trade-off between models of different complexity. Lastly, we show that complex ML models benefit from using an optimized DR strategy, and that standard models-even when using considerably fewer features-can still be superior in performance.
Collapse
Affiliation(s)
- Lea Eckhart
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| | - Kerstin Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| | - Lisa-Marie Rolli
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarland, Germany
| |
Collapse
|
9
|
Kim Y, Han Y, Hopper C, Lee J, Joo JI, Gong JR, Lee CK, Jang SH, Kang J, Kim T, Cho KH. A gray box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations. CELL REPORTS METHODS 2024; 4:100773. [PMID: 38744288 PMCID: PMC11133856 DOI: 10.1016/j.crmeth.2024.100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Predicting cellular responses to perturbations requires interpretable insights into molecular regulatory dynamics to perform reliable cell fate control, despite the confounding non-linearity of the underlying interactions. There is a growing interest in developing machine learning-based perturbation response prediction models to handle the non-linearity of perturbation data, but their interpretation in terms of molecular regulatory dynamics remains a challenge. Alternatively, for meaningful biological interpretation, logical network models such as Boolean networks are widely used in systems biology to represent intracellular molecular regulation. However, determining the appropriate regulatory logic of large-scale networks remains an obstacle due to the high-dimensional and discontinuous search space. To tackle these challenges, we present a scalable derivative-free optimizer trained by meta-reinforcement learning for Boolean network models. The logical network model optimized by the trained optimizer successfully predicts anti-cancer drug responses of cancer cell lines, while simultaneously providing insight into their underlying molecular regulatory mechanisms.
Collapse
Affiliation(s)
- Yunseong Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Younghyun Han
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Corbin Hopper
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jonghoon Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jae Il Joo
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeong-Ryeol Gong
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Chun-Kyung Lee
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seong-Hoon Jang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Junsoo Kang
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Taeyoung Kim
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
10
|
Inoue Y, Lee H, Fu T, Luna A. drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network. ARXIV 2024:arXiv:2405.08979v1. [PMID: 38800657 PMCID: PMC11118660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Drug development is a lengthy process with a high failure rate. Increasingly, machine learning is utilized to facilitate the drug development processes. These models aim to enhance our understanding of drug characteristics, including their activity in biological contexts. However, a major challenge in drug response (DR) prediction is model interpretability as it aids in the validation of findings. This is important in biomedicine, where models need to be understandable in comparison with established knowledge of drug interactions with proteins. drGAT, a graph deep learning model, leverages a heterogeneous graph composed of relationships between proteins, cell lines, and drugs. drGAT is designed with two objectives: DR prediction as a binary sensitivity prediction and elucidation of drug mechanism from attention coefficients. drGAT has demonstrated superior performance over existing models, achieving 78% accuracy (and precision), and 76% F1 score for 269 DNA-damaging compounds of the NCI60 drug response dataset. To assess the model's interpretability, we conducted a review of drug-gene co-occurrences in Pubmed abstracts in comparison to the top 5 genes with the highest attention coefficients for each drug. We also examined whether known relationships were retained in the model by inspecting the neighborhoods of topoisomerase-related drugs. For example, our model retained TOP1 as a highly weighted predictive feature for irinotecan and topotecan, in addition to other genes that could potentially be regulators of the drugs. Our method can be used to accurately predict sensitivity to drugs and may be useful in the identification of biomarkers relating to the treatment of cancer patients.
Collapse
Affiliation(s)
- Yoshitaka Inoue
- Department of Computer Science and Engineering, University of Minnesota
- Computational Biology Branch, National Library of Medicine
| | - Hunmin Lee
- Department of Computer Science and Engineering, University of Minnesota
| | - Tianfan Fu
- Computer Science Department, Rensselaer Polytechnic Institute
| | - Augustin Luna
- Computational Biology Branch, National Library of Medicine
- Developmental Therapeutics Branch, National Cancer Institute
| |
Collapse
|
11
|
Liu H, Wang F, Yu J, Pan Y, Gong C, Zhang L, Zhang L. DBDNMF: A Dual Branch Deep Neural Matrix Factorization method for drug response prediction. PLoS Comput Biol 2024; 20:e1012012. [PMID: 38574114 PMCID: PMC11020650 DOI: 10.1371/journal.pcbi.1012012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/16/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
Anti-cancer response of cell lines to drugs is in urgent need for individualized precision medical decision-making in the era of precision medicine. Measurements with wet-experiments is time-consuming and expensive and it is almost impossible for wide ranges of application. The design of computational models that can precisely predict the responses between drugs and cell lines could provide a credible reference for further research. Existing methods of response prediction based on matrix factorization or neural networks have revealed that both linear or nonlinear latent characteristics are applicable and effective for the precise prediction of drug responses. However, the majority of them consider only linear or nonlinear relationships for drug response prediction. Herein, we propose a Dual Branch Deep Neural Matrix Factorization (DBDNMF) method to address the above-mentioned issues. DBDNMF learns the latent representation of drugs and cell lines through flexible inputs and reconstructs the partially observed matrix through a series of hidden neural network layers. Experimental results on the datasets of Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) show that the accuracy of drug prediction exceeds state-of-the-art drug response prediction algorithms, demonstrating its reliability and stability. The hierarchical clustering results show that drugs with similar response levels tend to target similar signaling pathway, and cell lines coming from the same tissue subtype tend to share the same pattern of response, which are consistent with previously published studies.
Collapse
Affiliation(s)
- Hui Liu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Feng Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Jian Yu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Yong Pan
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Chaoju Gong
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
- Department of Ophthalmology, Xuzhou First People’s Hospital, Xuzhou, Jiangsu, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China
| |
Collapse
|
12
|
Chen Y, Zhang L. Hi-GeoMVP: a hierarchical geometry-enhanced deep learning model for drug response prediction. Bioinformatics 2024; 40:btae204. [PMID: 38614131 PMCID: PMC11060866 DOI: 10.1093/bioinformatics/btae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/11/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024] Open
Abstract
MOTIVATION Personalized cancer treatments require accurate drug response predictions. Existing deep learning methods show promise but higher accuracy is needed to serve the purpose of precision medicine. The prediction accuracy can be improved with not only topology but geometrical information of drugs. RESULTS A novel deep learning methodology for drug response prediction is presented, named Hi-GeoMVP. It synthesizes hierarchical drug representation with multi-omics data, leveraging graph neural networks and variational autoencoders for detailed drug and cell line representations. Multi-task learning is employed to make better prediction, while both 2D and 3D molecular representations capture comprehensive drug information. Testing on the GDSC dataset confirms Hi-GeoMVP's enhanced performance, surpassing prior state-of-the-art methods by improving the Pearson correlation coefficient from 0.934 to 0.941 and decreasing the root mean square error from 0.969 to 0.931. In the case of blind test, Hi-GeoMVP demonstrated robustness, outperforming the best previous models with a superior Pearson correlation coefficient in the drug-blind test. These results underscore Hi-GeoMVP's capabilities in drug response prediction, implying its potential for precision medicine. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/matcyr/Hi-GeoMVP.
Collapse
Affiliation(s)
- Yurui Chen
- Department of Mathematics and the Centre for Data Science and Machine Learning, National University of Singapore, Singapore 119076, Singapore
| | - Louxin Zhang
- Department of Mathematics and the Centre for Data Science and Machine Learning, National University of Singapore, Singapore 119076, Singapore
| |
Collapse
|
13
|
Deng H, Cheng F, Cheng S. Comprehensive analysis of scRNA-seq and bulk RNA-seq reveal the characteristics of disulfidptosis and a prognostic signature in BLCA. Aging (Albany NY) 2024; 16:5751-5771. [PMID: 38507521 PMCID: PMC11006495 DOI: 10.18632/aging.205686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
Disulfidptosis is a newly discovered mode of cell death. However, its biological mechanism in bladder cancer (BLCA) is still uncharacterized. In this investigation, we firstly examined the expression and mutation of disulfidptosis-related genes (DRGs) in BLCA. Two disulfidptosis phenotypes associated with DRGs expression patterns and immune cell infiltration were built. A disulfidptosis risk score signature was constructed based on ten differentially expressed genes (DEGs) between the disulfidptosis subtypes, which allowed patients to be stratified into high- and low-risk groups. We further confirmed that the disulfidptosis risk score signature has great power to predict prognosis, immune cell infiltration, and immunotherapy efficacy in BLCA. Additionally, we analyzed the differences in therapeutic sensitivities between high- and low-risk groups concerning targeted inhibitor therapy and immunotherapy. Analysis of single-cell RNA sequencing was conducted of the ten hub DRGs. Of the ten genes, we found that DUSP2 and SLCO1B3 were differentially expressed in BLCA tissues and adjacent normal tissues, and were markedly associated with patients' prognosis. Functional experiments revealed that overexpression of DUSP2 or knockdown of SLCO1B3 significantly inhibited cell proliferation, migration, and invasion in BLCA cells. In all, we present a fresh disulfidptosis-related prognostic signature, which has a remarkable capacity to characterize the immunological landscape and prognosis of BLCA patients.
Collapse
Affiliation(s)
- Hao Deng
- Department of Urology, The First People’s Hospital of Jingzhou, Jingzhou 434000, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shaoping Cheng
- Department of Urology, The First People’s Hospital of Jingzhou, Jingzhou 434000, China
| |
Collapse
|
14
|
Habib M, Lalagkas PN, Melamed RD. Mapping drug biology to disease genetics to discover drug impacts on the human phenome. BIOINFORMATICS ADVANCES 2024; 4:vbae038. [PMID: 38736684 PMCID: PMC11087821 DOI: 10.1093/bioadv/vbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 05/14/2024]
Abstract
Motivation Medications can have unexpected effects on disease, including not only harmful drug side effects, but also beneficial drug repurposing. These effects on disease may result from hidden influences of drugs on disease gene networks. Then, discovering how biological effects of drugs relate to disease biology can both provide insight into the mechanism of latent drug effects, and can help predict new effects. Results Here, we develop Draphnet, a model that integrates molecular data on 429 drugs and gene associations of nearly 200 common phenotypes to learn a network that explains drug effects on disease in terms of these molecular signals. We present evidence that our method can both predict drug effects, and can provide insight into the biology of unexpected drug effects on disease. Using Draphnet to map a drug's known molecular effects to downstream effects on the disease genome, we put forward disease genes impacted by drugs, and we suggest a new grouping of drugs based on shared effects on the disease genome. Our approach has multiple applications, including predicting drug uses and learning drug biology, with implications for personalized medicine. Availability and implementation Code to reproduce the analysis is available at https://github.com/RDMelamed/drug-phenome.
Collapse
Affiliation(s)
- Mamoon Habib
- Department of Computer Science, University of Massachusetts Lowell, Lowell, MA 01854, United States
| | | | - Rachel D Melamed
- Department of Biological Science, University of Massachusetts Lowell, Lowell, MA 01854, United States
| |
Collapse
|
15
|
Maeser D, Zhang W, Huang Y, Huang RS. A review of computational methods for predicting cancer drug response at the single-cell level through integration with bulk RNAseq data. Curr Opin Struct Biol 2024; 84:102745. [PMID: 38109840 PMCID: PMC10922290 DOI: 10.1016/j.sbi.2023.102745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Cancer treatment failure is often attributed to tumor heterogeneity, where diverse malignant cell clones exist within a patient. Despite a growing understanding of heterogeneous tumor cells depicted by single-cell RNA sequencing (scRNA-seq), there is still a gap in the translation of such knowledge into treatment strategies tackling the pervasive issue of therapy resistance. In this review, we survey methods leveraging large-scale drug screens to generate cellular sensitivities to various therapeutics. These methods enable efficient drug screens in scRNA-seq data and serve as the bedrock of drug discovery for specific cancer cell groups. We envision that they will become an indispensable tool for tailoring patient care in the era of heterogeneity-aware precision medicine.
Collapse
Affiliation(s)
- Danielle Maeser
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Weijie Zhang
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Yingbo Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - R Stephanie Huang
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
16
|
Liu H, Peng W, Dai W, Lin J, Fu X, Liu L, Liu L, Yu N. Improving anti-cancer drug response prediction using multi-task learning on graph convolutional networks. Methods 2024; 222:41-50. [PMID: 38157919 DOI: 10.1016/j.ymeth.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Predicting the therapeutic effect of anti-cancer drugs on tumors based on the characteristics of tumors and patients is one of the important contents of precision oncology. Existing computational methods regard the drug response prediction problem as a classification or regression task. However, few of them consider leveraging the relationship between the two tasks. In this work, we propose a Multi-task Interaction Graph Convolutional Network (MTIGCN) for anti-cancer drug response prediction. MTIGCN first utilizes an graph convolutional network-based model to produce embeddings for both cell lines and drugs. After that, the model employs multi-task learning to predict anti-cancer drug response, which involves training the model on three different tasks simultaneously: the main task of the drug sensitive or resistant classification task and the two auxiliary tasks of regression prediction and similarity network reconstruction. By sharing parameters and optimizing the losses of different tasks simultaneously, MTIGCN enhances the feature representation and reduces overfitting. The results of the experiments on two in vitro datasets demonstrated that MTIGCN outperformed seven state-of-the-art baseline methods. Moreover, the well-trained model on the in vitro dataset GDSC exhibited good performance when applied to predict drug responses in in vivo datasets PDX and TCGA. The case study confirmed the model's ability to discover unknown drug responses in cell lines.
Collapse
Affiliation(s)
- Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Jiangzhen Lin
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China.
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming 650050, China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport NY 14422.
| |
Collapse
|
17
|
Yang Y, Li P. GPDRP: a multimodal framework for drug response prediction with graph transformer. BMC Bioinformatics 2023; 24:484. [PMID: 38105227 PMCID: PMC10726525 DOI: 10.1186/s12859-023-05618-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND In the field of computational personalized medicine, drug response prediction (DRP) is a critical issue. However, existing studies often characterize drugs as strings, a representation that does not align with the natural description of molecules. Additionally, they ignore gene pathway-specific combinatorial implication. RESULTS In this study, we propose drug Graph and gene Pathway based Drug response prediction method (GPDRP), a new multimodal deep learning model for predicting drug responses based on drug molecular graphs and gene pathway activity. In GPDRP, drugs are represented by molecular graphs, while cell lines are described by gene pathway activity scores. The model separately learns these two types of data using Graph Neural Networks (GNN) with Graph Transformers and deep neural networks. Predictions are subsequently made through fully connected layers. CONCLUSIONS Our results indicate that Graph Transformer-based model delivers superior performance. We apply GPDRP on hundreds of cancer cell lines' bulk RNA-sequencing data, and it outperforms some recently published models. Furthermore, the generalizability and applicability of GPDRP are demonstrated through its predictions on unknown drug-cell line pairs and xenografts. This underscores the interpretability achieved by incorporating gene pathways.
Collapse
Affiliation(s)
- Yingke Yang
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000, China.
- Longmen Laboratory, Luoyang, 471003, China.
| |
Collapse
|
18
|
Park S, Lee H. Molecular data representation based on gene embeddings for cancer drug response prediction. Sci Rep 2023; 13:21898. [PMID: 38081928 PMCID: PMC10713675 DOI: 10.1038/s41598-023-49003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer drug response prediction is a crucial task in precision medicine, but existing models have limitations in effectively representing molecular profiles of cancer cells. Specifically, when these models represent molecular omics data such as gene expression, they employ a one-hot encoding-based approach, where a fixed gene set is selected for all samples and omics data values are assigned to specific positions in a vector. However, this approach restricts the utilization of embedding-vector-based methods, such as attention-based models, and limits the flexibility of gene selection. To address these issues, our study proposes gene embedding-based fully connected neural networks (GEN) that utilizes gene embedding vectors as input data for cancer drug response prediction. The GEN allows for the use of embedding-vector-based architectures and different gene sets for each sample, providing enhanced flexibility. To validate the efficacy of GEN, we conducted experiments on three cancer drug response datasets. Our results demonstrate that GEN outperforms other recently developed methods in cancer drug prediction tasks and offers improved gene representation capabilities. All source codes are available at https://github.com/DMCB-GIST/GEN/ .
Collapse
Affiliation(s)
- Sejin Park
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyunju Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
19
|
Li Y, Guo Z, Gao X, Wang G. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Bioinformatics 2023; 39:btad734. [PMID: 38070154 PMCID: PMC10756335 DOI: 10.1093/bioinformatics/btad734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
MOTIVATION Cancer is a complex disease that results in a significant number of global fatalities. Treatment strategies can vary among patients, even if they have the same type of cancer. The application of precision medicine in cancer shows promise for treating different types of cancer, reducing healthcare expenses, and improving recovery rates. To achieve personalized cancer treatment, machine learning models have been developed to predict drug responses based on tumor and drug characteristics. However, current studies either focus on constructing homogeneous networks from single data source or heterogeneous networks from multiomics data. While multiomics data have shown potential in predicting drug responses in cancer cell lines, there is still a lack of research that effectively utilizes insights from different modalities. Furthermore, effectively utilizing the multimodal knowledge of cancer cell lines poses a challenge due to the heterogeneity inherent in these modalities. RESULTS To address these challenges, we introduce MMCL-CDR (Multimodal Contrastive Learning for Cancer Drug Responses), a multimodal approach for cancer drug response prediction that integrates copy number variation, gene expression, morphology images of cell lines, and chemical structure of drugs. The objective of MMCL-CDR is to align cancer cell lines across different data modalities by learning cell line representations from omic and image data, and combined with structural drug representations to enhance the prediction of cancer drug responses (CDR). We have carried out comprehensive experiments and show that our model significantly outperforms other state-of-the-art methods in CDR prediction. The experimental results also prove that the model can learn more accurate cell line representation by integrating multiomics and morphological data from cell lines, thereby improving the accuracy of CDR prediction. In addition, the ablation study and qualitative analysis also confirm the effectiveness of each part of our proposed model. Last but not least, MMCL-CDR opens up a new dimension for cancer drug response prediction through multimodal contrastive learning, pioneering a novel approach that integrates multiomics and multimodal drug and cell line modeling. AVAILABILITY AND IMPLEMENTATION MMCL-CDR is available at https://github.com/catly/MMCL-CDR.
Collapse
Affiliation(s)
- Yang Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Zihou Guo
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| | - Xin Gao
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150006, China
| |
Collapse
|
20
|
Tang C, Fu S, Jin X, Li W, Xing F, Duan B, Cheng X, Chen X, Wang S, Zhu C, Li G, Chuai G, He Y, Wang P, Liu Q. Personalized tumor combination therapy optimization using the single-cell transcriptome. Genome Med 2023; 15:105. [PMID: 38041202 PMCID: PMC10691165 DOI: 10.1186/s13073-023-01256-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The precise characterization of individual tumors and immune microenvironments using transcriptome sequencing has provided a great opportunity for successful personalized cancer treatment. However, the cancer treatment response is often characterized by in vitro assays or bulk transcriptomes that neglect the heterogeneity of malignant tumors in vivo and the immune microenvironment, motivating the need to use single-cell transcriptomes for personalized cancer treatment. METHODS Here, we present comboSC, a computational proof-of-concept study to explore the feasibility of personalized cancer combination therapy optimization using single-cell transcriptomes. ComboSC provides a workable solution to stratify individual patient samples based on quantitative evaluation of their personalized immune microenvironment with single-cell RNA sequencing and maximize the translational potential of in vitro cellular response to unify the identification of synergistic drug/small molecule combinations or small molecules that can be paired with immune checkpoint inhibitors to boost immunotherapy from a large collection of small molecules and drugs, and finally prioritize them for personalized clinical use based on bipartition graph optimization. RESULTS We apply comboSC to publicly available 119 single-cell transcriptome data from a comprehensive set of 119 tumor samples from 15 cancer types and validate the predicted drug combination with literature evidence, mining clinical trial data, perturbation of patient-derived cell line data, and finally in-vivo samples. CONCLUSIONS Overall, comboSC provides a feasible and one-stop computational prototype and a proof-of-concept study to predict potential drug combinations for further experimental validation and clinical usage using the single-cell transcriptome, which will facilitate and accelerate personalized tumor treatment by reducing screening time from a large drug combination space and saving valuable treatment time for individual patients. A user-friendly web server of comboSC for both clinical and research users is available at www.combosc.top . The source code is also available on GitHub at https://github.com/bm2-lab/comboSC .
Collapse
Affiliation(s)
- Chen Tang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xuan Jin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wannian Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bin Duan
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaojie Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaohan Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuguang Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenyu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gaoyang Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohui Chuai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, China.
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Tongji University, Shanghai, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
21
|
Wang W, Yuan G, Wan S, Zheng Z, Liu D, Zhang H, Li J, Zhou Y, Wang X. A granularity-level information fusion strategy on hypergraph transformer for predicting synergistic effects of anticancer drugs. Brief Bioinform 2023; 25:bbad522. [PMID: 38243692 PMCID: PMC10796255 DOI: 10.1093/bib/bbad522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/08/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
Combination therapy has exhibited substantial potential compared to monotherapy. However, due to the explosive growth in the number of cancer drugs, the screening of synergistic drug combinations has become both expensive and time-consuming. Synergistic drug combinations refer to the concurrent use of two or more drugs to enhance treatment efficacy. Currently, numerous computational methods have been developed to predict the synergistic effects of anticancer drugs. However, there has been insufficient exploration of how to mine drug and cell line data at different granularity levels for predicting synergistic anticancer drug combinations. Therefore, this study proposes a granularity-level information fusion strategy based on the hypergraph transformer, named HypertranSynergy, to predict synergistic effects of anticancer drugs. HypertranSynergy introduces synergistic connections between cancer cell lines and drug combinations using hypergraph. Then, the Coarse-grained Information Extraction (CIE) module merges the hypergraph with a transformer for node embeddings. In the CIE module, Contranorm is a normalization layer that mitigates over-smoothing, while Gaussian noise addresses local information gaps. Additionally, the Fine-grained Information Extraction (FIE) module assesses fine-grained information's impact on predictions by employing similarity-aware matrices from drug/cell line features. Both CIE and FIE modules are integrated into HypertranSynergy. In addition, HypertranSynergy achieved the AUC of 0.93${\pm }$0.01 and the AUPR of 0.69${\pm }$0.02 in 5-fold cross-validation of classification task, and the RMSE of 13.77${\pm }$0.07 and the PCC of 0.81${\pm }$0.02 in 5-fold cross-validation of regression task. These results are better than most of the state-of-the-art models.
Collapse
Affiliation(s)
- Wei Wang
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province 453007, China
| | - Gaolin Yuan
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
| | - Shitong Wan
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
| | - Ziwei Zheng
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
| | - Dong Liu
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province 453007, China
| | - Hongjun Zhang
- Hebi Instiute of Engineering and Technology, Henan Polytechnic University, 458030, China
| | - Juntao Li
- School of Mathematics and Information Science, Henan Normal University, 453007 Xinxiang, China
| | - Yun Zhou
- College of Computer and Information Engineering, Henan Normal University, 453007 Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province 453007, China
| | - Xianfang Wang
- College of Computer Science and Technology Engineering, Henan Institute of Technology, 453000, China
| |
Collapse
|
22
|
Sinkala M. Mutational landscape of cancer-driver genes across human cancers. Sci Rep 2023; 13:12742. [PMID: 37550388 PMCID: PMC10406856 DOI: 10.1038/s41598-023-39608-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
The genetic mutations that contribute to the transformation of healthy cells into cancerous cells have been the subject of extensive research. The molecular aberrations that lead to cancer development are often characterised by gain-of-function or loss-of-function mutations in a variety of oncogenes and tumour suppressor genes. In this study, we investigate the genomic sequences of 20,331 primary tumours representing 41 distinct human cancer types to identify and catalogue the driver mutations present in 727 known cancer genes. Our findings reveal significant variations in the frequency of cancer gene mutations across different cancer types and highlight the frequent involvement of tumour suppressor genes (94%), oncogenes (93%), transcription factors (72%), kinases (64%), cell surface receptors (63%), and phosphatases (22%), in cancer. Additionally, our analysis reveals that cancer gene mutations are predominantly co-occurring rather than exclusive in all types of cancer. Notably, we discover that patients with tumours displaying different combinations of gene mutation patterns tend to exhibit variable survival outcomes. These findings provide new insights into the genetic landscape of cancer and bring us closer to a comprehensive understanding of the underlying mechanisms driving the development of various forms of cancer.
Collapse
Affiliation(s)
- Musalula Sinkala
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, Zambia.
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
23
|
Liu X, Zhang W. A subcomponent-guided deep learning method for interpretable cancer drug response prediction. PLoS Comput Biol 2023; 19:e1011382. [PMID: 37603576 PMCID: PMC10470940 DOI: 10.1371/journal.pcbi.1011382] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/31/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023] Open
Abstract
Accurate prediction of cancer drug response (CDR) is a longstanding challenge in modern oncology that underpins personalized treatment. Current computational methods implement CDR prediction by modeling responses between entire drugs and cell lines, without the consideration that response outcomes may primarily attribute to a few finer-level 'subcomponents', such as privileged substructures of the drug or gene signatures of the cancer cell, thus producing predictions that are hard to explain. Herein, we present SubCDR, a subcomponent-guided deep learning method for interpretable CDR prediction, to recognize the most relevant subcomponents driving response outcomes. Technically, SubCDR is built upon a line of deep neural networks that enables a set of functional subcomponents to be extracted from each drug and cell line profile, and breaks the CDR prediction down to identifying pairwise interactions between subcomponents. Such a subcomponent interaction form can offer a traceable path to explicitly indicate which subcomponents contribute more to the response outcome. We verify the superiority of SubCDR over state-of-the-art CDR prediction methods through extensive computational experiments on the GDSC dataset. Crucially, we found many predicted cases that demonstrate the strength of SubCDR in finding the key subcomponents driving responses and exploiting these subcomponents to discover new therapeutic drugs. These results suggest that SubCDR will be highly useful for biomedical researchers, particularly in anti-cancer drug design.
Collapse
Affiliation(s)
- Xuan Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Zhan Y, Guo J, Philip Chen CL, Meng XB. iBT-Net: an incremental broad transformer network for cancer drug response prediction. Brief Bioinform 2023:bbad256. [PMID: 37429577 DOI: 10.1093/bib/bbad256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/12/2023] Open
Abstract
In modern precision medicine, it is an important research topic to predict cancer drug response. Due to incomplete chemical structures and complex gene features, however, it is an ongoing work to design efficient data-driven methods for predicting drug response. Moreover, since the clinical data cannot be easily obtained all at once, the data-driven methods may require relearning when new data are available, resulting in increased time consumption and cost. To address these issues, an incremental broad Transformer network (iBT-Net) is proposed for cancer drug response prediction. Different from the gene expression features learning from cancer cell lines, structural features are further extracted from drugs by Transformer. Broad learning system is then designed to integrate the learned gene features and structural features of drugs to predict the response. With the capability of incremental learning, the proposed method can further use new data to improve its prediction performance without retraining totally. Experiments and comparison studies demonstrate the effectiveness and superiority of iBT-Net under different experimental configurations and continuous data learning.
Collapse
Affiliation(s)
- Yongkang Zhan
- School of Computer Science & Engineering,South China University of Technology, 510006, China
| | - Jifeng Guo
- School of Computer Science & Engineering,South China University of Technology, 510006, China
| | - C L Philip Chen
- School of Computer Science & Engineering,South China University of Technology, 510006, China
- Brain and Affective Cognitive Research Center, Pazhou Lab, 510335, China
| | - Xian-Bing Meng
- School of Electromechanical Engineering, Guangdong University of Technology, 510006, China
| |
Collapse
|
25
|
Shahzad M, Tahir MA, Alhussein M, Mobin A, Shams Malick RA, Anwar MS. NeuPD-A Neural Network-Based Approach to Predict Antineoplastic Drug Response. Diagnostics (Basel) 2023; 13:2043. [PMID: 37370938 DOI: 10.3390/diagnostics13122043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
With the beginning of the high-throughput screening, in silico-based drug response analysis has opened lots of research avenues in the field of personalized medicine. For a decade, many different predicting techniques have been recommended for the antineoplastic (anti-cancer) drug response, but still, there is a need for improvements in drug sensitivity prediction. The intent of this research study is to propose a framework, namely NeuPD, to validate the potential anti-cancer drugs against a panel of cancer cell lines in publicly available datasets. The datasets used in this work are Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). As not all drugs are effective on cancer cell lines, we have worked on 10 essential drugs from the GDSC dataset that have achieved the best modeling results in previous studies. We also extracted 1610 essential oncogene expressions from 983 cell lines from the same dataset. Whereas, from the CCLE dataset, 16,383 gene expressions from 1037 cell lines and 24 drugs have been used in our experiments. For dimensionality reduction, Pearson correlation is applied to best fit the model. We integrate the genomic features of cell lines and drugs' fingerprints to fit the neural network model. For evaluation of the proposed NeuPD framework, we have used repeated K-fold cross-validation with 5 times repeats where K = 10 to demonstrate the performance in terms of root mean square error (RMSE) and coefficient determination (R2). The results obtained on the GDSC dataset that were measured using these cost functions show that our proposed NeuPD framework has outperformed existing approaches with an RMSE of 0.490 and R2 of 0.929.
Collapse
Affiliation(s)
- Muhammad Shahzad
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Atif Tahir
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Musaed Alhussein
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
| | - Ansharah Mobin
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Rauf Ahmed Shams Malick
- FAST School of Computing, National University of Computer and Emerging Sciences (NUCES-FAST), Karachi 75030, Pakistan
| | - Muhammad Shahid Anwar
- Department of AI and Software, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
26
|
Singh DP, Kaushik B. CTDN (Convolutional Temporal Based Deep- Neural Network): An Improvised Stacked Hybrid Computational Approach for Anticancer Drug Response Prediction. Comput Biol Chem 2023; 105:107868. [PMID: 37257399 DOI: 10.1016/j.compbiolchem.2023.107868] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/02/2023]
Abstract
The characterization of drug - metabolizing enzymes is a significant problem for customized therapy. It is important to choose the right drugs for cancer victims, and the ability to forecast how those drugs will react is usually based on the available information, genetic sequence, and structural properties. To the finest of our knowledge, this is the first study to evaluate optimization algorithms for selection of features and pharmacogenetics categorization using classification methods based on a successful evolutionary algorithm using datasets from the Cancer Cell Line Encyclopaedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC). The study proposes the uses of Firefly and Grey Wolf Optimization techniques for feature extraction, while comparing the traditional Machine Learning (ML), ensemble ML and Stacking Algorithm with the proposed Convolutional Temporal Deep Neural Network or CTDN. With the potential to increase efficiency from the suggested intelligible classifier model for a suggestive chemotherapeutic drugs response prediction, our study is important in particular for selecting an acceptable feature selection method. The comparison analysis demonstrates that the proposed model not only surpasses the prior state-of-the-art methods, but also uses Grey Wolf and Fire Fly Optimization to lessen multicollinearity and overfitting.
Collapse
Affiliation(s)
- Davinder Paul Singh
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir, India.
| | - Baijnath Kaushik
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir, India
| |
Collapse
|
27
|
Wu P, Sun R, Fahira A, Chen Y, Jiangzhou H, Wang K, Yang Q, Dai Y, Pan D, Shi Y, Wang Z. DROEG: a method for cancer drug response prediction based on omics and essential genes integration. Brief Bioinform 2023; 24:7008798. [PMID: 36715269 DOI: 10.1093/bib/bbad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/06/2022] [Accepted: 12/30/2022] [Indexed: 01/31/2023] Open
Abstract
Predicting therapeutic responses in cancer patients is a major challenge in the field of precision medicine due to high inter- and intra-tumor heterogeneity. Most drug response models need to be improved in terms of accuracy, and there is limited research to assess therapeutic responses of particular tumor types. Here, we developed a novel method DROEG (Drug Response based on Omics and Essential Genes) for prediction of drug response in tumor cell lines by integrating genomic, transcriptomic and methylomic data along with CRISPR essential genes, and revealed that the incorporation of tumor proliferation essential genes can improve drug sensitivity prediction. Concisely, DROEG integrates literature-based and statistics-based methods to select features and uses Support Vector Regression for model construction. We demonstrate that DROEG outperforms most state-of-the-art algorithms by both qualitative (prediction accuracy for drug-sensitive/resistant) and quantitative (Pearson correlation coefficient between the predicted and actual IC50) evaluation in Genomics of Drug Sensitivity in Cancer and Cancer Cell Line Encyclopedia datasets. In addition, DROEG is further applied to the pan-gastrointestinal tumor with high prevalence and mortality as a case study at both cell line and clinical levels to evaluate the model efficacy and discover potential prognostic biomarkers in Cisplatin and Epirubicin treatment. Interestingly, the CRISPR essential gene information is found to be the most important contributor to enhance the accuracy of the DROEG model. To our knowledge, this is the first study to integrate essential genes with multi-omics data to improve cancer drug response prediction and provide insights into personalized precision treatment.
Collapse
Affiliation(s)
- Peike Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Renliang Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aamir Fahira
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhou Chen
- School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Huiting Jiangzhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Dai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Peng W, Chen T, Liu H, Dai W, Yu N, Lan W. Improving drug response prediction based on two-space graph convolution. Comput Biol Med 2023; 158:106859. [PMID: 37023539 DOI: 10.1016/j.compbiomed.2023.106859] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Patients with the same cancer types may present different genomic features and therefore have different drug sensitivities. Accordingly, correctly predicting patients' responses to the drugs can guide treatment decisions and improve the outcome of cancer patients. Existing computational methods leverage the graph convolution network model to aggregate features of different types of nodes in the heterogeneous network. They most fail to consider the similarity between homogeneous nodes. To this end, we propose an algorithm based on two-space graph convolutional neural networks, TSGCNN, to predict the response of anticancer drugs. TSGCNN first constructs the cell line feature space and the drug feature space and separately performs the graph convolution operation on the feature spaces to diffuse similarity information among homogeneous nodes. After that, we generate a heterogeneous network based on the known cell line and drug relationship and perform graph convolution operations on the heterogeneous network to collect the features of different types of nodes. Subsequently, the algorithm produces the final feature representations for cell lines and drugs by adding their self features, the feature space representations, and the heterogeneous space representations. Finally, we leverage the linear correlation coefficient decoder to reconstruct the cell line-drug correlation matrix for drug response prediction based on the final representations. We tested our model on the Cancer Drug Sensitivity Data (GDSC) and Cancer Cell Line Encyclopedia (CCLE) databases. The results indicate that TSGCNN shows excellent performance drug response prediction compared with other eight state-of-the-art methods.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050, China.
| | - Tielin Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China
| | - Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050, China; Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050, China
| | - Ning Yu
- State University of New York, The College at Brockport, Department of Computing Sciences, 350 New Campus Drive, Brockport, NY 14422, United States of America
| | - Wei Lan
- School of Computer Electronic and Information, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
29
|
Liu XY, Mei XY. Prediction of drug sensitivity based on multi-omics data using deep learning and similarity network fusion approaches. Front Bioeng Biotechnol 2023; 11:1156372. [PMID: 37139048 PMCID: PMC10150883 DOI: 10.3389/fbioe.2023.1156372] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of multi-omics technologies and accumulation of large-scale bio-datasets, many studies have conducted a more comprehensive understanding of human diseases and drug sensitivity from multiple biomolecules, such as DNA, RNA, proteins and metabolites. Using single omics data is difficult to systematically and comprehensively analyze the complex disease pathology and drug pharmacology. The molecularly targeted therapy-based approaches face some challenges, such as insufficient target gene labeling ability, and no clear targets for non-specific chemotherapeutic drugs. Consequently, the integrated analysis of multi-omics data has become a new direction for scientists to explore the mechanism of disease and drug. However, the available drug sensitivity prediction models based on multi-omics data still have problems such as overfitting, lack of interpretability, difficulties in integrating heterogeneous data, and the prediction accuracy needs to be improved. In this paper, we proposed a novel drug sensitivity prediction (NDSP) model based on deep learning and similarity network fusion approaches, which extracts drug targets using an improved sparse principal component analysis (SPCA) method for each omics data, and construct sample similarity networks based on the sparse feature matrices. Furthermore, the fused similarity networks are put into a deep neural network for training, which greatly reduces the data dimensionality and weakens the risk of overfitting problem. We use three omics of data, RNA sequence, copy number aberration and methylation, and select 35 drugs from Genomics of Drug Sensitivity in Cancer (GDSC) for experiments, including Food and Drug Administration (FDA)-approved targeted drugs, FDA-unapproved targeted drugs and non-specific therapies. Compared with some current deep learning methods, our proposed method can extract highly interpretable biological features to achieve highly accurate sensitivity prediction of targeted and non-specific cancer drugs, which is beneficial for the development of precision oncology beyond targeted therapy.
Collapse
Affiliation(s)
- Xiao-Ying Liu
- Guangdong Polytechnic of Science and Technology, Zhuhai, China
- *Correspondence: Xiao-Ying Liu,
| | - Xin-Yue Mei
- Institute of Systems Engineering, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
30
|
Gervits A, Sharan R. Predicting genetic interactions, cell line dependencies and drug sensitivities with variational graph auto-encoder. FRONTIERS IN BIOINFORMATICS 2022; 2:1025783. [PMID: 36530386 PMCID: PMC9755598 DOI: 10.3389/fbinf.2022.1025783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/21/2022] [Indexed: 09/10/2024] Open
Abstract
Large scale cancer genomics data provide crucial information about the disease and reveal points of intervention. However, systematic data have been collected in specific cell lines and their collection is laborious and costly. Hence, there is a need to develop computational models that can predict such data for any genomic context of interest. Here we develop novel models that build on variational graph auto-encoders and can integrate diverse types of data to provide high quality predictions of genetic interactions, cell line dependencies and drug sensitivities, outperforming previous methods. Our models, data and implementation are available at: https://github.com/aijag/drugGraphNet.
Collapse
Affiliation(s)
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
31
|
Shin J, Piao Y, Bang D, Kim S, Jo K. DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer. Int J Mol Sci 2022; 23:13919. [PMID: 36430395 PMCID: PMC9699175 DOI: 10.3390/ijms232213919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Some of the recent studies on drug sensitivity prediction have applied graph neural networks to leverage prior knowledge on the drug structure or gene network, and other studies have focused on the interpretability of the model to delineate the mechanism governing the drug response. However, it is crucial to make a prediction model that is both knowledge-guided and interpretable, so that the prediction accuracy is improved and practical use of the model can be enhanced. We propose an interpretable model called DRPreter (drug response predictor and interpreter) that predicts the anticancer drug response. DRPreter learns cell line and drug information with graph neural networks; the cell-line graph is further divided into multiple subgraphs with domain knowledge on biological pathways. A type-aware transformer in DRPreter helps detect relationships between pathways and a drug, highlighting important pathways that are involved in the drug response. Extensive experiments on the GDSC (Genomics of Drug Sensitivity and Cancer) dataset demonstrate that the proposed method outperforms state-of-the-art graph-based models for drug response prediction. In addition, DRPreter detected putative key genes and pathways for specific drug-cell-line pairs with supporting evidence in the literature, implying that our model can help interpret the mechanism of action of the drug.
Collapse
Affiliation(s)
- Jihye Shin
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Yinhua Piao
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- AIGENDRUG Co., Ltd., Seoul 08826, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
- MOGAM Institute for Biomedical Research, Yongin-si 16924, Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
32
|
Ma J, Zhang L, Li S, Liu H. BRPCA: Bounded Robust Principal Component Analysis to Incorporate Similarity Network for N7-Methylguanosine(m 7G) Site-Disease Association Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3295-3306. [PMID: 34469307 DOI: 10.1109/tcbb.2021.3109055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent studies have revealed that N7-methylguanosine(m7G) plays a pivotal role in various biological processes and disease pathogenesis. To date, transcriptome-wide m7G modification sites have been identified by high-throughput sequencing approaches, and some related information has been recorded in a few biological databases. However, the mechanism of site action in disease remains uncharted. Wet experiments can help identify true m7G sites with high confidence, but it is time-consuming to find the true ones in such a large number of sites, which will also cost too much. Thus, computational methods are emergently needed to predict the associations between m7G sites and various diseases, thus help to uncover potential active sites for specific diseases. In this article, we proposed a bounded robust principal component analysis (BRPCA) method to predict unknown m7G-disease association based on similarity information. Importantly, BRPCA tolerates the noise and redundancy existing in association and similarity information. Moreover, a suitable bounded constraint is incorporated into BRPCA to ensure that the predicted association scores locate in a meaningful interval. The extensive experiments demonstrate the superiority and robustness of the BRPCA.
Collapse
|
33
|
Cheng X, Dai C, Wen Y, Wang X, Bo X, He S, Peng S. NeRD: a multichannel neural network to predict cellular response of drugs by integrating multidimensional data. BMC Med 2022; 20:368. [PMID: 36244991 PMCID: PMC9575288 DOI: 10.1186/s12916-022-02549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Considering the heterogeneity of tumors, it is a key issue in precision medicine to predict the drug response of each individual. The accumulation of various types of drug informatics and multi-omics data facilitates the development of efficient models for drug response prediction. However, the selection of high-quality data sources and the design of suitable methods remain a challenge. METHODS In this paper, we design NeRD, a multidimensional data integration model based on the PRISM drug response database, to predict the cellular response of drugs. Four feature extractors, including drug structure extractor (DSE), molecular fingerprint extractor (MFE), miRNA expression extractor (mEE), and copy number extractor (CNE), are designed for different types and dimensions of data. A fully connected network is used to fuse all features and make predictions. RESULTS Experimental results demonstrate the effective integration of the global and local structural features of drugs, as well as the features of cell lines from different omics data. For all metrics tested on the PRISM database, NeRD surpassed previous approaches. We also verified that NeRD has strong reliability in the prediction results of new samples. Moreover, unlike other algorithms, when the amount of training data was reduced, NeRD maintained stable performance. CONCLUSIONS NeRD's feature fusion provides a new idea for drug response prediction, which is of great significance for precise cancer treatment.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Department of Biotechnology, Beijing Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yuqi Wen
- Department of Biotechnology, Beijing Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xiaoqi Wang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiaochen Bo
- Department of Biotechnology, Beijing Institute of Health Service and Transfusion Medicine, Beijing, China.
| | - Song He
- Department of Biotechnology, Beijing Institute of Health Service and Transfusion Medicine, Beijing, China.
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China. .,The State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China.
| |
Collapse
|
34
|
Identification of phenocopies improves prediction of targeted therapy response over DNA mutations alone. NPJ Genom Med 2022; 7:58. [PMID: 36253482 PMCID: PMC9576758 DOI: 10.1038/s41525-022-00328-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
DNA mutations in specific genes can confer preferential benefit from drugs targeting those genes. However, other molecular perturbations can “phenocopy” pathogenic mutations, but would not be identified using standard clinical sequencing, leading to missed opportunities for other patients to benefit from targeted treatments. We hypothesized that RNA phenocopy signatures of key cancer driver gene mutations could improve our ability to predict response to targeted therapies, despite not being directly trained on drug response. To test this, we built gene expression signatures in tissue samples for specific mutations and found that phenocopy signatures broadly increased accuracy of drug response predictions in-vitro compared to DNA mutation alone, and identified additional cancer cell lines that respond well with a positive/negative predictive value on par or better than DNA mutations. We further validated our results across four clinical cohorts. Our results suggest that routine RNA sequencing of tumors to identify phenocopies in addition to standard targeted DNA sequencing would improve our ability to accurately select patients for targeted therapies in the clinic.
Collapse
|
35
|
Peng W, Liu H, Dai W, Yu N, Wang J. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions. Bioinformatics 2022; 38:4546-4553. [PMID: 35997568 DOI: 10.1093/bioinformatics/btac574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Due to cancer heterogeneity, the therapeutic effect may not be the same when a cohort of patients of the same cancer type receive the same treatment. The anticancer drug response prediction may help develop personalized therapy regimens to increase survival and reduce patients' expenses. Recently, graph neural network-based methods have aroused widespread interest and achieved impressive results on the drug response prediction task. However, most of them apply graph convolution to process cell line-drug bipartite graphs while ignoring the intrinsic differences between cell lines and drug nodes. Moreover, most of these methods aggregate node-wise neighbor features but fail to consider the element-wise interaction between cell lines and drugs. RESULTS This work proposes a neighborhood interaction (NI)-based heterogeneous graph convolution network method, namely NIHGCN, for anticancer drug response prediction in an end-to-end way. Firstly, it constructs a heterogeneous network consisting of drugs, cell lines and the known drug response information. Cell line gene expression and drug molecular fingerprints are linearly transformed and input as node attributes into an interaction model. The interaction module consists of a parallel graph convolution network layer and a NI layer, which aggregates node-level features from their neighbors through graph convolution operation and considers the element-level of interactions with their neighbors in the NI layer. Finally, the drug response predictions are made by calculating the linear correlation coefficients of feature representations of cell lines and drugs. We have conducted extensive experiments to assess the effectiveness of our model on Cancer Drug Sensitivity Data (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets. It has achieved the best performance compared with the state-of-the-art algorithms, especially in predicting drug responses for new cell lines, new drugs and targeted drugs. Furthermore, our model that was well trained on the GDSC dataset can be successfully applied to predict samples of PDX and TCGA, which verified the transferability of our model from cell line in vitro to the datasets in vivo. AVAILABILITY AND IMPLEMENTATION The source code can be obtained from https://github.com/weiba/NIHGCN. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Hancheng Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650050, P.R. China
| | - Ning Yu
- Department of Computing Sciences, The College at Brockport, State University of New York, Brockport, NY 14422, USA
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, P.R. China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
36
|
Gene expression based inference of cancer drug sensitivity. Nat Commun 2022; 13:5680. [PMID: 36167836 PMCID: PMC9515171 DOI: 10.1038/s41467-022-33291-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Inter and intra-tumoral heterogeneity are major stumbling blocks in the treatment of cancer and are responsible for imparting differential drug responses in cancer patients. Recently, the availability of high-throughput screening datasets has paved the way for machine learning based personalized therapy recommendations using the molecular profiles of cancer specimens. In this study, we introduce Precily, a predictive modeling approach to infer treatment response in cancers using gene expression data. In this context, we demonstrate the benefits of considering pathway activity estimates in tandem with drug descriptors as features. We apply Precily on single-cell and bulk RNA sequencing data associated with hundreds of cancer cell lines. We then assess the predictability of treatment outcomes using our in-house prostate cancer cell line and xenografts datasets exposed to differential treatment conditions. Further, we demonstrate the applicability of our approach on patient drug response data from The Cancer Genome Atlas and an independent clinical study describing the treatment journey of three melanoma patients. Our findings highlight the importance of chemo-transcriptomics approaches in cancer treatment selection. Predicting treatment response in cancer remains a highly complex task. Here, the authors develop Precily, a deep neural network framework to predict treatment response in cancer by considering gene expression, pathway activity estimates and drug features, and test this method in multiple datasets and preclinical models.
Collapse
|
37
|
Liu M, Shen X, Pan W. Deep reinforcement learning for personalized treatment recommendation. Stat Med 2022; 41:4034-4056. [PMID: 35716038 PMCID: PMC9427729 DOI: 10.1002/sim.9491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
In precision medicine, the ultimate goal is to recommend the most effective treatment to an individual patient based on patient-specific molecular and clinical profiles, possibly high-dimensional. To advance cancer treatment, large-scale screenings of cancer cell lines against chemical compounds have been performed to help better understand the relationship between genomic features and drug response; existing machine learning approaches use exclusively supervised learning, including penalized regression and recommender systems. However, it would be more efficient to apply reinforcement learning to sequentially learn as data accrue, including selecting the most promising therapy for a patient given individual molecular and clinical features and then collecting and learning from the corresponding data. In this article, we propose a novel personalized ranking system called Proximal Policy Optimization Ranking (PPORank), which ranks the drugs based on their predicted effects per cell line (or patient) in the framework of deep reinforcement learning (DRL). Modeled as a Markov decision process, the proposed method learns to recommend the most suitable drugs sequentially and continuously over time. As a proof-of-concept, we conduct experiments on two large-scale cancer cell line data sets in addition to simulated data. The results demonstrate that the proposed DRL-based PPORank outperforms the state-of-the-art competitors based on supervised learning. Taken together, we conclude that novel methods in the framework of DRL have great potential for precision medicine and should be further studied.
Collapse
Affiliation(s)
- Mingyang Liu
- School of StatisticsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Xiaotong Shen
- School of StatisticsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Wei Pan
- Division of BiostatisticsUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
38
|
Paltun BG, Kaski S, Mamitsuka H. DIVERSE: Bayesian Data IntegratiVE Learning for Precise Drug ResponSE Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2197-2207. [PMID: 33705322 DOI: 10.1109/tcbb.2021.3065535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detecting predictive biomarkers from multi-omics data is important for precision medicine, to improve diagnostics of complex diseases and for better treatments. This needs substantial experimental efforts that are made difficult by the heterogeneity of cell lines and huge cost. An effective solution is to build a computational model over the diverse omics data, including genomic, molecular, and environmental information. However, choosing informative and reliable data sources from among the different types of data is a challenging problem. We propose DIVERSE, a framework of Bayesian importance-weighted tri- and bi-matrix factorization(DIVERSE3 or DIVERSE2) to predict drug responses from data of cell lines, drugs, and gene interactions. DIVERSE integrates the data sources systematically, in a step-wise manner, examining the importance of each added data set in turn. More specifically, we sequentially integrate five different data sets, which have not all been combined in earlier bioinformatic methods for predicting drug responses. Empirical experiments show that DIVERSE clearly outperformed five other methods including three state-of-the-art approaches, under cross-validation, particularly in out-of-matrix prediction, which is closer to the setting of real use cases and more challenging than simpler in-matrix prediction. Additionally, case studies for discovering new drugs further confirmed the performance advantage of DIVERSE.
Collapse
|
39
|
Hostallero DE, Li Y, Emad A. Looking at the BiG Picture: Incorporating bipartite graphs in drug response prediction. Bioinformatics 2022; 38:3609-3620. [PMID: 35674359 DOI: 10.1093/bioinformatics/btac383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/17/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
MOTIVATION The increasing number of publicly available databases containing drugs' chemical structures, their response in cell lines, and molecular profiles of the cell lines has garnered attention to the problem of drug response prediction. However, many existing methods do not fully leverage the information that is shared among cell lines and drugs with similar structure. As such, drug similarities in terms of cell line responses and chemical structures could prove to be useful in forming drug representations to improve drug response prediction accuracy. RESULTS We present two deep learning approaches, BiG-DRP and BiG-DRP+, for drug response prediction. Our models take advantage of the drugs' chemical structure and the underlying relationships of drugs and cell lines through a bipartite graph and a heterogenous graph convolutional network that incorporate sensitive and resistant cell line information in forming drug representations. Evaluation of our methods and other state-of-the-art models in different scenarios shows that incorporating this bipartite graph significantly improves the prediction performance. Additionally, genes that contribute significantly to the performance of our models also point to important biological processes and signaling pathways. Analysis of predicted drug response of patients' tumors using our model revealed important associations between mutations and drug sensitivity, illustrating the utility of our model in pharmacogenomics studies. AVAILABILITY AND IMPLEMENTATION An implementation of the algorithms in Python is provided in https://github.com/ddhostallero/BiG-DRP. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David Earl Hostallero
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0E9, Canada
- Mila, Quebec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Yihui Li
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0E9, Canada
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0E9, Canada
- Mila, Quebec AI Institute, Montreal, QC H2S 3H1, Canada
- The Rosalind and Morris Goodman Cancer Institute, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
40
|
Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 2022; 27:211-230. [PMID: 35697909 PMCID: PMC9433358 DOI: 10.1007/s10911-022-09520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.
Collapse
Affiliation(s)
- Eric P Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hugo Villanueva
- Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Baylor College of Medicine, One Baylor Plaza, BCM-600; Room N1210, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Pu L, Singha M, Ramanujam J, Brylinski M. CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling. Oncotarget 2022; 13:695-706. [PMID: 35601606 PMCID: PMC9119687 DOI: 10.18632/oncotarget.28234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Development of novel anti-cancer treatments requires not only a comprehensive knowledge of cancer processes and drug mechanisms of action, but also the ability to accurately predict the response of various cancer cell lines to therapeutics. Numerous computational methods have been developed to address this issue, including algorithms employing supervised machine learning. Nonetheless, high prediction accuracies reported for many of these techniques may result from a significant overlap among training, validation, and testing sets, making existing predictors inapplicable to new data. To address these issues, we developed CancerOmicsNet, a graph neural network with sophisticated attention propagation mechanisms to predict the therapeutic effects of kinase inhibitors across various tumors. Emphasizing on the system-level complexity of cancer, CancerOmicsNet integrates multiple heterogeneous data, such as biological networks, genomics, inhibitor profiling, and gene-disease associations, into a unified graph structure. The performance of CancerOmicsNet, properly cross-validated at the tissue level, is 0.83 in terms of the area under the receiver operating characteristics, which is notably higher than those measured for other approaches. CancerOmicsNet generalizes well to unseen data, i.e., it can predict therapeutic effects across a variety of cancer cell lines and inhibitors. CancerOmicsNet is freely available to the academic community at https://github.com/pulimeng/CancerOmicsNet.
Collapse
Affiliation(s)
- Limeng Pu
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA.,These authors contributed equally to this work
| | - Manali Singha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,These authors contributed equally to this work
| | - Jagannathan Ramanujam
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA.,Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Brylinski
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
42
|
Establishment and characterization of a novel patient-derived cell line of dedifferentiated liposarcoma, NCC-DDLPS6-C1. Hum Cell 2022; 35:1270-1278. [PMID: 35604485 DOI: 10.1007/s13577-022-00710-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/23/2022] [Indexed: 11/04/2022]
Abstract
Dedifferentiated liposarcoma (DDLPS) is morphologically characterized by well-differentiated liposarcomas associated with high-grade non-lipogenic sarcoma and molecularly characterized by the coamplification of MDM2 and CDK4(12q14-15). DDLPS is highly aggressive, and effective systemic chemotherapy has not been developed yet. In this study, we established a novel DDLPS cell line, NCC-DDLPS6-C1, as a potential tool for the development of novel therapies. NCC-DDLPS6-C1 cells were established from surgically resected tumor tissues of a patient with DDLPS. Amplification and overexpression of MDM2 and CDK4 were observed in NCC-DDLPS6-C1 cells. NCC-DDLPS6-C1 cells proliferated rapidly, invaded aggressively, and formed spheroids. Moreover, NCC-DDLPS6-C1 cells formed tumors in mice. These observations suggested that the malignant potentials that may reflect the original features of DDLPS were retained in the NCC-DDLPS6-C1. Anticancer drugs that significantly reduced the proliferation of NCC-DDLPS6-C1 cells were identified by drug library screening. Thus, NCC-DDLPS6-C1 may recapitulate the original genotypes and phenotypes, and we conclude that the NCC-DDLPS6-C1 cell line is a useful resource for the study of DDLPS.
Collapse
|
43
|
Automatic identification of drug sensitivity of cancer cell with novel regression-based ensemble convolution neural network model. Soft comput 2022. [DOI: 10.1007/s00500-022-07098-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Jiang L, Jiang C, Yu X, Fu R, Jin S, Liu X. DeepTTA: a transformer-based model for predicting cancer drug response. Brief Bioinform 2022; 23:6554594. [PMID: 35348595 DOI: 10.1093/bib/bbac100] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
Identifying new lead molecules to treat cancer requires more than a decade of dedicated effort. Before selected drug candidates are used in the clinic, their anti-cancer activity is generally validated by in vitro cellular experiments. Therefore, accurate prediction of cancer drug response is a critical and challenging task for anti-cancer drugs design and precision medicine. With the development of pharmacogenomics, the combination of efficient drug feature extraction methods and omics data has made it possible to use computational models to assist in drug response prediction. In this study, we propose DeepTTA, a novel end-to-end deep learning model that utilizes transformer for drug representation learning and a multilayer neural network for transcriptomic data prediction of the anti-cancer drug responses. Specifically, DeepTTA uses transcriptomic gene expression data and chemical substructures of drugs for drug response prediction. Compared to existing methods, DeepTTA achieved higher performance in terms of root mean square error, Pearson correlation coefficient and Spearman's rank correlation coefficient on multiple test sets. Moreover, we discovered that anti-cancer drugs bortezomib and dactinomycin provide a potential therapeutic option with multiple clinical indications. With its excellent performance, DeepTTA is expected to be an effective method in cancer drug design.
Collapse
Affiliation(s)
- Likun Jiang
- Department of Computer Science, Xiamen University, Xiamen 361005, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Changzhi Jiang
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Xinyu Yu
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Rao Fu
- Department of Computer Science, Xiamen University, Xiamen 361005, China
| | - Shuting Jin
- Department of Computer Science, Xiamen University, Xiamen 361005, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| | - Xiangrong Liu
- Department of Computer Science, Xiamen University, Xiamen 361005, China.,National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
45
|
Sin Y, Yoshimatsu Y, Noguchi R, Tsuchiya R, Ono T, Akiyama T, Iwata S, Sugaya J, Yoshida A, Kawai A, Kondo T. Establishment and characterization of NCC-DDLPS5-C1: a novel patient-derived cell line of dedifferentiated liposarcoma. Hum Cell 2022; 35:936-943. [PMID: 35292923 DOI: 10.1007/s13577-022-00689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022]
Abstract
Dedifferentiated liposarcoma (DDLPS) is a highly aggressive subtype of liposarcoma that is morphologically defined as a transition from a well-differentiated lipomatous component to a non-lipogenic one. Curative therapy for DDLPS is complete resection, and the benefits of current systemic chemotherapy remain marginal. Although DDLPS is molecularly characterized by co-amplification of MDM2 and CDK4 (12q14-15) and detailed genomic analyses have been conducted by multiple research groups, the effects of molecular targeted drugs are marginal, and novel therapeutic modalities are required. Although patient-derived cell lines are pivotal for cancer research, no DDLPS cell lines are currently available from public cell repositories. Accordingly, in this study, we established a novel DDLPS cell line, NCC-DDLPS5-C1, using surgically resected tumor tissues from a patient with DDLPS. NCC-DDLPS5-C1 cells exhibited typical gene amplification, overexpression of MDM2 and CDK4, and other DNA copy number alterations. The NCC-DDLPS5-C1 cells were capable of rapid cell proliferation, aggressive invasion, and spheroid formation, but not tumor formation in mice. We reported the utility of NCC-DDLPS5-C1 cells for a drug-response assay to detect anticancer drugs that significantly attenuated cell proliferation. Thus, we concluded that the NCC-DDLPS5-C1 cell line could be a useful resource for the study of DDLPS. Considering the diversity of disease in terms of clinical outcomes, continuous efforts are required to develop more patient-derived cancer models with different clinical and pathological backgrounds.
Collapse
Affiliation(s)
- Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shintaro Iwata
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Jun Sugaya
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
46
|
Wang Z, Wang Z, Huang Y, Lu L, Fu Y. A multi-view multi-omics model for cancer drug response prediction. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03294-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Zhang L, Yuan Y, Yu J, Liu H. SEMCM: A Self-Expressive Matrix Completion Model for Anti-cancer Drug Sensitivity Prediction. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220302123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Genomic data sets generated by several recent large scale high-throughput screening efforts pose a thorny computational challenge for anticancer drug sensitivity prediction.
Objective:
We aimed to design an algorithm model that would predict missing elements in incomplete matrices and could be applicable to drug response prediction programs.
Method:
We developed a novel self-expressive matrix completion model to improve the predictive performance of drug response prediction problems. The model is based on the idea of subspace clustering and as a convex problem, it can be solved by alternating direction method of
multipliers. The original incomplete matrix can be filled through model training and parameters updated iteratively.
Results:
We applied SEMCM to Genomics of Drug Sensitivity in Cancer
(GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets to predict
unknown response values. A large number of experiments have proved that the algorithm has good prediction results and stability, which are better than several existing advanced drug sensitivity prediction and matrix
completion algorithms. Without modeling mutation information, SEMCM
could correctly predict cell line-drug associations for mutated cell lines and
wild cell lines. SEMCM can also be used for drug repositioning. The newly
predicted drug responses of GDSC dataset suggest that BL-41 was highly
sensitive to Bortezomib. Moreover, the sensitivity of A172 and NCI-H1437
to Paclitaxel was roughly the same.
Conclusion:
We report an efficient anticancer drug sensitivity prediction algorithm which is open-source and can predict the unknown responses of
cancer cell lines to drugs. Experimental results prove that our method can
not only improve the prediction accuracy but also can be applied to drug
repositioning.
Collapse
Affiliation(s)
- Lin Zhang
- Engineering Research Center of Intelligent Control for Underground
Space, Ministry of Education,
- China University of Mining and Technology, Xuzhou 221116, China
| | - Yuwei Yuan
- Engineering Research Center of Intelligent Control for Underground
Space, Ministry of Education,
- China University of Mining and Technology, Xuzhou 221116, China
| | - Jian Yu
- Engineering Research Center of Intelligent Control for Underground
Space, Ministry of Education,
- China University of Mining and Technology, Xuzhou 221116, China
| | - Hui Liu
- Engineering Research Center of Intelligent Control for Underground
Space, Ministry of Education,
- China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
48
|
Firoozbakht F, Yousefi B, Schwikowski B. An overview of machine learning methods for monotherapy drug response prediction. Brief Bioinform 2022; 23:bbab408. [PMID: 34619752 PMCID: PMC8769705 DOI: 10.1093/bib/bbab408] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
For an increasing number of preclinical samples, both detailed molecular profiles and their responses to various drugs are becoming available. Efforts to understand, and predict, drug responses in a data-driven manner have led to a proliferation of machine learning (ML) methods, with the longer term ambition of predicting clinical drug responses. Here, we provide a uniquely wide and deep systematic review of the rapidly evolving literature on monotherapy drug response prediction, with a systematic characterization and classification that comprises more than 70 ML methods in 13 subclasses, their input and output data types, modes of evaluation, and code and software availability. ML experts are provided with a fundamental understanding of the biological problem, and how ML methods are configured for it. Biologists and biomedical researchers are introduced to the basic principles of applicable ML methods, and their application to the problem of drug response prediction. We also provide systematic overviews of commonly used data sources used for training and evaluation methods.
Collapse
Affiliation(s)
- Farzaneh Firoozbakht
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Behnam Yousefi
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
- Sorbonne Université, École Doctorale Complexite du Vivant, Paris, France
| | - Benno Schwikowski
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
| |
Collapse
|
49
|
Zhu Y, Ouyang Z, Chen W, Feng R, Chen DZ, Cao J, Wu J. TGSA: protein-protein association-based twin graph neural networks for drug response prediction with similarity augmentation. Bioinformatics 2022; 38:461-468. [PMID: 34559177 DOI: 10.1093/bioinformatics/btab650] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/16/2021] [Accepted: 09/24/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Drug response prediction (DRP) plays an important role in precision medicine (e.g. for cancer analysis and treatment). Recent advances in deep learning algorithms make it possible to predict drug responses accurately based on genetic profiles. However, existing methods ignore the potential relationships among genes. In addition, similarity among cell lines/drugs was rarely considered explicitly. RESULTS We propose a novel DRP framework, called TGSA, to make better use of prior domain knowledge. TGSA consists of Twin Graph neural networks for Drug Response Prediction (TGDRP) and a Similarity Augmentation (SA) module to fuse fine-grained and coarse-grained information. Specifically, TGDRP abstracts cell lines as graphs based on STRING protein-protein association networks and uses Graph Neural Networks (GNNs) for representation learning. SA views DRP as an edge regression problem on a heterogeneous graph and utilizes GNNs to smooth the representations of similar cell lines/drugs. Besides, we introduce an auxiliary pre-training strategy to remedy the identified limitations of scarce data and poor out-of-distribution generalization. Extensive experiments on the GDSC2 dataset demonstrate that our TGSA consistently outperforms all the state-of-the-art baselines under various experimental settings. We further evaluate the effectiveness and contributions of each component of TGSA via ablation experiments. The promising performance of TGSA shows enormous potential for clinical applications in precision medicine. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/violet-sto/TGSA. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yiheng Zhu
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310000, China
| | - Zhenqiu Ouyang
- Polytechnic Institute, Zhejiang University, Hangzhou 310000, China
| | - Wenbo Chen
- Polytechnic Institute, Zhejiang University, Hangzhou 310000, China
| | - Ruiwei Feng
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310000, China
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ji Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jian Wu
- Department of Ophthalmology of the Second Affiliated Hospital School of Medicine, and School of Public Health, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
50
|
Pepe G, Carrino C, Parca L, Helmer-Citterich M. Dissecting the Genome for Drug Response Prediction. Methods Mol Biol 2022; 2449:187-196. [PMID: 35507263 DOI: 10.1007/978-1-0716-2095-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The prediction of the cancer cell lines sensitivity to a specific treatment is one of the current challenges in precision medicine. With omics and pharmacogenomics data being available for over 1000 cancer cell lines, several machine learning and deep learning algorithms have been proposed for drug sensitivity prediction. However, deciding which omics data to use and which computational methods can efficiently incorporate data from different sources is the challenge which several research groups are working on. In this review, we summarize recent advances in the representative computational methods that have been developed in the last 2 years on three public datasets: COSMIC, CCLE, NCI-60. These methods aim to improve the prediction of the cancer cell lines sensitivity to a given treatment by incorporating drug's chemical information in the input or using a priori feature selection. Finally, we discuss the latest published method which aims to improve the prediction of clinical drug response of real patients starting from cancer cell line molecular profiles.
Collapse
Affiliation(s)
- Gerardo Pepe
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy
| | - Chiara Carrino
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Parca
- Italian Space Agency, Via del Politecnico snc, Rome, Italy
| | - Manuela Helmer-Citterich
- Department of Biology, Centro di Bioinformatica Molecolare, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|