1
|
Abdelmaksoud NM, Abulsoud AI, Doghish AS, Abdelghany TM. From resistance to resilience: Uncovering chemotherapeutic resistance mechanisms; insights from established models. Biochim Biophys Acta Rev Cancer 2023; 1878:188993. [PMID: 37813202 DOI: 10.1016/j.bbcan.2023.188993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Despite the tremendous advances in cancer treatment, resistance to chemotherapeutic agents impedes higher success rates and accounts for major relapses in cancer therapy. Moreover, the resistance of cancer cells to chemotherapy is linked to low efficacy and high recurrence of cancer. To stand up against chemotherapy resistance, different models of chemotherapy resistance have been established to study various molecular mechanisms of chemotherapy resistance. Consequently, this review is going to discuss different models of induction of chemotherapy resistance, highlighting the most common mechanisms of cancer resistance against different chemotherapeutic agents, including overexpression of efflux pumps, drug inactivation, epigenetic modulation, and epithelial-mesenchymal transition. This review aims to open a new avenue for researchers to lower the resistance to the existing chemotherapeutic agents, develop new therapeutic agents with low resistance potential, and establish possible prognostic markers for chemotherapy resistance.
Collapse
Affiliation(s)
- Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt.
| |
Collapse
|
2
|
DiVincenzo MJ, Schwarz E, Ren C, Barricklow Z, Moufawad M, Yu L, Fadda P, Angell C, Sun S, Howard JH, Chung C, Slingluff C, Gru AA, Kendra K, Carson WE. Expression Patterns of microRNAs and Associated Target Genes in Ulcerated Primary Cutaneous Melanoma. J Invest Dermatol 2023; 143:630-638.e3. [PMID: 36202232 DOI: 10.1016/j.jid.2022.09.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
Ulcerated cutaneous melanoma carries a poor prognosis, and the underlying biology driving its aggressive behavior is largely unexplored. MicroRNAs (miRs) are small, noncoding RNAs that inhibit the expression of specific genes and exhibit dysregulated expression patterns in cancer. We hypothesized that a unique miR profile exists in ulcerated relative to nonulcerated melanoma and that miR expression inversely correlates with target genes of biologic importance. Expression of miRs and mRNAs was assessed in ulcerated and nonulcerated cutaneous melanomas using the NanoString Human miRNA and Tumor Signaling 360 mRNA assays and validated in an independent cohort. Pathway enrichment and functional annotations for differentially expressed miRs and mRNAs were determined using publicly available databases. Pearson correlations were employed to predict potential miR‒mRNA binding pairs. Ulcerated melanoma tissue showed at least 1.5-fold change in relative expression of 24 miRs, including miR-206, miR-1-3p, and miR-4286 (>2.25-fold decrease, P < 0.048) and miR-146a-5p, miR-196b-5p, and miR-363-3p (>2.5-fold increase, P < 0.014). Ulcerated melanomas also had 21 differentially expressed mRNAs relative to nonulcerated tumors (P < 0.01), among which two had an inverse correlation in expression with regulatory miRs (SOCS3 and miR-218-5p and IL7R and miR-376c-5p). This miR expression profile adds to the molecular characterization of the poorly understood histopathologic phenotype of ulcerated melanoma.
Collapse
Affiliation(s)
- Mallory J DiVincenzo
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Emily Schwarz
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Casey Ren
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Zoe Barricklow
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Maribelle Moufawad
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Lianbo Yu
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Paolo Fadda
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Colin Angell
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Steven Sun
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - J Harrison Howard
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Catherine Chung
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Craig Slingluff
- Surgical Oncology Division, UVA Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Alejandro A Gru
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Kari Kendra
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - William E Carson
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
3
|
Liu JY, Liu LP, Li Z, Luo YW, Liang F. The role of cuproptosis-related gene in the classification and prognosis of melanoma. Front Immunol 2022; 13:986214. [PMID: 36341437 PMCID: PMC9632664 DOI: 10.3389/fimmu.2022.986214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Melanoma, as one of the most aggressive and malignant cancers, ranks first in the lethality rate of skin cancers. Cuproptosis has been shown to paly a role in tumorigenesis, However, the role of cuproptosis in melanoma metastasis are not clear. Studying the correlation beteen the molecular subtypes of cuproptosis-related genes (CRGs) and metastasis of melanoma may provide some guidance for the prognosis of melanoma. Methods We collected 1085 melanoma samples in The Cancer Genome Atlas(TCGA) and Gene Expression Omnibus(GEO) databases, constructed CRGs molecular subtypes and gene subtypes according to clinical characteristics, and investigated the role of CRGs in melanoma metastasis. We randomly divide the samples into train set and validation set according to the ratio of 1:1. A prognostic model was constructed using data from the train set and then validated on the validation set. We performed tumor microenvironment analysis and drug sensitivity analyses for high and low risk groups based on the outcome of the prognostic model risk score. Finally, we established a metastatic model of melanoma. Results According to the expression levels of 12 cuproptosis-related genes, we obtained three subtypes of A1, B1, and C1. Among them, C1 subtype had the best survival outcome. Based on the differentially expressed genes shared by A1, B1, and C1 genotypes, we obtained the results of three gene subtypes of A2, B2, and C2. Among them, the B2 group had the best survival outcome. Then, we constructed a prognostic model consisting of 6 key variable genes, which could more accurately predict the 1-, 3-, and 5-year overall survival rates of melanoma patients. Besides, 98 drugs were screened out. Finally, we explored the role of cuproptosis-related genes in melanoma metastasis and established a metastasis model using seven key genes. Conclusions In conclusion, CRGs play a role in the metastasis and prognosis of melanoma, and also provide new insights into the underlying pathogenesis of melanoma.
Collapse
Affiliation(s)
- Jin-Ya Liu
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Le-Ping Liu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China,Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ze Li
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Wei Luo
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Fang Liang, ; Yan-Wei Luo,
| | - Fang Liang
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Fang Liang, ; Yan-Wei Luo,
| |
Collapse
|
4
|
Significance of a tumor microenvironment-mediated P65-miR-30a-5p-BCL2L11 amplification loop in multiple myeloma. Exp Cell Res 2022; 415:113113. [PMID: 35339472 DOI: 10.1016/j.yexcr.2022.113113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/04/2022]
Abstract
Despite significant progress in the treatment of myeloma, multiple myeloma (MM) remains an incurable hematological malignancy due to cell adhesion-mediated drug resistance (CAM-DR) phenotype. However, data on the molecular mechanisms underlying the CAM-DR remains scanty. Here, we identified a miRNA-mRNA regulatory network in myeloma cells that are directly adherent to bone marrow stromal cells (BMSCs). Our data showed that the BMSCs up-regulated miR-30a-5p and down-regulated BCL2L11 at both mRNA and protein level in the myeloma cells. Besides, luciferase reporter genes demonstrated direct interaction between miR-30a-5p and BCL2L11 gene. Moreover, the BMSCs activated NF-ΚB signaling pathway in myeloma cells and the NF-κB P65 was shown to directly bind the miR-30a-5p promoter region. Moreover, suppression of the miR-30a-5p or upregulation of the BCL2L11 promoted apoptosis of the myeloma cells independent of the BMSCs, thus suggesting clinical significance of miR-30a-5p inhibitor and PLBCL2L11 plasmid in CAM-DR. Together, our data demonstrated the role of P65-miR-30a-5p-BCL2L11 loop in CAM-DR myeloma cells. These findings give new insights into the role of tumor microenvironment in the treatment of patients with myeloma.
Collapse
|
5
|
Li W, Nie A, Jin L, Cui Y, Xie N, Liang G. Long non-coding RNA terminal differentiation-induced non-coding RNA regulates cisplatin resistance of choroidal melanoma by positively modulating extracellular signal-regulated kinase 2 via sponging microRNA-19b-3p. Bioengineered 2022; 13:3422-3433. [PMID: 35067169 PMCID: PMC8973966 DOI: 10.1080/21655979.2021.2014618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the present study, we aimed to investigate the role of long non-coding RNA terminal differentiation-induced non-coding RNA (TINCR) in cisplatin (DDP) resistance of choroidal melanoma (CM) and the potential molecular mechanisms. CM and non-CM tissues were collected from 60 CM patients. DDP-resistant CM cells were obtained by selection with linearly increased DDP treatment. The expression levels of TINCR, microR-19b-3p (miR-19b-3p), and extracellular signal-regulated kinase 2 (ERK-2) were detected by quantitative real-time PCR. Cholecystokinin octapeptide (CCK-8) assay was utilized to detect chemosensitivity and cell viability. Flow cytometry analysis was performed to detect apoptotic cells. The protein levels of Bax, Bcl-2, cleaved-caspase-3, ERK-2, and nuclear factor-kappa B p65 were measured by Western blot. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were performed to determine the relationship among TINCR, miR-19b-3p, and ERK-2. The results showed that the levels of TINCR and ERK-2 were markedly increased in DDP-resistant CM tissues and cells, while miR-19b-3p level was significantly reduced. TINCR knockdown reduced DDP resistance and cell viability and promoted cell apoptosis, while TINCR overexpression exhibited opposite effects. TINCR and ERK-2 were direct targets of miR-19b-3p. Further experiments revealed that TINCR enhanced DDP resistance in CM cells by regulating the miR-19b-3p/ERK-2/NF-kb axis. Taken together, our study revealed a critical role of TINCR in regulating DDP resistance in CM and suggested that TINCR is a potential cisplatin-resistant CM therapeutic target.
Collapse
Affiliation(s)
- Wei Li
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen City, Guangdong Province, 518000 P. R. China
| | - Aiqin Nie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen City, Guangdong Province, 518000 P. R. China
| | - Longyu Jin
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen City, Guangdong Province, 518000 P. R. China
| | - Yubo Cui
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen City, Guangdong Province, 518000 P. R. China
| | - Ning Xie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen City, Guangdong Province, 518000 P. R. China
| | - Gaohua Liang
- Department of Ophthalmology, The Affiliated Hospital of Youjiang Medical University for Nationlities, Guangxi, Baise, 533000, China
| |
Collapse
|
6
|
MicroRNA-603 Promotes Progression of Cutaneous Melanoma by Regulating TBX5. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:1888501. [PMID: 35003317 PMCID: PMC8741382 DOI: 10.1155/2021/1888501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Background Although studies manifested that microRNA-603 plays a vital role in many cancers, the modulatory mechanism of microRNA-603 in cutaneous melanoma remains unknown. We aimed to investigate the roles of microRNA-603 in cutaneous melanoma cells. Methods First, microRNA-603 expression in cutaneous melanoma cell lines was detected by qRT-PCR. The mRNA and protein expression levels of TBX5 in cutaneous melanoma cell lines were tested by qRT-PCR and western blot, respectively. In addition, the interaction between microRNA-603 and TBX5 was determined by dual-luciferase reporter gene assay, and their impacts on the growth of cutaneous melanoma cells were detected by cellular function experiments such as MTT, colony formation, and Transwell assays. Results The expression level of microRNA-603 in human cutaneous melanoma cells was relatively upregulated. Overexpressing microRNA-603 could promote progression of cutaneous melanoma cells, while silencing microRNA-603 expression could suppress the malignant progression of cutaneous melanoma. In addition, TBX5 was lowly expressed in cutaneous melanoma cells. As confirmed by dual-luciferase assay, microRNA-603 could specifically bind to 3′UTR of TBX5 and regulate TBX5. The results of the rescue experiment demonstrated that inhibiting microRNA-603 expression could suppress the proliferation, migration, and invasion of cutaneous melanoma cells, but its suppressive effect could be restored by TBX5. Conclusion MicroRNA-603 could regulate the expression of TBX5, thus promoting the malignant progression of cutaneous melanoma cells.
Collapse
|
7
|
Expression of Selected microRNAs in Migraine: A New Class of Possible Biomarkers of Disease? Processes (Basel) 2021. [DOI: 10.3390/pr9122199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preliminary but convergent findings suggest a role for microRNAs (miRNAs) in the generation and maintenance of chronic pain and migraine. Initial observations showed that serum levels of miR-382-5p and miR-34a-5p expression were increased in serum during the migraine attack, with miR-382-5p increasing in the interictal phase as well. By contrast, miR-30a-5p levels were lower in migraine patients compared to healthy controls. Of note, antimigraine treatments proved to be capable of influencing the expression of these miRNAs. Altogether, these observations suggest that miRNAs may represent migraine biomarkers, but several points are yet to be elucidated. A major concern is that these miRNAs are altered in a broad spectrum of painful and non-painful conditions, and thus it is not possible to consider them as truly “migraine-specific” biomarkers. We feel that these miRNAs may represent useful tools to uncover and define different phenotypes across the migraine spectrum with different treatment susceptibilities and clinical features, although further studies are needed to confirm our hypothesis. In this narrative review we provide an update and a critical analysis of available data on miRNAs and migraines in order to propose possible interpretations. Our main objective is to stimulate research in an area that holds promise when it comes to providing reliable biomarkers for theoretical and practical scientific advances.
Collapse
|
8
|
Cai Y, An B, Yao D, Zhou H, Zhu J. MicroRNA miR-30a inhibits cisplatin resistance in ovarian cancer cells through autophagy. Bioengineered 2021; 12:10713-10722. [PMID: 34747309 PMCID: PMC8810079 DOI: 10.1080/21655979.2021.2001989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We study whether microRNA miR-30a inhibits the autophagy through transforming growth factor (TGF)-β/Smad4 to generate cisplatin (DDP) resistance in ovarian cancer cells. The expression of miR-30a, Smad4, and TGF-β was detected in the serum of ovarian cancer patients and DDP-resistant cell lines (A2780) by quantitative real-time polymerase chain reaction (qRT-PCR). Computational search and western blotting were used to demonstrate the downstream target of miR-30a in ovarian cancer cells. Cell viability was measured with CCK8 assay. Apoptosis and autophagy of ovarian cancer cells were analyzed by flow cytometry and transmission electron microscopy, and the expressions of Beclin1 and LC3II protein were detected by western blotting. Expression of miR-30a was significantly decreased, while expressions of TGF-β and Smad4 mRNA were increased in serum of ovarian cancer patients after DDP chemotherapy as well as in DDP-resistant cells. Activation of autophagy contributed to DDP-resistance cells. Moreover, Bioinformatics software predicted Smad4 to be a target of miR-30a. Overexpression of miR-30a decreased the expression of Smad4 and TGF-β. Additionally, miR-30a-overexpressing inhibited DDP-induce autophagy and promoted DDP-resistant cell apoptosis. In conclusion, miR-30a mediates DDP resistance in ovarian cancer by inhibiting autophagy via the TGF-β/Smad4 pathway.
Collapse
Affiliation(s)
- Yi Cai
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Baiping An
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dejiao Yao
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Zhou
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhu
- Department of Oncology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Peng Q, Wang J. Non-coding RNAs in melanoma: Biological functions and potential clinical applications. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:219-231. [PMID: 34514101 PMCID: PMC8424110 DOI: 10.1016/j.omto.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant melanoma (MM) is a malignant tumor that originates from melanocytes and has a high mortality rate. Therefore, early diagnosis and treatment are very important for survival. So far, the exact molecular mechanism leading to the occurrence of melanoma, especially the molecular metastatic mechanism, remains largely unknown. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs), have been investigated and found to play vital roles in regulating tumor occurrence and development, including melanoma. In this review, we summarize the progress of recent research on the effects of ncRNAs on melanoma and attempt to elucidate the role of ncRNAs as molecular markers or potential targets that will provide promising application perspectives on melanoma.
Collapse
Affiliation(s)
- Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi 046000 China
| |
Collapse
|
10
|
Liu B, Jiang HY, Yuan T, Zhou WD, Xiang ZD, Jiang QQ, Wu DL. Long non-coding RNA AFAP1-AS1 facilitates prostate cancer progression by regulating miR-15b/IGF1R axis. Curr Pharm Des 2021; 27:4261-4269. [PMID: 34126893 DOI: 10.2174/1381612827666210612052317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is a commonly diagnosed malignant cancer and is the second highest cause of cancer related death in men worldwide. Enzalutamide is the second-generation inhibitor of androgen receptor signaling and is the fundamental drug for the treatment of advanced PCa. However, the disease will eventually progress to metastatic castration-resistant prostate cancer (CRPC) and aggressive neuroendocrine prostate cancer (NEPC) because of androgen-deprivation therapy (ADT) resistance. The aim of the study was to investigate the role of long non-coding RNA (lncRNA) AFAP1-AS1 in ADT resistance. METHODS Quantitative real-time PCR analysis (qPCR) was used to assess the expression of AFAP1-AS1 in PCa cell lines and tissues. Cell proliferation and invasion were assessed after AFAP1-AS1 knockdown using Cell Counting Kit (CCK)-8 and Transwell assay, respectively. A dual-luciferase reporter gene assay was carried out to validate the regulatory relationship among AFAP1-AS1, microRNA (miR)-15b, and insulin-like growth factor1 receptor (IGF1R). RESULTS AFAP1-AS1 level was markedly increased in castration-resistant C4-2 cells and NE-like cells (PC3, DU145, and NCI-H660), compared with androgen-sensitive LNCaP cells. Enzalutamide treatment increased the expression of AFAP1-AS1 in vitro and in vivo. Functionally, AFAP1-AS1 knockdown repressed tumor cell proliferation and invasion. Mechanistically, AFAP1-AS1 functioned as an oncogene in PCa through binding to miR-15b and destroying its tumor suppressor function. Finally, we identified that AFAP1-AS1 up-regulated IGF1R expression by competitively binding to miR-15b to de-repress IGF1R. CONCLUSION AFAP1-AS1 facilitates PCa progression by regulating miR-15b/IGF1R axis, indicating that AFAP1-AS1 may serve as a diagnostic biomarker and therapeutic target for PCa.
Collapse
Affiliation(s)
- Bo Liu
- Department of Urology, Tongji Hospital, Tongji University of Medicine, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Hui-Yang Jiang
- Department of Urology, Tongji Hospital, Tongji University of Medicine, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Tao Yuan
- Department of Urology, Tongji Hospital, Tongji University of Medicine, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Wei-Dong Zhou
- Department of Urology, Tongji Hospital, Tongji University of Medicine, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Zhen-Dong Xiang
- Department of Urology, Tongji Hospital, Tongji University of Medicine, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Qi-Quan Jiang
- Department of Urology, Tongji Hospital, Tongji University of Medicine, 389 Xincun Road, Putuo, Shanghai, 200065, China
| | - Deng-Long Wu
- Department of Urology, Tongji Hospital, Tongji University of Medicine, 389 Xincun Road, Putuo, Shanghai, 200065, China
| |
Collapse
|
11
|
Taheri M, Shoorei H, Tondro Anamag F, Ghafouri-Fard S, Dinger ME. LncRNAs and miRNAs participate in determination of sensitivity of cancer cells to cisplatin. Exp Mol Pathol 2021; 123:104602. [PMID: 33422487 DOI: 10.1016/j.yexmp.2021.104602] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Cisplatin is an extensively used chemotherapeutic substance for various types of human malignancies including sarcomas, carcinomas and lymphomas. Yet, the vast application of this drug is hampered by the emergence of chemoresistance in some treated patients. Several mechanisms such as degradation of the membrane transporters by cisplatin have been implicated in the pathogenesis of this event. Recent researches have also indicated the role of long non-coding RNAs (lncRNAs) as well as micoRNAs (miRNAs) in the emergence of resistance to cisplatin in several cancer types. For instance, up-regulation of miR-21 has been associated with resistance to this agent in ovarian cancer, oral squamous cell cancer, gastric malignancy and non-small cell lung cancer (NSCLC). On the other hand, down-regulation of miR-218 has been implicated in emergence of chemoresistance in breast cancer and esophageal squamous cell carcinoma. MALAT1 is implicated in the chemoresistance of bladder cancer cells, NSCLC, gastric cancer and cervical cancer. Most notably, the expression profile of resistance-associated miRNAs and lncRNAs can predict overall survival of cancer patients. Mechanistic assays have revealed that interference with expression of some miRNAs and lncRNAs can reverse the resistance phenotype in cancer cells. In this paper, we review the scientific writings on the role of lncRNAs and miRNAs in the evolution of chemoresistance to cisplatin in cancer cells.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Ghafouri-Fard S, Shoorei H, Anamag FT, Taheri M. The Role of Non-Coding RNAs in Controlling Cell Cycle Related Proteins in Cancer Cells. Front Oncol 2020; 10:608975. [PMID: 33330110 PMCID: PMC7734207 DOI: 10.3389/fonc.2020.608975] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cell cycle is regulated by a number of proteins namely cyclin-dependent kinases (CDKs) and their associated cyclins which bind with and activate CDKs in a phase specific manner. Additionally, several transcription factors (TFs) such as E2F and p53 and numerous signaling pathways regulate cell cycle progression. Recent studies have accentuated the role of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in the regulation of cell cycle. Both lncRNAs and miRNAs interact with TFs participating in the regulation of cell cycle transition. Dysregulation of cell cycle regulatory miRNAs and lncRNAs results in human disorders particularly cancers. Understanding the role of lncRNAs, miRNAs, and TFs in the regulation of cell cycle would pave the way for design of anticancer therapies which intervene with the cell cycle progression. In the current review, we describe the role of lncRNAs and miRNAs in the regulation of cell cycle and their association with human malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Hou S, Guo M, Xi H, Zhang L, Zhao A, Hou H, Fang W. MicroRNA-153-3p sensitizes melanoma cells to dacarbazine by suppressing ATG5-mediated autophagy and apoptosis. Transl Cancer Res 2020; 9:5626-5636. [PMID: 35117926 PMCID: PMC8798736 DOI: 10.21037/tcr-20-2660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Dacarbazine is one of the most commonly used chemotherapeutic agents for the treatment of melanoma; however, only 5-10% of patients benefit from this treatment. MicroRNA-153-3p (miR-153-3p) has a tumor-suppressive effect in melanoma. In the present study, we found that miR-153-3p was downregulated in melanoma cell lines (A357 and M14). METHODS The target relationship between miR-153-3p and Autophagy-related gene 5 (ATG5) was confirmed by Dual-Luciferase Reporter Assay. Cell Counting Kit-8, flow cytometry, immunofluorescence, and Western blot were used to examine cell viability, apoptosis, and autophagy, respectively. RESULTS miR-153-3p overexpression decreased the half-maximal inhibitory concentration value of dacarbazine, while increasing the apoptotic rate in both A357 and M14 cells. Moreover, miR-153-3p enhanced dacarbazine-induced autophagy in melanoma cells. Our bioinformatics study revealed that ATG5 is one of the potential targets of miR-153-3p. The overexpression of ATG5 decreased dacarbazine sensitivity and promoted proliferation, as well as inhibited apoptosis and autophagy in melanoma cells. miR-153-3p exhibited suppressive effects via directly binding and downregulating ATG5 expression, which subsequently increased sensitivity to dacarbazine and inhibited proliferation, and enhanced apoptosis and autophagy in melanoma cells. CONCLUSIONS The results of the present study showed that miR-153-3p sensitizes melanoma cells to dacarbazine by suppressing ATG5-mediated autophagy and apoptosis, and provided a basis to explore the functions of miRNAs on drug resistance in the treatment of melanoma.
Collapse
Affiliation(s)
- Shaowei Hou
- Medical College of Shanxi Datong University, Datong, China
| | - Minfang Guo
- Medical College of Shanxi Datong University, Datong, China
| | - Haiying Xi
- Department of Dermatological, The Fifth People’s Hospital of Datong, Datong, China
| | - Lianqing Zhang
- Department of Dermatological, The Fifth People’s Hospital of Datong, Datong, China
| | - Ailing Zhao
- Department of Neurology, The Fifth People’s Hospital of Datong, Datong, China
| | - Heng Hou
- Medical College of Shanxi Datong University, Datong, China
| | - Wuning Fang
- Department of Dermatology, Xi’an International Medical Center Hospital, Xi’an, China
| |
Collapse
|
14
|
Guo Z, Sun Q, Liao Y, Liu C, Zhao W, Li X, Liu H, Dong M, Shang Y, Sui L, Kong Y. MiR-30a-5p inhibits proliferation and metastasis of hydatidiform mole by regulating B3GNT5 through ERK/AKT pathways. J Cell Mol Med 2020; 24:8350-8362. [PMID: 32575164 PMCID: PMC7412694 DOI: 10.1111/jcmm.15247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/15/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022] Open
Abstract
Hydatidiform moles are gestational trophoblastic disease. They are abnormal proliferations of trophoblast cells that have the potential to become cancerous. miR-miR30a-5p is a tumour suppressor that participates in the development of numerous diseases. However, the role of miR-30a in hydatidiform moles and the mechanisms underlying its effects are presently unclear. This study explored the levels of miR-30a and B3GNT5 expression in human hydatidiform mole tissue. The results showed that miR-30a and B3GNT5 were differentially expressed in normal placenta and hydatidiform mole, and miR-30a decreased cell proliferation, invasion and migration in trophoblast cell lines. Upon further examination, it was confirmed that miR-30a directly targeted the 3'untranslated region of B3GNT5 using a dual-luciferase assay. The results of the present study also revealed that miR-30a reduced the proliferation, invasion and migration ability in JAR and BeWo cells by regulating B3GNT5, which may inactivate the ERK and AKT signalling pathways. This study demonstrated that miR-30a was a novel target B3GNT5 that serves an important role in the development of hydatidiform moles, suggesting that miR-30a may serve as a novel potential biomarker or useful diagnostic and therapeutic tool for hydatidiform moles in clinical settings.
Collapse
Affiliation(s)
- Zhenzhen Guo
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Qiannan Sun
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Yangyou Liao
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Chao Liu
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Wenjie Zhao
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Xiaoxue Li
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Huan Liu
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Ming Dong
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Yuhong Shang
- Department of GynecologyFirst Affiliated HospitalDalian Med UniversityDalianChina
| | - Linlin Sui
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Ying Kong
- Core Lab Glycobiol & GlycoengnCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
15
|
Kulkarni B, Gondaliya P, Kirave P, Rawal R, Jain A, Garg R, Kalia K. Exosome-mediated delivery of miR-30a sensitize cisplatin-resistant variant of oral squamous carcinoma cells via modulating Beclin1 and Bcl2. Oncotarget 2020; 11:1832-1845. [PMID: 32499869 PMCID: PMC7244014 DOI: 10.18632/oncotarget.27557] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes facilitate cross-talk amongst tumor cells, and thus also possess the potential to influence tumor-microenvironment and chemo-resistance. miRNAs, the important constituent of exosomes, are often dysregulated in cancer. They have been shown to play an essential role in tumor progression, metastasis, invasion, and resistance developed against different therapies. Acquisition of cisplatin-chemoresistance remains a major hurdle in the effective treatment of oral squamous cell carcinoma (OSCC). In this study, we demonstrate the importance of exosome-mediated miR-30a transfer in conferring cisplatin sensitivity in the otherwise resistant OSCC cells. Notably, miR-30a was found to be significantly reduced in exosomes isolated from the serum of OSCC patients, especially those having disease-recurrence, post cisplatin treatment. In conjunction with the findings in clinical samples, decreased miR-30a expression was observed in vitro in the cisplatin-resistant cultured OSCC cells compared to the cisplatin-sensitive cells. Besides, we identified Beclin1, an autophagy-related marker, as a target of miR-30a and found it to be overexpressed in cisplatin-resistant OSCC cells, thus indicating at its possible negative-regulation by miR30a. Exosomes from the cisplatin-resistant cells that have been transfected with miR-30a mimics, when delivered to the naïve cisplatin-resistant cells, caused not only the significant enhancements in miR-30a expression but also a concomitant decrease in Beclin1 and Bcl2 expression (autophagic and anti-apoptotic marker). More importantly, this together resulted in the sensitization of cisplatin-resistant cells. Thus, our study highlighted the role of exosomal-mediated miR-30a transfer in regaining sensitivity of the cisplatin-resistant OSCC cells via Beclin1 and Bcl2 regulation and hence suggests at its potential therapeutic role.
Collapse
Affiliation(s)
- Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India.,These authors contributed equally to this work
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India.,These authors contributed equally to this work
| | - Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India.,These authors contributed equally to this work
| | - Rakesh Rawal
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Rachana Garg
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| |
Collapse
|
16
|
Gong TT, Liu XD, Zhan ZP, Wu QJ. Sulforaphane enhances the cisplatin sensitivity through regulating DNA repair and accumulation of intracellular cisplatin in ovarian cancer cells. Exp Cell Res 2020; 393:112061. [PMID: 32437713 DOI: 10.1016/j.yexcr.2020.112061] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Cisplatin is commonly applied as anticancer agent for various cancers, including ovarian cancer. Unfortunately, the drug resistance frequently occurred which obstructing the effect of cisplatin on tumors. The goal of our research was to investigate the reversal actions and the potential mechanisms of sulforaphane (SFN) on cisplatin resistance in ovarian carcinoma. METHODS The A2780 and IGROV1 cells and their cisplatin resistance cells A2780/CP70 and IGROV1-R10 were used in this study. Cell viability was detected by CCK-8. The DNA repair was measured by comet assay. The cisplatin transporter proteins were measured with western blotting. The concentration of intracellular cisplatin was detected by HPLC. The luciferase activity assay was applied to determine the target site of miR-30a-3p on the 3'UTR of ERCC1 and ATP7A. A2780/CP70 and IGROV1-R10 xenograft mouse model were established to confirm the antineoplastic action of SFN combined with cisplatin. RESULTS SFN reversed the resistance of A2780/CP70 and IGROV1-R10 ovarian carcinoma cells to cisplatin through inducing DNA damage and accumulation of intracellular cisplatin. SFN treatment notably increased miR-30a-3p expression, which was decreased in cisplatin-resistant cells. Moreover, overexpressed miR-30a-3p enhanced the sensitivity of A2780/CP70 and IGROV1-R10 cells to cisplatin treatment, and inhibiting miR-30a-3p activity abated the reversal actions of SFN on cisplatin resistance. The luciferase assay findings showed that miR-30a-3p binds to ERCC1 and ATP7A which are the key regulators for DNA repair and cisplatin transportation. CONCLUSIONS Our findings indicated that SFN could enhance cisplatin sensitivity of ovarian carcinoma cells through up-regulating miR-30a-3p to induce DNA damage and accumulation of intracellular cisplatin.
Collapse
Affiliation(s)
- Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Dong Liu
- Department of Pharmacy, Shengjing hospital of China Medical University, Shenyang, China
| | - Zhi-Peng Zhan
- Department of Nutrition, School of Public Health, Jinzhou Medical University, Jinzhou, China
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
17
|
Kirave P, Gondaliya P, Kulkarni B, Rawal R, Garg R, Jain A, Kalia K. Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition. Oncotarget 2020; 11:1157-1171. [PMID: 32284792 PMCID: PMC7138164 DOI: 10.18632/oncotarget.27531] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/03/2020] [Indexed: 01/07/2023] Open
Abstract
Cisplatin is used as chemotherapeutic drug for oral squamous cell carcinoma (OSCC). However, OSCC cells develop resistance following long-term cisplatin exposure. Resistance against cisplatin chemo-therapy is accredited to the process of epithelial-to-mesenchymal transition, which in-turn has been linked to tumor-recurrence. miRNA deregulation, a common event in cancer, plays contributory role in chemo-resistance. Exosomes acts as the natural cargo for miRNA and facilitates inter-cell communication in the tumor micro-environment. Hence, exosomal-mediated miRNA transference may play essential role in drug resistance and serve as a target for cancer-therapy. miR-155 upregulation in OSCC has been described, however, its relevance in the observed chemo-resistance is unclear and also, if exosomes have any role in miR-155 regulation remain elusive. In the present study, we document for the first time the critical role of exosomes in mediating increments in miR-155 expression in OSCC cells that have acquired cisplatin resistance (cisRes cells). Importantly, exosomal transfer from cisRes to the cisplatin sensitive (cisSens) cells was found to confer significant miR-155 induction in the recipient cisSens cells. Restoration of miR-155 expression in cisSens cells following miR-155 mimics treatment led to epithelial to mesenchymal transition, enhancements in their migratory potential as well as acquisition of resistant phenotype. Notably, similar augmentations in the migratory and chemo-resistant traits were seen upon delivery of exosomes from cisRes to the recipient cisSens cells. Overall, our findings establish the significance of exosomal-mediated miR-155 shuttling in the cisplatin-chemoresistance, commonly observed in OSCC cells, thereby providing rationale for targeting miR-155 signalling for oral cancer therapy.
Collapse
Affiliation(s)
- Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
- These authors contributed equally to this work and are first authors
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
- These authors contributed equally to this work and are first authors
| | - Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
- These authors contributed equally to this work and are first authors
| | - Rakesh Rawal
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Rachana Garg
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| |
Collapse
|
18
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
19
|
Liang Y, Zhu D, Hou L, Wang Y, Huang X, Zhou C, Zhu L, Wang Y, Li L, Gu Y, Luo M, Wang J, Meng X. MiR-107 confers chemoresistance to colorectal cancer by targeting calcium-binding protein 39. Br J Cancer 2020; 122:705-714. [PMID: 31919406 PMCID: PMC7054533 DOI: 10.1038/s41416-019-0703-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Background Chemoresistance remains a critical event that accounts for colorectal cancer (CRC) lethality. The aim of this study is to explore the ability of dichloroacetate (DCA) to increase chemosensitivity in CRC and the molecular mechanisms involved. Methods The effects of combination treatment of DCA and oxaliplatin (L-OHP) were analysed both in vitro and in vivo. The DCA-responsive proteins in AMPK pathway were enriched using proteomic profiling technology. The effect of DCA on CAB39–AMPK signal pathway was analysed. In addition, miRNA expression profiles after DCA treatment were determined. The DCA-responsive miRNAs that target CAB39 were assayed. Alterations of CAB39 and miR-107 expression were performed both in vitro and on xenograft models to identify miR-107 that targets CAB39–AMPK–mTOR signalling pathway. Results DCA increased L-OHP chemosensitivity both in vivo and in vitro. DCA could upregulate CAB39 expression, which activates the AMPK/mTOR signalling pathway. CAB39 was confirmed to be a direct target of miR-107 regulated by DCA. Alterations of miR-107 expression were correlated with chemoresistance development in CRC both in vitro and in vivo. Conclusion These findings suggest that the miR-107 induces chemoresistance through CAB39–AMPK–mTOR pathway in CRC cells, thus providing a promising target for overcoming chemoresistance in CRC.
Collapse
Affiliation(s)
- Yu Liang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Danxi Zhu
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lidan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yu Wang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Huang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Cui Zhou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Liming Zhu
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yingying Wang
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yan Gu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jianhua Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
20
|
Chemotherapeutic Stress Influences Epithelial-Mesenchymal Transition and Stemness in Cancer Stem Cells of Triple-Negative Breast Cancer. Int J Mol Sci 2020; 21:ijms21020404. [PMID: 31936348 PMCID: PMC7014166 DOI: 10.3390/ijms21020404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by the absence of estrogen and progesterone receptors (ER, PR) and lacking an overexpression of human epidermal growth factor receptor 2 (HER2). Apart from this lack of therapeutic targets, TNBC also shows an increased capacity for early metastasis and therapy resistance. Currently, many TNBC patients receive neoadjuvant chemotherapy (NACT) upon detection of the disease. With TNBC likely being driven at least in part by a cancer stem-like cell type, we wanted to evaluate the response of primary cancer stem cells (CSCs) to standard chemotherapeutics. Therefore, we set up a survival model using primary CSCs to mimic tumor cells in patients under chemotherapy. Breast cancer stem cells (BCSCs) were exposed to chemotherapeutics with a sublethal dose for six days. Surviving cells were allowed to recover in culture medium without chemotherapeutics. Surviving and recovered cells were examined in regard to proliferation, migratory capacity, sphere forming capacity, epithelial–mesenchymal transition (EMT) factor expression at the mRNA level, and cancer-related microRNA (miRNA) profile. Our results indicate that chemotherapeutic stress enhanced sphere forming capacity of BCSCs, and changed cell morphology and EMT-related gene expression at the mRNA level, whereas the migratory capacity was unaffected. Six miRNAs were identified as potential regulators in this process.
Collapse
|
21
|
Zhou Y, Li Y, Lu J, Hong X, Xu L. MicroRNA‑30a controls the instability of inducible CD4+ Tregs through SOCS1. Mol Med Rep 2019; 20:4303-4314. [PMID: 31545427 DOI: 10.3892/mmr.2019.10666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/31/2019] [Indexed: 11/05/2022] Open
Abstract
Inducible regulatory T cells (iTregs) are an important subset of Tregs and play a role in the maintenance of peripheral tolerance, and the occurrence of a number of diseases, including tumors and autoimmune diseases. However, the instability of iTregs is a major obstacle for their potential application in clinical trials. The underlying mechanism of iTreg instability remains largely unknown. In the present study, the expression level of microRNA (miRNA/miR)‑30a in murine iTregs was evaluated using reverse transcription‑quantitative PCR. miR‑30a mimics and a miR‑negative control (NC) were transiently transfected into iTregs using Nucleofector technology. The effects of miR‑30a on the suppressive function of murine iTregs in vitro and in vivo were investigated using MTT, adoptive cell transfer (ACT) and flow cytometry assays, as well as a murine model of lung cancer. In the present study, it was identified that the expression level of miR‑30a was lower in murine iTregs in vitro compared with natural (n)Tregs. Furthermore, compared with miR‑NC, miR‑30a mimics impaired the suppressive function of murine iTregs on murine CD4+ T cell proliferation in vitro, which was accompanied by the altered expression of cytotoxic T lymphocyte‑associated antigen 4 and glucocorticoid induced tumor necrosis factor receptor, as well as transforming growth factor‑β and interleukin‑10. It was also observed that, compared with miR‑NC, miR‑30a mimics abrogated the suppressive effects of murine iTregs on murine CD8+ T cell function in vivo, producing an effective antitumor effect in mice bearing 3LL lung cancer cells in the ACT assay. From a mechanistic point, the expression level of suppressor of cytokine signaling 1, a putative target of miR‑30a, was elevated, altering the activation of the Akt and STAT1 pathway in the miR‑30a mimic transfected group compared with the miR‑NC group, reducing the suppressive function of murine iTregs. The present study identified a role for miR‑30a in the instability of iTregs and provided a novel insight into the development of therapeutic strategies for promoting T‑cell immunity via the regulation of iTreg instability by targeting specific miRNAs.
Collapse
Affiliation(s)
- Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yongju Li
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou 563000, P.R. China
| | - Jia Lu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou 563000, P.R. China
| | - Xiaowu Hong
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
22
|
MicroRNA‑30a regulates cell proliferation, migration, invasion and apoptosis in human nasopharyngeal carcinoma via targeted regulation of ZEB2. Mol Med Rep 2019; 20:1672-1682. [PMID: 31257481 PMCID: PMC6625429 DOI: 10.3892/mmr.2019.10387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-30a (miR-30a) was previously reported to serve as a tumor suppressor able to inhibit the development and progression of certain types of cancer. A number of previous studies demonstrated that zinc finger E-box binding homeobox 2 (ZEB2) may be regulated by miR-30a in clear cell renal cell carcinoma and breast cancer. However, the function of miR-30a in human nasopharyngeal carcinoma (NPC) remains unclear. The present study aimed to investigate the association between miR-30a and ZEB2 in NPC. Therefore, the expression levels of miR-30a and ZEB2 were measured in human NPC cells and tissues from patients with NPC, and the present results suggested that the expression level of miR-30a was significantly decreased in NPC tissues compared with paracancerous tissues. The direct interaction between miR-30a and the untranslated region of ZEB2 was examined using the dual-luciferase reporter assay, and ZEB2 was identified as a direct target of miR-30a. Additionally, the effects of miR-30a and ZEB2 overexpression on cell proliferation, migration, invasion and apoptosis were additionally investigated. Functional experiments identified that overexpression of miR-30a increased apoptosis and suppressed cell proliferation, cell migration and cell invasion by directly targeting ZEB2. Collectively, the present study suggested that miR-30a may serve an important role in the progression of NPC and may represent a novel target for the treatment of patients with NPC.
Collapse
|
23
|
Quan X, Li X, Yin Z, Ren Y, Zhou B. p53/miR-30a-5p/ SOX4 feedback loop mediates cellular proliferation, apoptosis, and migration of non-small-cell lung cancer. J Cell Physiol 2019; 234:22884-22895. [PMID: 31124131 DOI: 10.1002/jcp.28851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Many microRNAs (miRNAs) play vital roles in the tumorigenesis and development of cancers. In this study, we aimed to identify the differentially expressed miRNAs and their specific mechanisms in non-small-cell lung cancer (NSCLC). Based on data from the GSE56036 database, miR-30a-5p expression was identified to be downregulated in NSCLC. Further investigations showed that overexpression of miR-30a-5p inhibited cell proliferation, migration, and promoted apoptosis in NSCLC. Increase of miR-30a-5p level could induce the increase of Bax protein level and decrease of Bcl-2 protein level. In addition, chromatin immunoprecipitation assays showed that miR-30a-5p expression was induced by binding of p53 to the promoter of MIR30A. Bioinformatics prediction indicated that miR-30a-5p targets SOX4, and western blot analysis indicated that overexpression of the miRNA decreases the SOX4 protein expression level, which in turn regulated the level of p53. Thus, this study provides evidence for the existence of a p53/miR-30a-5p/SOX4 feedback loop, which likely plays a key role in the regulation of proliferation, apoptosis, and migration in NSCLC, highlighting a new therapeutic target.
Collapse
Affiliation(s)
- Xiaowei Quan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention, China Medical University, Liaoning Provincial Department of Education, Liaoning, China
| |
Collapse
|
24
|
Liu Z, He F, OuYang S, Li Y, Ma F, Chang H, Cao D, Wu J. miR-140-5p could suppress tumor proliferation and progression by targeting TGFBRI/SMAD2/3 and IGF-1R/AKT signaling pathways in Wilms' tumor. BMC Cancer 2019; 19:405. [PMID: 31035970 PMCID: PMC6489324 DOI: 10.1186/s12885-019-5609-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 04/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background Wilms’ tumor is also called nephroblastoma and is the most common pediatric renal cancer. Several genetic and epigenetic factors have been found to account for the development of Wilms’ tumor. MiRNAs play important roles in this tumorigenic process. In the present study, we aimed to investigate the role of miR-140-5p in nephroblastoma by identifying its targets, as well as its underlying molecular mechanism of action. Methods The miRNA expression profile of nephroblastoma samples was investigated and the targets of miR-140-5p were predicted and validated using the miRNA luciferase reporter method. Moreover, the roles of miR-140-5p in regulating nephroblastoma cell proliferation, migration and cell cycle were analyzed by the CCK8, migration and flow cytometry assays, respectively. The downstream protein of the direct target of miR-140-5p was also identified. Results miR-140-5p was downregulated in Wilms’ tumor tissues, whereas in the nephroblastoma cell lines G401 and WT-CLS1 that exhibited high levels of miRNA-140-5p, inhibition of cellular proliferation and metastasis were noted as well as cell cycle arrest at the G1/S phase. TGFBRI and IGF1R were identified as direct target genes for miRNA-140-5p. In addition, SMAD2/3 and p-AKT were regulated by TGFBRI and IGF1R separately and participated in the miRNA-140-5p regulatory network. Ectopic expression of TGFBR1 and IGF-1R could abrogate the inhibitory effect of miR-140-5p. Conclusion We demonstrated that miRNA-140-5p participates in the progression of Wilms’ tumor by targeting the TGFBRI/SMAD2/3 and the IGF-1R/AKT signaling pathways.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.,Graduate School of Peking Union Medical College, NO. 9, Dongdansantiao, Dongcheng District, Beijing, 100730, China
| | - Feng He
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Shengrong OuYang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yuanyuan Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Feifei Ma
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Huibo Chang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Dingding Cao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Jianxin Wu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, NO. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
25
|
Liu E, Sun X, Li J, Zhang C. miR‑30a‑5p inhibits the proliferation, migration and invasion of melanoma cells by targeting SOX4. Mol Med Rep 2018; 18:2492-2498. [PMID: 29901141 DOI: 10.3892/mmr.2018.9166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/06/2018] [Indexed: 11/05/2022] Open
Abstract
MicroRNA (miR)‑30a‑5p has been reported to suppress the progression of hepatocellular cancer, renal cell carcinoma, oral cancer and gastric cancer. However, whether miR‑30a‑5p is involved in the regulation of melanoma remains unclear. The present study revealed that miR‑30a‑5p was downregulated in melanoma tissues and cell lines. Overexpression of miR‑30a‑5p significantly inhibited the proliferation, migration and invasion of melanoma cells in vitro. In addition, ectopic expression of miR‑30a‑5p delayed tumor growth in vivo. In terms of mechanism, miR‑30a‑5p targeted sex determining region Y‑box 4 (SOX4) and impeded the expression of SOX4 in melanoma cells. In addition, SOX4 was upregulated in melanoma tissues and cell lines when compared with normal tissues or cells. Furthermore, overexpression of SOX4 significantly rescued the proliferation, migration and invasion of melanoma cells transfected with miR‑30a‑5p mimics. Taken together, the results of the present study demonstrated that miR‑30a‑5p suppressed the proliferation, migration and invasion of melanoma cells in SOX4‑dependent manner.
Collapse
Affiliation(s)
- Erbiao Liu
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong 274300, P.R. China
| | - Xiyan Sun
- Department of Oncology, Shanxian Central Hospital, Heze, Shandong 274300, P.R. China
| | - Jinping Li
- Department of Medicine, Shanxian Central Hospital, Heze, Shandong 274300, P.R. China
| | - Chao Zhang
- Department of Dermatology, Shanxian Central Hospital, Heze, Shandong 274300, P.R. China
| |
Collapse
|