1
|
Di Nisio E, Licursi V, Mannironi C, Buglioni V, Paiardini A, Robusti G, Noberini R, Bonaldi T, Negri R. A truncated and catalytically inactive isoform of KDM5B histone demethylase accumulates in breast cancer cells and regulates H3K4 tri-methylation and gene expression. Cancer Gene Ther 2023:10.1038/s41417-022-00584-w. [PMID: 36697763 DOI: 10.1038/s41417-022-00584-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
KDM5B histone demethylase is overexpressed in many cancers and plays an ambivalent role in oncogenesis, depending on the specific context. This ambivalence could be explained by the expression of KDM5B protein isoforms with diverse functional roles, which could be present at different levels in various cancer cell lines. We show here that one of these isoforms, namely KDM5B-NTT, accumulates in breast cancer cell lines due to remarkable protein stability relative to the canonical PLU-1 isoform, which shows a much faster turnover. This isoform is the truncated and catalytically inactive product of an mRNA with a transcription start site downstream of the PLU-1 isoform, and the consequent usage of an alternative ATG for translation initiation. It also differs from the PLU-1 transcript in the inclusion of an additional exon (exon-6), previously attributed to other putative isoforms. Overexpression of this isoform in MCF7 cells leads to an increase in bulk H3K4 methylation and induces derepression of a gene cluster, including the tumor suppressor Cav1 and several genes involved in the interferon-alpha and -gamma response. We discuss the relevance of this finding considering the hypothesis that KDM5B may possess regulatory roles independent of its catalytic activity.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, DD1 5EH, Dundee, Scotland, UK
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Cecilia Mannironi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Valentina Buglioni
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Department of Oncology and Hematology-Oncology, University of Milan, Milan, 20122, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy. .,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy.
| |
Collapse
|
2
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Alternative Splicing, Epigenetic Modifications and Cancer: A Dangerous Triangle, or a Hopeful One? Cancers (Basel) 2022; 14:cancers14030560. [PMID: 35158828 PMCID: PMC8833605 DOI: 10.3390/cancers14030560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Epigenetics studies the alteration of gene expression without changing DNA sequence and very often, epigenetic dysregulation causes cancer. Alternative splicing is a mechanism that results in the production of several mRNA isoforms from a single gene and aberrant splicing is also a frequent cause of cancer. The present review is built on the interrelations of epigenetics and alternative splicing. In an intuitive way, we say that epigenetic modifications and alternative splicing are at two vertices of a triangle, the third vertex being occupied by cancer. Interconnection between alternative splicing and epigenetic modifications occurs backward and forward and the mechanisms involved are widely reviewed. These connections also provide novel diagnostic or prognostic tools, which are listed. Finally, as epigenetic alterations are reversible and aberrant alternative splicing may be corrected, the therapeutic possibilities to break the triangle are discussed. Abstract The alteration of epigenetic modifications often causes cancer onset and development. In a similar way, aberrant alternative splicing may result in oncogenic products. These issues have often been individually reviewed, but there is a growing body of evidence for the interconnection of both causes of cancer. Actually, aberrant splicing may result from abnormal epigenetic signalization and epigenetic factors may be altered by alternative splicing. In this way, the interrelation between epigenetic marks and alternative splicing form the base of a triangle, while cancer may be placed at the vertex. The present review centers on the interconnections at the triangle base, i.e., between alternative splicing and epigenetic modifications, which may result in neoplastic transformations. The effects of different epigenetic factors, including DNA and histone modifications, the binding of non-coding RNAs and the alterations of chromatin organization on alternative splicing resulting in cancer are first considered. Other less-frequently considered questions, such as the epigenetic regulation of the splicing machinery, the aberrant splicing of epigenetic writers, readers and erasers, etc., are next reviewed in their connection with cancer. The knowledge of the above-mentioned relationships has allowed increasing the collection of biomarkers potentially useful as cancer diagnostic and/or prognostic tools. Finally, taking into account on one hand that epigenetic changes are reversible, and some epigenetic drugs already exist and, on the other hand, that drugs intended for reversing aberrations in alternative splicing, therapeutic possibilities for breaking the mentioned cancer-related triangle are discussed.
Collapse
|
4
|
Jamshidi S, Catchpole S, Chen J, So CWE, Burchell J, Rahman KM, Taylor-Papadimitriou J. KDM5B protein expressed in viable and fertile ΔARID mice exhibit no demethylase activity. Int J Oncol 2021; 59:96. [PMID: 34713299 PMCID: PMC8562390 DOI: 10.3892/ijo.2021.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Post‑translational modification of histones serve a crucial role in the control of gene transcription. Trimethylation of lysine 4 on histone 3 is associated with transcription activation. There are currently six known methylases and six known demethylases that can control the methylation status of this site. Lysine demethylase 5B (KDM5B) is one such demethylase, which can repress gene expression. In particular KDM5B has been found to be overexpressed in a number of cancer types, and small‑molecular weight inhibitors of its demethylase activity have been identified. Previous characterisation of Kdm5b knock‑out mice has revealed that this genotype leads to either embryonic or neonatal lethality. However, the ΔA‑T rich interaction domain (ΔARID)‑KDM5B strain of mice, which have the ARID domain and five amino acids within the Jumonji (Jmj)N domain spliced out from KDM5B, remain viable and fertile. In the present study, ΔARID‑KDM5B was found to have no demethylase activity as determined by in vitro demethylase assays and by immunofluorescence in transfected Cos‑1 cells. Furthermore, molecular dynamic simulations revealed conformational changes within the ΔARID‑KDM5B structure compared with that in WT‑KDM5B, particularly in the JmjC domain, which is responsible for the catalytic activity of WT‑KDM5B. This supports the experimental data that shows the loss of demethylase activity. Since Kdm5b knock‑out mice show varying degrees of lethality, these data suggest that KDM5B serves a crucial function in development in a manner that is independent of its demethylase activity.
Collapse
Affiliation(s)
- Shirin Jamshidi
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NN, UK
| | - Steven Catchpole
- Breast Cancer Biology, Innovation Hub, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| | - Jie Chen
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, Denmark Hill Campus, King's College London, London SE5 9RJ, UK
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, Denmark Hill Campus, King's College London, London SE5 9RJ, UK
| | - Joy Burchell
- Breast Cancer Biology, Innovation Hub, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 9NN, UK
| | - Joyce Taylor-Papadimitriou
- Breast Cancer Biology, Innovation Hub, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
5
|
Liu GM, Lu TC, Liu Y, Luo YG. Gene expression analysis of primary gingival cancer by whole exome sequencing in thirteen Chinese patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1909-1914. [PMID: 32782722 PMCID: PMC7414513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES Early diagnosis of and markers for gingival oral squamous cell carcinoma (OSCC) is important for effective treatment. METHODS The current study performed a whole exome sequencing of gingival OSCC tissues in thirteen Chinese patients to explore exonic mutants. RESULTS Eighty-five genes emerged as mutants in patients with primary gingival OSCC. CCL4L1 presented a G>A transversion at chr17 17q12, position 36212480, exon 3. KDM5B presented a T>TA insertion at chr1 1q32.1, position 202766506, exon 6. ANKRD36C presented a C>G transition at chr2 2q11.1, position 95945175, exon 18. CONCLUSION These three mutants might be new markers of gingival OSCC. The finding may provide new targets to diagnose and treat gingival OSCC.
Collapse
Affiliation(s)
- Guo-Min Liu
- Department of Orthopedics, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
- Jilin Provincial Changbai Mountain Anti-tumor Medicine Engineering CenterChangchun, Jilin, China
| | - Tian-Cheng Lu
- Life Sciences College, Jilin Agricultural UniversityChangchun 130118, Jilin, China
- Jilin Provincial Changbai Mountain Anti-tumor Medicine Engineering CenterChangchun, Jilin, China
| | - Yun Liu
- Department of Orthopedics, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
- Jilin Provincial Changbai Mountain Anti-tumor Medicine Engineering CenterChangchun, Jilin, China
| | - Yun-Gang Luo
- Department of Stomatology, The Second Hospital of Jilin UniversityChangchun 130041, Jilin, China
- Jilin Provincial Changbai Mountain Anti-tumor Medicine Engineering CenterChangchun, Jilin, China
| |
Collapse
|
6
|
Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 2019; 131:282-298. [PMID: 30572012 DOI: 10.1016/j.freeradbiomed.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
The chromatin structure of the mammalian genome must facilitate both precisely-controlled DNA replication together with tightly-regulated gene transcription. This necessarily involves complex mechanisms and processes which remain poorly understood. It has long been recognised that the epigenetic landscape becomes established during embryonic development and acts to specify and determine cell fate. In addition, the chromatin structure is highly dynamic and allows for both cellular reprogramming and homeostatic modulation of cell function. In this respect, the functions of epigenetic "erasers", which act to remove covalently-linked epigenetic modifications from DNA and histones are critical. The enzymatic activities of the TET and JmjC protein families have been identified as demethylases which act to remove methyl groups from DNA and histones, respectively. Further, they are characterised as members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase superfamily. This provides the intriguing possibility that their enzymatic activities may be modulated by cellular metabolism, oxygen availability and redox-based mechanisms, all of which are likely to display dynamic cell- and tissue-specific patterns of flux. Here we discuss the current evidence for such [O2]- and redox-dependent regulation of the TET and Jmjc demethylases and the potential physiological and pathophysiological functional consequences of such regulation.
Collapse
Affiliation(s)
- Nermina Lamadema
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Simon Burr
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London BHF Centre of Research Excellence, United Kingdom.
| |
Collapse
|