1
|
Kim J, Chang HS, Yun HJ, Chang HJ, Park KC. New Small-Molecule SERCA Inhibitors Enhance Treatment Efficacy in Lenvatinib-Resistant Papillary Thyroid Cancer. Int J Mol Sci 2024; 25:10646. [PMID: 39408974 PMCID: PMC11476702 DOI: 10.3390/ijms251910646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Papillary thyroid cancer (PTC) is one of the most treatable forms of cancer, with many cases being fully curable. However, resistance to anticancer drugs often leads to metastasis or recurrence, contributing to the failure of cancer therapy and, ultimately, patient mortality. The mechanisms underlying molecular differences in patients with metastatic or recurrent PTC, particularly those resistant to anticancer drugs through epigenetic reprogramming, remain poorly understood. Consequently, refractory PTC presents a critical challenge, and effective therapeutic strategies are urgently needed. Therefore, this study aimed to identify small-molecule inhibitors to enhance treatment efficacy in lenvatinib-resistant PTC. We observed an increase in sarco/endoplasmic reticulum calcium ATPase (SERCA) levels in patient-derived lenvatinib-resistant PTC cells compared with lenvatinib-sensitive ones, highlighting its potential as a therapeutic target. We subsequently identified two SERCA inhibitors [candidates 40 (isoflurane) and 42 (ethacrynic acid)] through in silico screening. These candidates demonstrated significant tumor shrinkage in a xenograft tumor model and reduced cell viability in patient-derived lenvatinib-resistant PTC cells when used in combination with lenvatinib. Our findings have potential clinical value for the development of new combination therapies to effectively target highly malignant, anticancer drug-resistant cancers.
Collapse
Affiliation(s)
- Jungmin Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Hang-Seok Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (H.-S.C.); (H.J.Y.); (H.-J.C.)
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (H.-S.C.); (H.J.Y.); (H.-J.C.)
| | - Ho-Jin Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea; (H.-S.C.); (H.J.Y.); (H.-J.C.)
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
2
|
Kooti A, Abuei H, Jaafari A, Taki S, Saberzadeh J, Farhadi A. Activating transcription factor 3 mediates apoptosis and cell cycle arrest in TP53-mutated anaplastic thyroid cancer cells. Thyroid Res 2024; 17:12. [PMID: 39085957 PMCID: PMC11292864 DOI: 10.1186/s13044-024-00202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND It is believed that loss of p53 function plays a crucial role in the progression of well to poorly differentiated thyroid cancers including anaplastic thyroid carcinoma (ATC). Given the poor prognosis of ATC due to its strong therapeutic resistance, there is a need to establish new therapeutic targets to extend the survival of ATC patients. Activating transcription factor 3 (ATF3) can inhibit the oncogenic activity of mutant p53 and, as a result, contribute to tumor suppression in several TP53-mutated cancers. Herein, we demonstrate that the ectopic overexpression of ATF3 leads to the suppression of oncogenic mutant p53 activity in chemo-resistant 8305 C thyroid cancer cells harboring R273C p53 gene mutation. METHODS The biological behavior of 8305 C cells was assessed pre- and post-transfection with pCMV6-ATF3 plasmid using MTT assay, fluorescent microscopy, cell cycle, and annexin V/PI flow cytometric analysis. The effect of ectopic ATF3 overexpression on the cellular level of p53 was examined by western blotting assay. The mRNA expression levels of TP53, TAp63, ΔNp63, and SHARP1 were evaluated in ectopic ATF3-expressing cells compared to controls. RESULTS The overexpression of ATF3 in 8305 C thyroid cancer cells significantly decreased cell viability and induced apoptosis and cell cycle arrest in vitro. The immunoblotting of p53 protein revealed that ATF3 overexpression significantly increased the level of mutant p53 in 8305C cells compared to mock-transfected control cells. Additionally, elevated mRNA levels of TAp63 and SHARP1 and a decreased mRNA level of ΔNp63 were observed in PCMV6-AC-ATF3-transfected 8305 C cells with significant differences compared to the mock and untreated cells. CONCLUSION In light of our findings, it is evident that therapeutic strategies aimed at increasing ATF3 expression or enhancing the interaction between ATF3 and mutant p53 can be a promising approach for the treatment of p53-mutated metastatic thyroid cancer.
Collapse
Affiliation(s)
- Abolfazl Kooti
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Jaafari
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Taki
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamileh Saberzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 7143918596, Iran.
| |
Collapse
|
3
|
Hirose Y, Sato S, Hashiya K, Ooga M, Bando T, Sugiyama H. Chb-M', an Inhibitor of the RUNX Family Binding to DNA, Induces Apoptosis in p53-Mutated Non-Small Cell Lung Cancer and Inhibits Tumor Growth and Repopulation In Vivo. J Med Chem 2024; 67:9165-9172. [PMID: 38803164 DOI: 10.1021/acs.jmedchem.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Runt-related transcription factor (RUNX) proteins are considered to play various roles in cancer. Here, we evaluated the anticancer activity of Chb-M', a compound that specifically and covalently binds to the consensus sequence for RUNX family proteins, in p53-mutated non-small cell lung cancer cells. Chb-M' killed the cancer cells by inducing apoptosis. The compound showed an anticancer effect comparable to that of the clinically used drugs alectinib and ceritinib in vivo. Notably, Chb-M' extended the cancer-free survival of mice after ending treatment more effectively than did the other two drugs. The results presented here suggest that Chb-M' is an attractive candidate as an anticancer drug applicable to the treatment of non-small cell lung cancer and various other types of cancers.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Yuan H, Chen C, Li H, Qu G, Chen L, Liu Y, Zhang Y, Zhao Q, Lian C, Ji A, Hou X, Liu X, Jiang K, Zhu Y, He Y. Role of a novel circRNA-CGNL1 in regulating pancreatic cancer progression via NUDT4-HDAC4-RUNX2-GAMT-mediated apoptosis. Mol Cancer 2024; 23:27. [PMID: 38297362 PMCID: PMC10829403 DOI: 10.1186/s12943-023-01923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is an extremely malignant tumor with low survival rate. Effective biomarkers and therapeutic targets for PC are lacking. The roles of circular RNAs (circRNAs) in cancers have been explored in various studies, however more work is needed to understand the functional roles of specific circRNAs. In this study, we explore the specific role and mechanism of circ_0035435 (termed circCGNL1) in PC. METHODS qRT-PCR analysis was performed to detect circCGNL1 expression, indicating circCGNL1 had low expression in PC cells and tissues. The function of circCGNL1 in PC progression was examined both in vitro and in vivo. circCGNL1-interacting proteins were identified by performing RNA pulldown, co-immunoprecipitation, GST-pulldown, and dual-luciferase reporter assays. RESULTS Overexpressing circCGNL1 inhibited PC proliferation via promoting apoptosis. CircCGNL1 interacted with phosphatase nudix hydrolase 4 (NUDT4) to promote histone deacetylase 4 (HDAC4) dephosphorylation and subsequent HDAC4 nuclear translocation. Intranuclear HDAC4 mediated RUNX Family Transcription Factor 2 (RUNX2) deacetylation and thereby accelerating RUNX2 degradation. The transcription factor, RUNX2, inhibited guanidinoacetate N-methyltransferase (GAMT) expression. GAMT was further verified to induce PC cell apoptosis via AMPK-AKT-Bad signaling pathway. CONCLUSIONS We discovered that circCGNL1 can interact with NUDT4 to enhance NUDT4-dependent HDAC4 dephosphorylation, subsequently activating HDAC4-RUNX2-GAMT-mediated apoptosis to suppress PC cell growth. These findings suggest new therapeutic targets for PC.
Collapse
Affiliation(s)
- Hao Yuan
- Department of General Surgery, Pancreas Centre, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, P. R. China
- Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chuang Chen
- Department of Hepatopancreatobiliary Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Haonan Li
- Changzhi Medical College, Changzhi, China
| | - Gexi Qu
- Changzhi Medical College, Changzhi, China
| | - Luyao Chen
- Changzhi Medical College, Changzhi, China
| | - Yaxing Liu
- Changzhi Medical College, Changzhi, China
| | - Yufeng Zhang
- Department of General Surgery, Pancreas Centre, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, P. R. China
| | - Qiang Zhao
- Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Changhong Lian
- Heping Hospital, Changzhi Medical College, Changzhi, China
| | - Aifang Ji
- Heping Hospital, Changzhi Medical College, Changzhi, China
| | | | - Xinjian Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Kuirong Jiang
- Department of General Surgery, Pancreas Centre, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, P. R. China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Yi Zhu
- Department of General Surgery, Pancreas Centre, the First Affiliated Hospital With Nanjing Medical University, 300 Guangzhou Road, Nanjing, P. R. China.
- Pancreas Institute, Nanjing Medical University, Nanjing, China.
| | - Yuan He
- Changzhi Medical College, Changzhi, China.
- Heping Hospital, Changzhi Medical College, Changzhi, China.
| |
Collapse
|
5
|
Lips A, Calvano Küchler E, Ribeiro Madalena I, Nivoloni Tannure P, Santos Antunes L, Azeredo Alves Antunes L, Castro Costa M, Proff P, Kirschneck C, Baratto-Filho F. Non-syndromic supernumerary teeth and association with a self-reported family history of cancer. J Orofac Orthop 2023:10.1007/s00056-023-00504-z. [PMID: 38051344 DOI: 10.1007/s00056-023-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Supernumerary teeth are an alteration of dental developmental and result in the formation of teeth above the usual number. Epidemiologic studies suggested that patients with dentofacial anomalies and their family members may present an increased risk of developing cancer, including female breast cancer and gynecologic cancers. These observations indicate that genetic alterations that result in dental anomalies may be related to cancer development. Thus, the aim of the present study was to evaluate the association between supernumerary teeth and a family history of female breast cancer and gynecologic cancers. METHODS The diagnosis of supernumerary teeth was based on clinical and radiographic examinations. For data collection, a questionnaire asking for information regarding ethnicity, age, gender, and self-reported family history of cancer up to the second generation was used. Statistical analysis was performed using the Χ2 test and Fisher's exact test with an established α of 5%. RESULTS A total of 344 patients were included; 47 of them had one or more non-syndromic supernumerary teeth (not associated with any syndrome or cleft lip and palate) and 297 were control patients. Age, ethnicity, and gender distribution were not statistically different between the group with supernumerary teeth and the control group (p > 0.05). The supernumerary teeth were most commonly observed in the incisors area. Breast cancer (n = 17) was the most commonly self-reported type of cancer, followed by uterine cervical (n = 10), endometrial (n = 2), and ovarian (n = 1) cancers. Endometrial cancer was significantly associated with the diagnosis of supernumerary teeth (p = 0.017). CONCLUSION This study suggests that patients with supernumerary teeth possess a higher risk of having family members with endometrial cancer.
Collapse
Affiliation(s)
- Andrea Lips
- Department of Dentistry, University of Joinville Region, Joinville, SC, Brazil
| | - Erika Calvano Küchler
- Department of Orthodontics, Medical Faculty, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | - Isabela Ribeiro Madalena
- Department of Dentistry, University of Joinville Region, Joinville, SC, Brazil
- School of Dentistry, Presidente Tancredo de Almeida Neves University Center, São João del Rei, MG, Brazil
| | | | - Leonardo Santos Antunes
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - Livia Azeredo Alves Antunes
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | | | - Peter Proff
- Department of Pediatric Dentistry and Orthodontics, Rio de Janeiro Federal University, Rio de Janeiro, RJ, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, Medical Faculty, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Flares Baratto-Filho
- Department of Dentistry, University of Joinville Region, Joinville, SC, Brazil
- School of Dentistry, Tuiuti University from Parana, Curitiba, PR, Brazil
| |
Collapse
|
6
|
Kim Y, Yun HJ, Choi KH, Kim CW, Lee JH, Weicker R, Kim SM, Park KC. Discovery of New Anti-Cancer Agents against Patient-Derived Sorafenib-Resistant Papillary Thyroid Cancer. Int J Mol Sci 2023; 24:16413. [PMID: 38003602 PMCID: PMC10671409 DOI: 10.3390/ijms242216413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Thyroid cancer is the most well-known type of endocrine cancer that is easily treatable and can be completely cured in most cases. Nonetheless, anti-cancer drug-resistant metastasis or recurrence may occur and lead to the failure of cancer therapy, which eventually leads to the death of a patient with cancer. This study aimed to detect novel thyroid cancer target candidates based on validating and identifying one of many anti-cancer drug-resistant targets in patient-derived sorafenib-resistant papillary thyroid cancer (PTC). We focused on targeting the sarco/endoplasmic reticulum calcium ATPase (SERCA) in patient-derived sorafenib-resistant PTC cells compared with patient-derived sorafenib-sensitive PTC cells. We discovered novel SERCA inhibitors (candidates 33 and 36) by virtual screening. These candidates are novel SERCA inhibitors that lead to remarkable tumor shrinkage in a xenograft tumor model of sorafenib-resistant patient-derived PTC cells. These results are clinically valuable for the progression of novel combinatorial strategies that facultatively and efficiently target extremely malignant cancer cells, such as anti-cancer drug-resistant PTC cells.
Collapse
Affiliation(s)
- Yuna Kim
- Department of Internal Medicine, Institute of Gastroenterology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 06273, Republic of Korea;
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Kyung Hwa Choi
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Republic of Korea;
| | - Chan Wung Kim
- CKP Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852, USA; (C.W.K.); (J.H.L.)
| | - Jae Ha Lee
- CKP Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852, USA; (C.W.K.); (J.H.L.)
| | - Raymond Weicker
- CKP Therapeutics, Inc., 110 Canal Street, Lowell, MA 01852, USA; (C.W.K.); (J.H.L.)
| | - Seok-Mo Kim
- Department of Surgery, Thyroid Cancer Center, Institute of Refractory Thyroid Cancer, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea;
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Maloney S, Clarke SJ, Sahni S, Hudson A, Colvin E, Mittal A, Samra J, Pavlakis N. The role of diagnostic, prognostic, and predictive biomarkers in the management of early pancreatic cancer. J Cancer Res Clin Oncol 2023; 149:13437-13450. [PMID: 37460806 PMCID: PMC10587199 DOI: 10.1007/s00432-023-05149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/09/2023] [Indexed: 10/20/2023]
Abstract
Despite modern advances in cancer medicine, pancreatic cancer survival remains unchanged at just 12%. For the small proportion of patients diagnosed with 'early' (upfront or borderline resectable) disease, recurrences are common, and many recur soon after surgery. Whilst chemotherapy has been shown to increase survival in this cohort, the morbidity of surgery renders many candidates unsuitable for adjuvant treatment. Due to this, and the success of upfront chemotherapy in the advanced setting, use of neoadjuvant chemotherapy has been introduced in patients with upfront or borderline resectable disease. Randomized controlled trials have been conducted to compare upfront surgery to neoadjuvant chemotherapy in this patient cohort, opinions on the ideal upfront treatment approach are divided. This lack of consensus has highlighted the need for biomarkers to assist in clinical decision making. This review analyses the potential diagnostic, prognostic and predictive biomarkers that may assist in the diagnosis and management of early (upfront and borderline resectable) pancreatic cancer.
Collapse
Affiliation(s)
- Sarah Maloney
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia.
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia.
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia.
| | - Stephen J Clarke
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
| | - Amanda Hudson
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
| | - Emily Colvin
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Jaswinder Samra
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health Sciences, Northern Clinical School, The University of Sydney, Sydney, 2065, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, The University of Sydney, Sydney, 2065, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, Sydney, NSW, 2065, Australia
| |
Collapse
|
8
|
Hirose Y, Sato S, Hashiya K, Bando T, Sugiyama H. Anticancer Activities of DNA-Alkylating Pyrrole-Imidazole Polyamide Analogs Targeting RUNX Transcription Factors against p53-Mutated Pancreatic Cancer PANC-1 Cells. J Med Chem 2023; 66:12059-12068. [PMID: 37606185 DOI: 10.1021/acs.jmedchem.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The runt-related transcription factor (RUNX) family is known to play important roles in the progression of cancer. Conjugate 1, which covalently binds to the RUNX-binding sequences, was reported to inhibit the binding of RUNX proteins to their target sites and suppress cancer growth. Here, we evaluated the anticancer effects of 1 and its analogs 2-4 against p53-mutated PANC-1 pancreatic cancer cells. We found that they possessed different DNA-alkylating properties in vitro. And conjugates 1-3 were shown to have anticancer effects by inducing apoptosis in PANC-1 cells. Furthermore, conjugates 2 and 3 suppressed cancer growth in PANC-1 xenograft mice, with activity equivalent to a 50-fold dose of gemcitabine. Especially, 3 showed the highest alkylation efficiency, specificity, and better anticancer effects against pancreatic cancer than 1 in vivo without significant body weight loss. Our results revealed the potential of our compounds as new candidates for cancer therapy.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Roy A, Chauhan S, Bhattacharya S, Jakhmola V, Tyagi K, Sachdeva A, Wasai A, Mandal S. Runt-related transcription factors in human carcinogenesis: a friend or foe? J Cancer Res Clin Oncol 2023; 149:9409-9423. [PMID: 37081242 DOI: 10.1007/s00432-023-04769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Cancer is one of the deadliest pathologies with more than 19 million new cases and 10 million cancer-related deaths across the globe. Despite development of advanced therapeutic interventions, cancer remains as a fatal pathology due to lack of early prognostic biomarkers, therapy resistance and requires identification of novel drug targets. METHODS Runt-related transcription factors (Runx) family controls several cellular and physiological functions including osteogenesis. Recent literatures from PubMed was mined and the review was written in comprehensive manner RESULTS: Recent literature suggests that aberrant expression of Runx contributes to tumorigenesis of many organs. Conversely, cell- and tissue-specific tumor suppressor roles of Runx are also reported. In this review, we have provided the structural/functional properties of Runx isoforms and its regulation in context of human cancer. Moreover, in an urgent need to discover novel therapeutic interventions against cancer, we comprehensively discussed the reported oncogenic and tumor suppressive roles of Runx isoforms in several tumor types and discussed the discrepancies that may have risen on Runx as a driver of malignant transformation. CONCLUSION Runx may be a novel therapeutic target against a battery of deadly human cancers.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India.
| | - Shivi Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abha Sachdeva
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abdul Wasai
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| |
Collapse
|
10
|
Chang HS, Kim Y, Lee SY, Yun HJ, Chang HJ, Park KC. Anti-Cancer SERCA Inhibitors Targeting Sorafenib-Resistant Human Papillary Thyroid Carcinoma. Int J Mol Sci 2023; 24:ijms24087069. [PMID: 37108231 PMCID: PMC10138651 DOI: 10.3390/ijms24087069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Thyroid cancer is generally curable and, in many cases, can be completely treated, although it can sometimes recur after cancer therapy. Papillary thyroid cancer (PTC) is known as one of the most general subtypes of thyroid cancer, which take up nearly 80% of whole thyroid cancer. However, PTC may develop anti-cancer drug resistance via metastasis or recurrence, making it practically incurable. In this study, we propose a clinical approach that identifies novel candidates based on target identification and validation of numerous survival-involved genes in human sorafenib-sensitive and -resistant PTC. Consequently, we recognized a sarco/endoplasmic reticulum calcium ATPase (SERCA) in human sorafenib-resistant PTC cells. Based on the present results, we detected novel SERCA inhibitor candidates 24 and 31 via virtual screening. These SERCA inhibitors showed remarkable tumor shrinkage in the sorafenib-resistant human PTC xenograft tumor model. These consequences would be clinically worthwhile for the development of a new combinatorial strategy that effectively targets incredibly refractory cancer cells, such as cancer stem cells and anti-cancer drug-resistant cells.
Collapse
Affiliation(s)
- Hang-Seok Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Yonjung Kim
- EONE-DIAGNOMICS Genome Center, New Drug R&D Center, 291 Harmony-ro, Yeonsu-gu, Incheon 22014, Republic of Korea
| | - So Young Lee
- EONE-DIAGNOMICS Genome Center, New Drug R&D Center, 291 Harmony-ro, Yeonsu-gu, Incheon 22014, Republic of Korea
| | - Hyeok Jun Yun
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ho-Jin Chang
- Department of Surgery, Thyroid Cancer Center, Gangnam Severance Hospital, Institute of Refractory Thyroid Cancer, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Ki Cheong Park
- Department of Surgery, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
RUNX Proteins as Epigenetic Modulators in Cancer. Cells 2022; 11:cells11223687. [PMID: 36429115 PMCID: PMC9688118 DOI: 10.3390/cells11223687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
RUNX proteins are highly conserved in metazoans and perform critical functions during development. Dysregulation of RUNX proteins through various molecular mechanisms facilitates the development and progression of various cancers, where different RUNX proteins show tumor type-specific functions and regulate different aspects of tumorigenesis by cross-talking with different signaling pathways such as Wnt, TGF-β, and Hippo. Molecularly, they could serve as transcription factors (TFs) to activate their direct target genes or interact with many other TFs to modulate chromatin architecture globally. Here, we review the current knowledge on the functions and regulations of RUNX proteins in different cancer types and highlight their potential role as epigenetic modulators in cancer.
Collapse
|
12
|
Matsui Y, Mineharu Y, Noguchi Y, Hattori EY, Kubota H, Hirata M, Miyamoto S, Sugiyama H, Arakawa Y, Kamikubo Y. Chlorambucil-conjugated PI-polyamides (Chb-M'), a transcription inhibitor of RUNX family, has an anti-tumor activity against SHH-type medulloblastoma with p53 mutation. Biochem Biophys Res Commun 2022; 620:150-157. [PMID: 35792512 DOI: 10.1016/j.bbrc.2022.06.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022]
Abstract
Malignancy of medulloblastoma depends on its molecular classification. Sonic Hedgehog (SHH)-type medulloblastoma with p53 mutation was recognized as one of the most aggressive types of tumors. We developed a novel drug, chlorambucil-conjugated PI-polyamides (Chb-M'), which was designed to compete with the RUNX consensus DNA-binding site. Chb-M' specifically recognizes this consensus sequence and alkylates it to inhibit the RUNX transcriptional activity. In-silico analysis showed all the RUNX families were upregulated in the SHH-type medulloblastoma. Thus, we tested the anti-tumor effects of Chb-M' in vitro and in vivo using Daoy cell lines, which belong to SHH with p53 mutation. Chb-M' inhibited tumor growth of Daoy cells by inducing apoptosis. The same inhibitory effect was also observed by knocking down of RUNX1 or RUNX2, but not RUNX3. Apoptosis array analysis showed that Chb-M' treatment induced phosphorylation of p53 serine 15 residues. In a subcutaneous tumor model, intratumoral injection of Chb-M' induced tumor growth retardation. Chb-M' mediated inhibition of RUNX1 and RUNX2 can be a novel therapeutic strategy for SHH-type medulloblastoma with p53 mutation.
Collapse
Affiliation(s)
- Yasuzumi Matsui
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuki Noguchi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Etsuko Yamamoto Hattori
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hirohito Kubota
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, 606-8507, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto City, Kyoto, 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| | - Yoshiki Arakawa
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
13
|
Potential Therapeutic Agents against Paclitaxel—And Sorafenib-Resistant Papillary Thyroid Carcinoma. Int J Mol Sci 2022; 23:ijms231810378. [PMID: 36142303 PMCID: PMC9499486 DOI: 10.3390/ijms231810378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Thyroid carcinoma, a disease in which malignant cells form in the thyroid tissue, is the most common endocrine carcinoma, with papillary thyroid carcinoma (PTC) accounting for nearly 80% of total thyroid carcinoma cases. However, the management of metastatic or recurrent therapy-refractory PTC is challenging and requires complex carcinoma therapy. In this study, we proposed a new clinical approach for the treatment of therapy-refractory PTC. We identified sarco/endoplasmic reticulum calcium ATPase (SERCA) as an essential factor for the survival of PTC cells refractory to the treatment with paclitaxel or sorafenib. We validated its use as a potential target for developing drugs against resistant PTC, by using patient-derived paclitaxel- or sorafenib-resistant PTC cells. We further discovered novel SERCA inhibitors, candidates 7 and 13, using the evolutionary chemical binding similarity method. These novel SERCA inhibitors determined a substantial reduction of tumors in a patient-derived xenograft tumor model developed using paclitaxel- or sorafenib-resistant PTC cells. These results could provide a basis for clinically meaningful progress in the treatment of refractory PTC by identifying a novel therapeutic strategy: using a combination therapy between sorafenib or paclitaxel and specific SERCA inhibitors for effectively and selectively targeting extremely malignant cells such as antineoplastic-resistant and carcinoma stem-like cells.
Collapse
|
14
|
Patierno BM, Foo WC, Allen T, Somarelli JA, Ware KE, Gupta S, Wise S, Wise JP, Qin X, Zhang D, Xu L, Li Y, Chen X, Inman BA, McCall SJ, Huang J, Kittles RA, Owzar K, Gregory S, Armstrong AJ, George DJ, Patierno SR, Hsu DS, Freedman JA. Characterization of a castrate-resistant prostate cancer xenograft derived from a patient of West African ancestry. Prostate Cancer Prostatic Dis 2022; 25:513-523. [PMID: 34645983 PMCID: PMC9005588 DOI: 10.1038/s41391-021-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer is a clinically and molecularly heterogeneous disease, with highest incidence and mortality among men of African ancestry. To date, prostate cancer patient-derived xenograft (PCPDX) models to study this disease have been difficult to establish because of limited specimen availability and poor uptake rates in immunodeficient mice. Ancestrally diverse PCPDXs are even more rare, and only six PCPDXs from self-identified African American patients from one institution were recently made available. METHODS In the present study, we established a PCPDX from prostate cancer tissue from a patient of estimated 90% West African ancestry with metastatic castration resistant disease, and characterized this model's pathology, karyotype, hotspot mutations, copy number, gene fusions, gene expression, growth rate in normal and castrated mice, therapeutic response, and experimental metastasis. RESULTS This PCPDX has a mutation in TP53 and loss of PTEN and RB1. We have documented a 100% take rate in mice after thawing the PCPDX tumor from frozen stock. The PCPDX is castrate- and docetaxel-resistant and cisplatin-sensitive, and has gene expression patterns associated with such drug responses. After tail vein injection, the PCPDX tumor cells can colonize the lungs of mice. CONCLUSION This PCPDX, along with others that are established and characterized, will be useful pre-clinically for studying the heterogeneity of prostate cancer biology and testing new therapeutics in models expected to be reflective of the clinical setting.
Collapse
Affiliation(s)
- Brendon M Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Wen-Chi Foo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tyler Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason A Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kathryn E Ware
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Santosh Gupta
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sandra Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - John P Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dadong Zhang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yanjing Li
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xufeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brant A Inman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shannon J McCall
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, 91010, CA, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Simon Gregory
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Daniel J George
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David S Hsu
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
15
|
Rana M, Perotti A, Bisset LM, Smith JD, Lamden E, Khan Z, Ismail MK, Ellis K, Armstrong KA, Hodder SL, Bertoli C, Meneguello L, de Bruin RAM, Morris JR, Romero-Canelon I, Tucker JHR, Hodges NJ. A ferrocene-containing nucleoside analogue targets DNA replication in pancreatic cancer cells. Metallomics 2022; 14:mfac041. [PMID: 35689667 PMCID: PMC9320222 DOI: 10.1093/mtomcs/mfac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that an organometallic nucleoside analogue, the ferronucleoside 1-(S,Rp), is cytotoxic in a panel of PDAC cell lines including gemcitabine-resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA replication, S-phase cell cycle arrest and stalling of DNA-replication forks, which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53-deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine-resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.
Collapse
Affiliation(s)
- Marium Rana
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alessio Perotti
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lucy M Bisset
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James D Smith
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emma Lamden
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zahra Khan
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Media K Ismail
- Department of pharmacy, college of pharmacy, Knowledge University, 44001 Erbil, Kurdistan Region, Iraq
| | - Katherine Ellis
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Katie A Armstrong
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Samantha L Hodder
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cosetta Bertoli
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Leticia Meneguello
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Joanna R Morris
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Isolda Romero-Canelon
- School of Pharmacy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James H R Tucker
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
16
|
miR-218-5p/RUNX2 Axis Positively Regulates Proliferation and Is Associated with Poor Prognosis in Cervical Cancer. Int J Mol Sci 2022; 23:ijms23136993. [PMID: 35805994 PMCID: PMC9267020 DOI: 10.3390/ijms23136993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
The overexpression of miR-218-5p in cervical cancer (CC) cell lines decreases migration, invasion and proliferation. The objective was to identify target genes of miR-218-5p and the signaling pathways and cellular processes that they regulate. The relationship between the expression of miR-218-5p and RUNX2 and overall survival in CC as well as the effect of the exogenous overexpression of miR-218-5p on the level of RUNX2 were analyzed. The target gene prediction of miR-218-5p was performed in TargetScan, miRTarBase and miRDB. Predicted target genes were subjected to gene ontology (GO) and pathway enrichment analysis using the Kyoto Encyclopaedia of Genes and Genomes (KEGG). The miR-218-5p mimetic was transfected into C-33A and CaSki cells, and the miR-218-5p and RUNX2 levels were determined by RT–qPCR. Of the 118 predicted targets for miR-218-5p, 86 are involved in protein binding, and 10, including RUNX2, are involved in the upregulation of proliferation. Low miR-218-5p expression and a high level of RUNX2 are related to poor prognosis in CC. miR-218-5p overexpression is related to decreased RUNX2 expression in C-33A and CaSki cells. miR-218-5p may regulate RUNX2, and both molecules may be prognostic markers in CC.
Collapse
|
17
|
Zhao H, Chen Y, Shen P, Gong L. Prognostic value and immune characteristics of RUNX gene family in human cancers: a pan-cancer analysis. Aging (Albany NY) 2022; 14:4014-4035. [PMID: 35522574 PMCID: PMC9134966 DOI: 10.18632/aging.204065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/23/2022] [Indexed: 11/25/2022]
Abstract
Background: Runt-related transcription factors (RUNX) are involved in numerous fundamental biological processes and play crucial parts in tumorigenesis and metastasis both directly and indirectly. However, the pan-cancer evidence of the RUNX gene family is not available. Methods: In this study, we analyzed the potential association between RUNX gene family expression and patient’s prognosis, immune cell infiltration, drug response, and genetic mutation data across different types of tumors using based on The Cancer Genome Atlas, Gene Expression Omnibus, and Oncomine database. Results: The results showed that the expression of the RUNX gene family varied among different cancer types, revealing its heterogeneity in cancers and that expression of RUNX2 was lower than that of RUNX1 and RUNX3 across all cancer types. RUNX gene family gene expression was related to prognosis in several cancers. Furthermore, our study revealed a clear association between RUNX gene family expression and ESTIMATE score, RNA stemness, and DNA stemness scores. Compared with RUNX1 and RUNX2, RUNX3 showed relatively low levels of genetic alterations. RUNX gene family genes had clear associations with immune infiltrate subtypes, and their expression was positively related to immune checkpoint genes and drug sensitivity in most cases. Two immunotherapy cohorts confirm that the expression of RUNX was correlated with the clinical response of immunotherapy. Conclusions: These findings will help to elucidate the potential oncogenic roles of RUNX gene family genes in different types of cancer and it can function as a prognostic marker in various malignant tumors.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai 200000, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, Shanghai, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Peijun Shen
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai 200000, Shanghai, China.,Laboratory of Myopia, NHC Key Laboratory of Myopia, Fudan University, Chinese Academy of Medical Sciences, Shanghai 200000, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200000, Shanghai, China
| |
Collapse
|
18
|
Relevance of gene mutations and methylation to the growth of pancreatic intraductal papillary mucinous neoplasms based on pyrosequencing. Sci Rep 2022; 12:419. [PMID: 35013462 PMCID: PMC8748617 DOI: 10.1038/s41598-021-04335-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
We aimed to assess some of the potential genetic pathways for cancer development from non-malignant intraductal papillary mucinous neoplasm (IPMN) by evaluating genetic mutations and methylation. In total, 46 dissected regions in 33 IPMN cases were analyzed and compared between malignant-potential and benign cases, or between malignant-potential and benign tissue dissected regions including low-grade IPMN dissected regions accompanied by malignant-potential regions. Several gene mutations, gene methylations, and proteins were assessed by pyrosequencing and immunohistochemical analysis. RASSF1A methylation was more frequent in malignant-potential dissected regions (p = 0.0329). LINE-1 methylation was inversely correlated with GNAS mutation (r = - 0.3739, p = 0.0105). In cases with malignant-potential dissected regions, GNAS mutation was associated with less frequent perivascular invasion (p = 0.0128), perineural invasion (p = 0.0377), and lymph node metastasis (p = 0.0377) but significantly longer overall survival, compared to malignant-potential cases without GNAS mutation (p = 0.0419). The presence of concordant KRAS and GNAS mutations in the malignant-potential and benign dissected regions were more frequent among branch-duct IPMN cases than among the other types (p = 0.0319). Methylation of RASSF1A, CDKN2A, and LINE-1 and GNAS mutation may be relevant to cancer development, IPMN subtypes, and cancer prognosis.
Collapse
|
19
|
Effects of Anti-Cancer Drug Sensitivity-Related Genetic Differences on Therapeutic Approaches in Refractory Papillary Thyroid Cancer. Int J Mol Sci 2022; 23:ijms23020699. [PMID: 35054884 PMCID: PMC8776099 DOI: 10.3390/ijms23020699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer (TC) includes tumors of follicular cells; it ranges from well differentiated TC (WDTC) with generally favorable prognosis to clinically aggressive poorly differentiated TC (PDTC) and undifferentiated TC (UTC). Papillary thyroid cancer (PTC) is a WDTC and the most common type of thyroid cancer that comprises almost 70–80% of all TC. PTC can present as a solid, cystic, or uneven mass that originates from normal thyroid tissue. Prognosis of PTC is excellent, with an overall 10-year survival rate >90%. However, more than 30% of patients with PTC advance to recurrence or metastasis despite anti-cancer therapy; consequently, systemic therapy is limited, which necessitates expansion of improved clinical approaches. We strived to elucidate genetic distinctions due to patient-derived anti-cancer drug-sensitive or -resistant PTC, which can support in progress novel therapies. Patients with histologically proven PTC were evaluated. PTC cells were gained from drug-sensitive and -resistant patients and were compared using mRNA-Seq. We aimed to assess the in vitro and in vivo synergistic anti-cancer effects of a novel combination therapy in patient-derived refractory PTC. This combination therapy acts synergistically to promote tumor suppression compared with either agent alone. Therefore, genetically altered combination therapy might be a novel therapeutic approach for refractory PTC.
Collapse
|
20
|
Huang T, Wu Q, Huang H, Zhang C, Wang L, Wang L, Liu Y, Li W, Zhang J, Liu Y. Expression of GALNT8 and O-glycosylation of BMP receptor 1A suppress breast cancer cell proliferation by upregulating ERα levels. Biochim Biophys Acta Gen Subj 2022; 1866:130046. [PMID: 34743989 DOI: 10.1016/j.bbagen.2021.130046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mucin-type O-glycosylation is one of the most abundant types of O-glycosylation and plays important roles in various human carcinomas, including breast cancer. A large family of polypeptide N-acetyl-α-galactosaminyltransferases (GALNTs) initiate and define sites of mucin-type O-glycosylation. However, the specific mechanisms underlying GALNT8 expression and its roles in tumorigenesis remain poorly characterized. METHODS GALNT8 expression was assessed in 140 breast cancer patients. Immunofluorescence, immunoprecipitation, lectin blot and quantitative real-time PCR were used to investigate the expression of GALNT8 and its role in regulating estrogen receptor α (ERα) via bone morphogenetic protein (BMP) signaling. RESULTS The expression of GALNT8 was associated with breast cancer patient survival. GALNT8 downregulation was associated with a reduction in ERα levels, while GALNT8 overexpression elevated the transcription and protein levels of ERα and suppressed colony formation, suggesting an important role of GALNT8 in cancer cell proliferation. Conversely, GALNT8 knockdown led to the inhibition of BMP/SMAD/RUNX2 axis, which decreased ERα transcription. Further analysis suggested that BMP receptor 1A (BMPR1A) was O-GalNAcylated. Sites mutation of BMPR1A indicated that Thr137 and Ser37/Ser39/Ser44/Thr49 of BMPR1A were the main O-glycosylation sites. Although we cannot exclude the indirect effect of GALNT8, our results demonstrated that the expression of GALNT8 and O-glycosylation of BMPR1A play key roles in regulating the activity of BMP/SMAD/RUNX2 signaling and ERα expression. CONCLUSION These findings suggest that GALNT8 expression and abnormal O-GalNAcylation of BMPR1A increase ERα expression and suppress breast cancer cell proliferation by modulating the BMP signaling pathway. GENERAL SIGNIFICANCE Our results identify the involvement of GALNT8 in regulating ERα expression.
Collapse
Affiliation(s)
- Tianmiao Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Qiong Wu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Huang Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Cheng Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Liping Wang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Lingyan Wang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Yangzhi Liu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Wenli Li
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Jianing Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China..
| | - Yubo Liu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China..
| |
Collapse
|
21
|
Rada M, Kapelanski-Lamoureux A, Petrillo S, Tabariès S, Siegel P, Reynolds AR, Lazaris A, Metrakos P. Runt related transcription factor-1 plays a central role in vessel co-option of colorectal cancer liver metastases. Commun Biol 2021; 4:950. [PMID: 34376784 PMCID: PMC8355374 DOI: 10.1038/s42003-021-02481-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 06/17/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer liver metastasis (CRCLM) has two major histopathological growth patterns: angiogenic desmoplastic and non-angiogenic replacement. The replacement lesions obtain their blood supply through vessel co-option, wherein the cancer cells hijack pre-existing blood vessels of the surrounding liver tissue. Consequentially, anti-angiogenic therapies are less efficacious in CRCLM patients with replacement lesions. However, the mechanisms which drive vessel co-option in the replacement lesions are unknown. Here, we show that Runt Related Transcription Factor-1 (RUNX1) overexpression in the cancer cells of the replacement lesions drives cancer cell motility via ARP2/3 to achieve vessel co-option. Furthermore, overexpression of RUNX1 in the cancer cells is mediated by Transforming Growth Factor Beta-1 (TGFβ1) and thrombospondin 1 (TSP1). Importantly, RUNX1 knockdown impaired the metastatic capability of colorectal cancer cells in vivo and induced the development of angiogenic lesions in liver. Our results confirm that RUNX1 may be a potential target to overcome vessel co-option in CRCLM.
Collapse
Affiliation(s)
- Miran Rada
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | | | - Stephanie Petrillo
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Sébastien Tabariès
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Peter Siegel
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | | | - Anthoula Lazaris
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Peter Metrakos
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada.
| |
Collapse
|
22
|
Pang J, Dai L, Zhang C, Zhang Q. MiR-373 Inhibits the Epithelial-Mesenchymal Transition of Prostatic Cancer via Targeting Runt-Related Transcription Factor 2. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6974225. [PMID: 34257854 PMCID: PMC8260310 DOI: 10.1155/2021/6974225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 06/20/2021] [Indexed: 12/23/2022]
Abstract
Prostatic cancer (PCa) is a prevalent form of malignancy based on its high associated levels of mortality and morbidity across the world. MicroRNAs (miRNAs) are significant in the advancement of prostatic cancer. The current study is aimed at exploring the potential roles of miR-373 in PCa. In turn, the study conducted a qRT-PCR test to determine the levels of mRNA. A western blot test was also executed in determining the protein level. The processes of transwell assay and wound healing were integrated in the detection of the potential for PCa cells to invade and migrate. The integration of dual luciferase reporter assay is critical in determining the levels of luciferase activity among prostatic cancer cells. Then, the results showed a net decrease of miR-373 within prostatic cancer cells and tissues. Upregulated miR-373 reduced the invasion and migration potential of PCa cells. Moreover, overexpressed miR-373 increased the levels of E-cadherin and FSP1 as epithelial cell markers. Similarly, the overregulation of miR-373 brought about the upregulation of mesenchymal markers (N-cadherin, Snail, and vimentin). The study predicted runt-related transcription factor 2 (RUNX2) to be a target of miR-373. The luciferase activity of PCa cells was decreased after the cotransfection with miR-373 mimics and RUNX2 3' untranslated region (3'UTR) wild type (WT). Moreover, RUNX2 became upregulated in PCa cells and tissues. The upregulation of miR-373 decreased the mRNA and protein level of RUNX2. However, overexpressed RUNX2 abated the roles of miR-373 in the intrusion and migration of PCa cells and in regulating the expression of epithelial cell markers and mesenchymal markers. In short, miR-373 may regulate the EMT of PCa cells via targeting RUNX2. The miR-373/RUNX2 axis provides a therapeutic target for PCa.
Collapse
Affiliation(s)
- Jianyi Pang
- Department of Urology Surgery, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, China
| | - Limei Dai
- Department of Dermatology and STD, The Affiliated Weihai Second Municipal Hospital of Qingdao University, Weihai, Shandong 264200, China
| | - Chen Zhang
- Department of Urology Surgery, The Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277500, China
| | - Qinglei Zhang
- Department of Urology Surgery, The Affiliated Tengzhou Central People's Hospital of Jining Medical University, Tengzhou, Shandong 277500, China
| |
Collapse
|
23
|
Cobb AM, Yusoff S, Hayward R, Ahmad S, Sun M, Verhulst A, D'Haese PC, Shanahan CM. Runx2 (Runt-Related Transcription Factor 2) Links the DNA Damage Response to Osteogenic Reprogramming and Apoptosis of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:1339-1357. [PMID: 33356386 DOI: 10.1161/atvbaha.120.315206] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Apoptosis
- Cells, Cultured
- Cellular Reprogramming
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- DNA Damage
- Disease Models, Animal
- Female
- Histones/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis
- Phosphorylation
- Rats, Wistar
- Signal Transduction
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Rats
Collapse
Affiliation(s)
- Andrew M Cobb
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Syabira Yusoff
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Robert Hayward
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Sadia Ahmad
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Mengxi Sun
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Catherine M Shanahan
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| |
Collapse
|
24
|
Chen D, Chen T, Guo Y, Wang C, Dong L, Lu C. Suppressive effect of platycodin D on bladder cancer through microRNA-129-5p-mediated PABPC1/PI3K/AKT axis inactivation. ACTA ACUST UNITED AC 2021; 54:e10222. [PMID: 33470388 PMCID: PMC7814303 DOI: 10.1590/1414-431x202010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Platycodin D (PD) is a major constituent of Platycodon grandiflorum and has multiple functions in disease control. This study focused on the function of PD in bladder cancer cell behaviors and the molecules involved. First, we administered PD to the bladder cancer cell lines T24 and 5637 and the human uroepithelial cell line SV-HUC-1. Cell viability and growth were evaluated using MTT, EdU, and colony formation assays, and cell apoptosis was determined using Hoechst 33342 staining and flow cytometry. The microRNAs (miRNAs) showing differential expression in cells before and after PD treatment were screened. Moreover, we altered the expression of miR-129-5p and PABPC1 to identify their functions in bladder cancer progression. We found that PD specifically inhibited the proliferation and promoted the apoptosis of bladder cancer cells; miR-129-5p was found to be partially responsible for the cancer-inhibiting properties of PD. PABPC1, a direct target of miR-129-5p, was abundantly expressed in T24 and 5637 cell lines and promoted cell proliferation and suppressed cell apoptosis. In addition, PABPC1 promoted the phosphorylation of PI3K and AKT in bladder cancer cells. Altogether, PD had a concentration-dependent suppressive effect on bladder cancer cell growth and was involved in the upregulation of miR-129-5p and the subsequent inhibition of PABPC1 and inactivation of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Dayin Chen
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.,Department of Urology, the First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Tingyu Chen
- School of Medicine, Huzhou University, Huzhou, Zhejiang, China
| | - Yingxue Guo
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chennan Wang
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Longxin Dong
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chunfeng Lu
- Department of Pharmacology, Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.,School of Medicine, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
25
|
Yan X, Han D, Chen Z, Han C, Dong W, Han L, Zou L, Zhang J, Liu Y, Chai J. RUNX2 interacts with BRG1 to target CD44 for promoting invasion and migration of colorectal cancer cells. Cancer Cell Int 2020; 20:505. [PMID: 33071648 PMCID: PMC7559818 DOI: 10.1186/s12935-020-01544-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cancer stem cells (CSCs) play an important role in tumor invasion and metastasis. CD44 is the most commonly used marker of CSCs, with the potential to act as a determinant against the invasion and migration of CSCs and as the key factor in epithelial-mesenchymal transition (EMT)-like changes that occur in colorectal cancer (CRC). Runt-related transcription factor-2 (RUNX2) is a mesenchymal stem marker for cancer that is involved in stem cell biology and tumorigenesis. However, whether RUNX2 is involved in CSC and in inducing EMT-like changes in CRC remains uncertain, warranting further investigation. Methods We evaluated the role of RUNX2 in the invasion and migration of CRC cells as a promoter of CD44-induced stem cell- and EMT-like modifications. For this purpose, western blotting was employed to analyze the expression of differential proteins in CRC cells. We conducted sphere formation, wound healing, and transwell assays to investigate the biological functions of RUNX2 in CRC cells. Cellular immunofluorescence and coimmunoprecipitation (co-IP) assays were performed to study the relationship between RUNX2 and BRG1. Real-time quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) were performed to analyze the expressions of RUNX2, BRG1, and CD44 in the CRC tissues. Results We found that RUNX2 could markedly induce the CRC cell sphere-forming ability and EMT. Interestingly, the RUNX2-mediated EMT in CRC cell may be associated with the activation of CD44. Furthermore, RUNX2 was found to interact with BRG1 to promote the recruitment of RUNX2 to the CD44 promoter. Conclusions Our cumulative findings suggest that RUNX2 and BRG1 can form a compact complex to regulate the transcription and expression of CD44, which has possible involvement in the invasion and migration of CRC cells.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Dali Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Zhiqiang Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100069 China
| | - Chao Han
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000 Shanxi Province China
| | - Wei Dong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Li Han
- Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Lei Zou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Yan Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji-Yan Road, Jinan, 250117 Shandong Province China.,Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
26
|
Yang DP, Huang WY, Chen G, Chen SW, Yang J, He RQ, Huang SN, Gan TQ, Ma J, Yang LJ, Song JH, Mo JX, Tang ZQ, Li CB, Zhou HF, Kong JL. Clinical significance of transcription factor RUNX2 in lung adenocarcinoma and its latent transcriptional regulating mechanism. Comput Biol Chem 2020; 89:107383. [PMID: 33032037 DOI: 10.1016/j.compbiolchem.2020.107383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/21/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023]
Abstract
RUNX family transcription factor 2 (RUNX2) overexpression has been found in various human malignancies. However, the expression levels of RUNX2 mRNA and protein in lung adenocarcinoma (LUAD) were not investigated. This study aims to thoroughly analysis the expression level and potential mechanisms of RUNX2 mRNA in LUAD. We applied in-house immunohistochemistry, high-throughput RNA-sequencing, and gene microarrays to comprehensively investigate the expression level of RUNX2 in LUAD. A pool standard mean difference (SMD) and summary receiver operating characteristic curves (SROC) were calculated to assess the integrated expression value of RUNX2 in LUAD. The hazard ratios (HRs) were integrated to evaluate the overall prognostic effect of RUNX2 on the LUAD patients. The differentially expressed genes (DEGs) of LUAD, the potential target genes of RUNX2, and its co-expressed genes were overlapped to obtain a set of specific genes for GO and KEGG enrichment analyses. RUNX2 overexpression in LUAD was validated using a large number of cases (2 418 LUAD and 1 574 non-tumor lung samples). The pooled SMD was 0.85 (95 % CI: 0.64-1.05) and the area under the curve (AUC) of the SROC was 0.86 (95 %CI: 0.83-0.89). The integrated HR was 1.20 [1.04-1.38], indicating that increased expression of RUNX2 was an independent risk factor for the poor survival of the LUAD patients. RUNX2 and its transcriptionally regulates potential target genes may promote cell proliferation and drug resistance of LUAD by modulating the cell cycle and MAPK signaling pathways. RUNX2 can provide new research directions for targeted drug therapy and drug resistance for LUAD treatment.
Collapse
Affiliation(s)
- Da-Ping Yang
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, PR China.
| | - Wan-Ying Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Shang-Wei Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Su-Ning Huang
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Jie Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Jian-Hua Song
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi 537100, PR China.
| | - Jun-Xian Mo
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University / Wuzhou Gongren Hospital, Wuzhou, Guangxi 543000, PR China.
| | - Zhong-Qing Tang
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University / Wuzhou Gongren Hospital, Wuzhou, Guangxi 543000, PR China.
| | - Chang-Bo Li
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University / Wuzhou Gongren Hospital, Wuzhou, Guangxi 543000, PR China.
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Jin-Liang Kong
- Ward of Pulmonary and Critical Care Medicine, Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
27
|
Fritz AJ, Hong D, Boyd J, Kost J, Finstaad KH, Fitzgerald MP, Hanna S, Abuarqoub AH, Malik M, Bushweller J, Tye C, Ghule P, Gordon J, Zaidi SK, Frietze S, Lian JB, Stein JL, Stein GS. RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. J Cell Physiol 2020; 235:7261-7272. [PMID: 32180230 PMCID: PMC7415511 DOI: 10.1002/jcp.29625] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24-/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFβ1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24-/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFβ for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Deli Hong
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jason Kost
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Kristiaan H. Finstaad
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Mark P. Fitzgerald
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Sebastian Hanna
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Alqassem H. Abuarqoub
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Miles Malik
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - John Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA
| | - Coralee Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Prachi Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Jonathan Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| |
Collapse
|
28
|
Li N, Zeng Y, Huang J. Signaling pathways and clinical application of RASSF1A and SHOX2 in lung cancer. J Cancer Res Clin Oncol 2020; 146:1379-1393. [PMID: 32266538 DOI: 10.1007/s00432-020-03188-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND An increasing number of studies have focused on the early diagnostic value of the methylation of RASSF1A and SHOX2 in lung cancer. However, the intricate cellular events related to RASSF1A and SHOX2 in lung cancer are still a mystery. For researchers and clinicians aiming to more profoundly understand the diagnostic value of methylated RASSF1A and SHOX2 in lung cancer, this review will provide deeper insights into the molecular events of RASSF1A and SHOX2 in lung cancer. METHODOLOGY We searched for relevant publications in the PubMed and Google Scholar databases using the keywords "RASSF1A", "SHOX2" and "lung cancer" etc. First, we reviewed the RASSF1A and SHOX2 genes, from their family structures to the functions of their basic structural domains. Then we mainly focused on the roles of RASSF1A and SHOX2 in lung cancer, especially on their molecular events in recent decades. Finally, we compared the value of measuring RASSF1A and SHOX2 gene methylation with that of the common methods for the diagnosis of lung cancer patients. RESULTS The RASSF1A and SHOX2 genes were confirmed to be regulators or effectors of multiple cancer signaling pathways, driving tumorigenesis and lung cancer progression. The detection of RASSF1A and SHOX2 gene methylation has higher sensitivity and specificity than other commonly used methods for diagnosing lung cancer, especially in the early stage. CONCLUSIONS The RASSF1A and SHOX2 genes are critical for the processes of tumorigenesis, development, metastasis, drug resistance, and recurrence in lung cancer. The combined detection of RASSF1A and SHOX2 gene methylation was identified as an excellent method for the screening and surveillance of lung cancer that exhibits high sensitivity and specificity.
Collapse
Affiliation(s)
- Nanhong Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China
| | - Yu Zeng
- Department of Respiration, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, 524023, China.
- Pathological Diagnosis and Research Center, Affiliated Hospital, Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
29
|
He F, Yu C, Liu T, Jia H. Ginsenoside Rg1 as an Effective Regulator of Mesenchymal Stem Cells. Front Pharmacol 2020; 10:1565. [PMID: 32038244 PMCID: PMC6989539 DOI: 10.3389/fphar.2019.01565] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
Recently, breakthroughs have been made in the use of mesenchymal stem cells (MSCs) to treat various diseases. Several stem cell types have been authorized as drugs by the European Medicines Agency and the U.S. Food and Drug Administration. The Chinese official document “Notification of the management of stem cell clinical research (trial)” was also published in August 2015. Currently, China has approved 106 official stem cell clinical research filing agencies and 62 clinical research projects, which are mostly focused on MSC therapy. Hence, the optimization and development of stem cell drugs is imperative. During this process, maximizing MSC expansion, minimizing cell loss during MSC transplantation, improving the homing rate, precisely regulating the differentiation of MSCs, and reducing MSC senescence and apoptosis are major issues in MSC preclinical research. Similar to artemisinin extracted from the stems and leaves of Artemisia annua, ginsenoside Rg1 (Rg1) is purified from the root or stem of ginseng. In the human body, Rg1 regulates organ function, which is inseparable from its regulation of adult stem cells. Rg1 treatment may effectively regulate the proliferation, differentiation, senescence, and apoptosis of MSCs in different microenvironments in vitro or in vivo. In this review, we discuss recent advances in understanding the effect of Rg1 on MSCs and describe the issues that must be addressed and prospects regarding Rg1 regulation of MSCs in preclinical or clinical studies.
Collapse
Affiliation(s)
- Fang He
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Oral and Maxillofacial Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Changyin Yu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Liu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huilin Jia
- School of Stomatology, Xi'an Medical University, Xi'an, China
| |
Collapse
|
30
|
Wu G, Wang F, Li K, Li S, Zhao C, Fan C, Wang J. Significance of TP53 mutation in bladder cancer disease progression and drug selection. PeerJ 2019; 7:e8261. [PMID: 31871844 PMCID: PMC6921983 DOI: 10.7717/peerj.8261] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The tumor protein p53 (TP53) mutant is one of the most frequent mutant genes in bladder cancer. In this study, we assessed the importance of the TP53 mutation in bladder cancer progression and drug selection, and identified potential pathways and core genes associated with the underlying mechanisms. METHODS Gene expression data used in this study were downloaded from The Cancer Genome Atlas and cBioportal databases. Drug sensitivity data were obtained from the Genomics of Drug Sensitivity in Cancer. We did functional enrichment analysis by gene set enrichment analysis (GSEA) and the Database for Annotation, Visualization and Integrated Discovery (DAVID). RESULTS We found the TP53 mutation in 50% of bladder cancer patients. Patients with the TP53 mutation were associated with a lower TP53 mRNA expression level, more advanced tumor stage and higher histologic grade. Three drugs, mitomycin-C, doxorubicin and gemcitabine, were especially more sensitive to bladder cancer with the TP53 mutation. As for the mechanisms, we identified 863 differentially expressed genes (DEGs). Functional enrichment analysis suggested that DEGs were primarily enriched in multiple metabolic progressions, chemical carcinogenesis and cancer related pathways. The protein-protein interaction network identified the top 10 hub genes. Our results have suggested the significance of TP53 mutation in disease progression and drug selection in bladder cancer, and identified multiple genes and pathways related in such program, offering novel basis for bladder cancer individualized treatment.
Collapse
Affiliation(s)
- Guang Wu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Fei Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Kai Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shugen Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chunchun Zhao
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Caibin Fan
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianqing Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
31
|
Huang J, Chang S, Lu Y, Wang J, Si Y, Zhang L, Cheng S, Jiang WG. Enhanced osteopontin splicing regulated by RUNX2 is HDAC-dependent and induces invasive phenotypes in NSCLC cells. Cancer Cell Int 2019; 19:306. [PMID: 31832019 PMCID: PMC6873507 DOI: 10.1186/s12935-019-1033-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background Increased cell mobility is a signature when tumor cells undergo epithelial-to-mesenchymal transition. TGF-β is a key stimulating factor to promote the transcription of a variety of downstream genes to accelerate cancer progression and metastasis, including osteopontin (OPN) which exists in several functional forms as different splicing variants. In non-small cell lung cancer cells, although increased total OPN expression was observed under various EMT conditions, the exact constitution and the underlining mechanism towards the generation of such OPN splicing isoforms was poorly understood. Methods We investigated the possible mechanisms of osteopontin splicing variant and its role in EMT and cancer metastasis using NSCLC cell line and cell and molecular biology techniques. Results In this study, we determined that OPNc, an exon 4 excluded shorter form of Opn gene products, appeared to be more potent to promote cell invasion. The expression of OPNc was selectively increased to higher abundance during EMT following TGF-β induction. The switching from OPNa to OPNc could be enhanced by RUNX2 (a transcription factor that recognizes the Opn gene promoter) overexpression, but appeared to be strictly in a HDAC dependent manner in A549 cells. The results suggested the increase of minor splicing variant of OPNc required both (1) the enhanced transcription from its coding gene driven by specific transcription factors; and (2) the simultaneous modulation or fluctuation of the coupled splicing process that depends to selective classed of epigenetic regulators, predominately HDAC family members. Conclusion Our study not only emphasized the importance of splicing variant for its role in EMT and cancer metastasis, but also helped to understand the possible mechanisms of the epigenetic controls for defining the levels and kinetic of gene splicing isoforms and their generations.
Collapse
Affiliation(s)
- Jing Huang
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,2Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Siyuan Chang
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,2Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Yabin Lu
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Jing Wang
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yang Si
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Lijian Zhang
- 3Department of Thoracic Surgery, Key Laboratory for Carcinogenesis and Translational Research Ministry of Education, Peking University Hospital, Beijing, 100142 China
| | - Shan Cheng
- 1Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China.,2Beijing Key Laboratory of Cancer & Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Wen G Jiang
- 4Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN UK
| |
Collapse
|
32
|
Manzotti G, Torricelli F, Donati B, Sancisi V, Gugnoni M, Ciarrocchi A. HDACs control RUNX2 expression in cancer cells through redundant and cell context-dependent mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:346. [PMID: 31395086 PMCID: PMC6686443 DOI: 10.1186/s13046-019-1350-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Background RUNX2 is a Runt-related transcription factor required during embryogenesis for skeletal development and morphogenesis of other organs including thyroid and breast gland. Consistent evidence indicates that RUNX2 expression is aberrantly reactivated in cancer and supports tumor progression. The mechanisms leading to RUNX2 expression in cancer has only recently began to emerge. Previously, we showed that suppressing the activity of the epigenetic regulators HDACs significantly represses RUNX2 expression highlighting a role for these enzymes in RUNX2 reactivation in cancer. However, the molecular mechanisms by which HDACs control RUNX2 are still largely unexplored. Here, to fill this gap, we investigated the role of different HDACs in RUNX2 expression regulation in breast and thyroid cancer, tumors that majorly rely on RUNX2 for their development and progression. Methods Proliferation assays and evaluation of RUNX2 mRNA levels by qRT-PCR were used to evaluate the effect of several HDACi and specific siRNAs on a panel of cancer cell lines. Moreover, ChIP and co-IP assays were performed to elucidate the molecular mechanism underneath the RUNX2 transcriptional regulation. Finally, RNA-sequencing unveiled a new subset of genes whose transcription is regulated by the complex RUNX2-HDAC6. Results In this study, we showed that Class I HDACs and in particular HDAC1 are required for RUNX2 efficient transcription in cancer. Furthermore, we found an additional and cell-specific function of HDAC6 in driving RUNX2 expression in thyroid cancer cells. In this model, HDAC6 likely stabilizes the assembly of the transcriptional complex, which includes HDAC1, on the RUNX2 P2 promoter potentiating its transcription. Since a functional interplay between RUNX2 and HDAC6 has been suggested, we used RNA-Seq profiling to consolidate this evidence in thyroid cancer and to extend the knowledge on this cooperation in a setting in which HDAC6 also controls RUNX2 expression. Conclusions Overall, our data provide new insights into the molecular mechanisms controlling RUNX2 in cancer and consolidate the rationale for the use of HDACi as potential pharmacological strategy to counteract the pro-oncogenic program controlled by RUNX2 in cancer cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1350-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| |
Collapse
|
33
|
Wang G, Sheng W, Shi X, Li X, Zhou J, Dong M. Serine/arginine protein-specific kinase 2 promotes the development and progression of pancreatic cancer by downregulating Numb and p53. FEBS J 2019; 286:1668-1682. [PMID: 30724469 DOI: 10.1111/febs.14778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/16/2018] [Accepted: 02/04/2019] [Indexed: 01/18/2023]
Abstract
Serine/arginine protein-specific kinase 2 (SRPK2) plays a vital role in the progression of a range of different malignancies, including pancreatic cancer. However, the mechanisms are poorly understood. Previous studies have shown that in hepatocellular carcinoma, SRPK2 knockdown leads to the upregulation of the cell fate determining protein Numb, and in pancreatic cancer cells, Numb knockdown prevents ubiquitin-mediated degradation of p53. In this study, we investigated the relationship between SRPK2, Numb and p53 in the development of pancreatic cancer with or without chemical agent treatment in vitro. SRPK2 expression was upregulated in pancreatic cancer tissues and associated with decreased overall survival in pancreatic cancer patients, indicating that expression of this protein can be used as a marker of unfavourable prognosis. Expression of SRPK2 was positively associated with tumour T stage and Union for International Cancer Control (UICC) stage, and negatively associated with Numb expression in serial tissue sections. In pancreatic cancer cells, SRPK2 downregulation or overexpression led to modulation of Numb and wild-type p53 protein expression in response to oxaliplatin treatment. Furthermore, these three endogenous proteins could be coimmunoprecipitated as a triple complex. Numb or p53 knockdown reversed the upregulation of p53 that was induced by silencing SRPK2. SRPK2 overexpression promoted cell invasion and migration, and decreased chemosensitivity of cancer cells to gemcitabine or oxaliplatin treatment. Conversely, SRPK2 silencing decreased cell invasion and migration and increased chemosensitivity; these effects were reversed by silencing p53 in oxaliplatin-treated pancreatic cancer cells. Our data suggest that SRPK2 negatively regulates p53 by downregulating Numb under chemical agent treatment. Thus, SRPK2 promotes the development and progression of pancreatic cancer in a p53-dependent manner.
Collapse
Affiliation(s)
- Guosen Wang
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Weiwei Sheng
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Xiaoyang Shi
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Ming Dong
- Department of Gastrointestinal Surgery, The First Hospital, China Medical University, Shenyang, China
| |
Collapse
|
34
|
Lou W, Liu J, Ding B, Xu L, Fan W. Identification of chemoresistance-associated miRNAs in breast cancer. Cancer Manag Res 2018; 10:4747-4757. [PMID: 30425571 PMCID: PMC6205533 DOI: 10.2147/cmar.s172722] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Neoadjuvant chemotherapy (NAC) is an effective therapeutic regimen for patients with breast cancer. However, some individuals cannot benefit from NAC because of drug resistance. To date, valid strategies about enhancing sensitivity of breast cancer to NAC are still scarce. miRNAs have been reported to proverbially be involved in the onset and development of malignancies including drug resistance. Methods GSE73736 was downloaded from the GEO database. Student's t-test was conducted to acquire differentially expressed-miRNAs (DE-miRNAs). Potential target genes of DE-miRNAs were predicted by miRTarBase. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for these target genes were performed by database for annotation, visualization, and integrated discovery. Protein-protein interaction network was constructed by STRING database and visualized through Cytoscape software. The hub target gene-miRNA network was also established by Cytoscape software. Next, the expression of potential functional miRNAs in breast cancer cell lines and tissues was determined. Finally, the roles of miR-3617-3p, miR-3136-3p, and miR-520b in modulating breast cancer chemoresistance were further examined. Results A total of 123 DE-miRNAs were identified, including 60 upregulated miRNAs and 63 downregulated miRNAs in the chemoresistant breast cancer group when compared with the chemosensitive group. Six hundred and seventeen and 1,146 potential target genes for the top 10 most upregulated and downregulated miRNAs were predicted, respectively. Enrichment analyses revealed that these target genes were enriched in some cancer-associated or chemo-resistance-associated pathways, such as MAPK signaling pathway, wnt signaling pathway, and p53 signaling pathway. MAPK1 and PRDM10 were identified as hub genes in the protein-protein interaction network. The top 25 hub genes were potentially regulated by 16 DE-miRNAs, among which miR-3617-3p and miR-3136-3p were commonly upregulated, whereas miR-520b was downregulated in two chemoresistant breast cancer cells compared with chemosensitive cell. By analyzing TCGA data, we found that expression of miR-3136-3p and miR-520b was increased and decreased in breast cancer tissues, respectively. Moreover, functional experiments demonstrated that miR-3136-3p and miR-3617-3p could reduce chemosensitivity of breast cancer, whereas miR-520b could reverse chemoresistance. Conclusion The present study, based on bioinformatics analysis and experimental validation, brings to light novel mechanisms of breast cancer NAC resistance.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, .,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China, .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, China,
| | - Jingxing Liu
- Department of Intensive Care Unit, Changxing People's Hospital of Zhejiang, Zhejiang Province, Huzhou 313100, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, .,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China, .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, China,
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, .,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China, .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, China,
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China, .,Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China, .,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310000, China, .,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA,
| |
Collapse
|