1
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Goh J, Wei H, Lai AHM, Chang B, Khan S, Syn Y, Jamuar SS, Tan EC. Novel and recurrent variants in PAX6 in four patients with ocular phenotypes from Southeast Asia. Clin Dysmorphol 2024; 33:63-68. [PMID: 38441200 DOI: 10.1097/mcd.0000000000000487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Aniridia is an autosomal dominant condition characterized by the complete or partial absence of the iris, often with additional presentations such as foveal hypoplasia, nystagmus, cataract, glaucoma and other ocular abnormalities. Most cases are caused by heterozygous mutations in the paired box 6 gene (PAX6), which codes for a transcription factor that regulates eye development. Four patients from our hospital who presented with ocular phenotypes were recruited for research sequencing with informed consent. Sanger sequencing of PAX6 coding exons or exome sequencing was performed on genomic DNA from venous blood samples. Variants in PAX6 were identified in the four patients. Two variants are recurrent single-nucleotide substitutions - one is a substitution found in a patient with bilateral aniridia, whereas the other is a splice variant in a patient with nystagmus and neuroblastoma. The other two variants are novel and found in two patients with isolated aniridia. Both are small duplications that are predicted to lead to premature termination. For the recurrent variants, the comparison of phenotypes for patients with identical variants would shed light on the mechanisms of pathogenesis, and the discovery of two novel variants expands the spectrum of PAX6 mutations.
Collapse
Affiliation(s)
- Jeannette Goh
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School
| | - Heming Wei
- Research Laboratory, KK Women's and Children's Hospital
| | - Angeline H M Lai
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School
| | - Benjamin Chang
- Opthalmology Service, KK Women's and Children's Hospital
| | - Shazia Khan
- Opthalmology Service, KK Women's and Children's Hospital
| | - Yamon Syn
- Singapore National Eye Centre, Singapore
| | - Saumya S Jamuar
- Genetics Service, Department of Paediatrics, KK Women's and Children's Hospital
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School
| | - Ene-Choo Tan
- Paediatrics Academic Clinical Programme, SingHealth Duke-NUS Medical School
- Research Laboratory, KK Women's and Children's Hospital
| |
Collapse
|
3
|
Zechel C, Loy M, Wegner C, Dahlke E, Soetje B, Baehr L, Leppert J, Ostermaier JJ, Lueg T, Nielsen J, Elßner J, Willeke V, Marzahl S, Tronnier V, Madany Mamlouk A. Molecular signature of stem-like glioma cells (SLGCs) from human glioblastoma and gliosarcoma. PLoS One 2024; 19:e0291368. [PMID: 38306361 PMCID: PMC10836714 DOI: 10.1371/journal.pone.0291368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/28/2023] [Indexed: 02/04/2024] Open
Abstract
Glioblastoma multiforme (GBM) and the GBM variant gliosarcoma (GS) are among the tumors with the highest morbidity and mortality, providing only palliation. Stem-like glioma cells (SLGCs) are involved in tumor initiation, progression, therapy resistance, and relapse. The identification of general features of SLGCs could contribute to the development of more efficient therapies. Commercially available protein arrays were used to determine the cell surface signature of eight SLGC lines from GBMs, one SLGC line obtained from a xenotransplanted GBM-derived SLGC line, and three SLGC lines from GSs. By means of non-negative matrix factorization expression metaprofiles were calculated. Using the cophenetic correlation coefficient (CCC) five metaprofiles (MPs) were identified, which are characterized by specific combinations of 7-12 factors. Furthermore, the expression of several factors, that are associated with GBM prognosis, GBM subtypes, SLGC differentiation stages, or neural identity was evaluated. The investigation encompassed 24 distinct SLGC lines, four of which were derived from xenotransplanted SLGCs, and included the SLGC lines characterized by the metaprofiles. It turned out that all SLGC lines expressed the epidermal growth factor EGFR and EGFR ligands, often in the presence of additional receptor tyrosine kinases. Moreover, all SLGC lines displayed a neural signature and the IDH1 wildtype, but differed in their p53 and PTEN status. Pearson Correlation analysis identified a positive association between the pluripotency factor Sox2 and the expression of FABP7, Musashi, CD133, GFAP, but not with MGMT or Hif1α. Spherical growth, however, was positively correlated with high levels of Hif1α, CDK4, PTEN, and PDGFRβ, whereas correlations with stemness factors or MGMT (MGMT expression and promoter methylation) were low or missing. Factors highly expressed by all SLGC lines, irrespective of their degree of stemness and growth behavior, are Cathepsin-D, CD99, EMMPRIN/CD147, Intβ1, the Galectins 3 and 3b, and N-Cadherin.
Collapse
Affiliation(s)
- Christina Zechel
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Mira Loy
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Christiane Wegner
- Institute for Neuro- and Bioinformatics (INB), University Lübeck, Lübeck, Germany
| | - Eileen Dahlke
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Birga Soetje
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Laura Baehr
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Jan Leppert
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Johannes J. Ostermaier
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Thorben Lueg
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Jana Nielsen
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Julia Elßner
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Viktoria Willeke
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Svenja Marzahl
- Laboratory of Experimental Neuro-Oncology, Center of Brain, Behavior and Metabolism, University Lübeck, Lübeck, Germany
| | - Volker Tronnier
- Department of Neurosurgery, University Clinic Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Amir Madany Mamlouk
- Institute for Neuro- and Bioinformatics (INB), University Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
5
|
Dashtaki ME, Ghasemi S. CRISPR/Cas9-based Gene Therapies for Fighting Drug Resistance Mediated by Cancer Stem Cells. Curr Gene Ther 2023; 23:41-50. [PMID: 36056851 DOI: 10.2174/1566523222666220831161225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are cancer-initiating cells found in most tumors and hematological cancers. CSCs are involved in cells progression, recurrence of tumors, and drug resistance. Current therapies have been focused on treating the mass of tumor cells and cannot eradicate the CSCs. CSCs drug-specific targeting is considered as an approach to precisely target these cells. Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene-editing systems are making progress and showing promise in the cancer research field. One of the attractive applications of CRISPR/Cas9 as one approach of gene therapy is targeting the critical genes involved in drug resistance and maintenance of CSCs. The synergistic effects of gene editing as a novel gene therapy approach and traditional therapeutic methods, including chemotherapy, can resolve drug resistance challenges and regression of the cancers. This review article considers different aspects of CRISPR/Cas9 ability in the study and targeting of CSCs with the intention to investigate their application in drug resistance.
Collapse
Affiliation(s)
- Masoumeh Eliyasi Dashtaki
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Lu Z, Chen Y, Chen S, Zhu X, Wang C, Wang Z, Yao Q. Comprehensive Prognostic Analysis of Immune Implication Value and Oxidative Stress Significance of NECAP2 in Low-Grade Glioma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1494520. [PMID: 36531205 PMCID: PMC9750773 DOI: 10.1155/2022/1494520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/07/2023]
Abstract
Adaptin ear-binding coat-associated protein 2 (NECAP2) belongs to the family of proteins encoding adaptin-ear-binding coat-associated proteins. However, its immune effect on tumors and its microenvironment are still unclear. Here, we systematically evaluated the differences (variations) in NECAP2 expression for low-grade glioma (LGG) and pan-cancer in the LGG dataset of The Cancer Genome Atlas (TCGA) utilizing bioinformatics methods. We found for the first time that NECAP2 level was elevated in gliomas and that this upregulation increased as the tumor grade increased. In addition, Pearson correlations of NECAP2 with five immune pathways and significant gene mutations associated with NECAP2 were also analyzed. Univariate survival and multivariate Cox analyses were used to compare the clinical characteristics and survival of the patients. Glioma patients with NECAP2 overexpression have a remarkably higher risk of developing malignant behavior and a worse prognosis. The correlation between the expression levels of NECAP2 and the prognosis of glioma patients was identified. Kaplan-Meier curves showed that patients with upregulated NECAP2 expression exhibited an unfavorable prognosis. Western blotting showed that NECAP2 was overexpressed in glioma patients. IHC staining results illustrated an elevation in the NECAP2 protein expression level with the development of tumor malignancy. Additionally, qRT-PCR verified that oxidative stress in glioma tissues reduced the expression of stress-related genes and oxidative stress capacity compared to normal tissues, which may be associated with tumor evasion of immune surveillance and tumor progression. In vitro wound-healing and Transwell assay confirmed that NECAP2 promotes glioma cell migration and invasion. Our study also thoroughly examined the immune significance of NECAP2 in the TCGA-LGG samples, using CIBERSORT and ESTIMATE to explore the correlation between NECAP2 and cancer immune infiltration. The NECAP2 expression levels were correlated with the infiltration degree of immune cells such as neutrophils, CD4+ T cells, macrophages, CD8+ T cells, and B cells. Therefore, our results indicate that NECAP2 strongly correlates with the overall immune infiltration level of glioma and could independently serve as a prognostic biological marker for glioma patients.
Collapse
Affiliation(s)
- Zhichao Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yixun Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Siqi Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xingjia Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chenxing Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Ziheng Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Clinical Biobank & Institute of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
7
|
Zheng Y, Yang X, Wu S, Yi G, Huang X, Feng Z, Qu L, Liu L, Li Q, Xia Z. Paired Box Gene 6 Regulates Heme Oxygenase-1 Expression and Mitigates Hydrogen Peroxide-Induced Oxidative Stress in Lens Epithelial Cells. Curr Eye Res 2022; 47:1516-1524. [PMID: 36149046 DOI: 10.1080/02713683.2022.2110266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE This study aimed to investigate the regulation of heme oxygenase-1 (HO-1) by paired box gene 6 (Pax6) and their roles in hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in lens epithelial cells (LECs) (SRA01/04, HLE-B3). METHODS Lens anterior capsule membranes of mice of different ages were obtained to compare differences in the expression of Pax6 and HO-1 using Western blotting. Pax6-overexpressing plasmid and small interfering RNA were designed to overexpress and silence Pax6, respectively. Cobalt protoporphyrin (CoPP) was used to promote the expression of HO-1. Oxidative damage in LECs was induced by treatment with H2O2 (400 µM) for 24 h. Cell viability was measured using the Cell Counting Kit-8 assay. Intracellular reactive oxygen species (ROS) were detected using flow cytometry and immunofluorescence. Superoxide dismutase (SOD) level was measured using SOD Assay Kit and apoptotic cells were quantified using annexin V-fluorescein isothiocyanate/propidium iodide staining. RESULTS Pax6 and HO-1 expression levels showed an age-dependent decrease in LECs of mouse. Overexpressing Pax6 upregulated HO-1 expression level. Silencing Pax6 downregulated the HO-1 expression level, resulting in increased generation of ROS, reduced SOD activity, decreased cell viability, and increased apoptotic cells of LECs under H2O2-induced oxidative stress. Overexpressing Pax6 and CoPP both mitigates H2O2-induced oxidative stress by increasing the expression of HO-1 of LECs. CONCLUSION Pax6 and HO-1 expression levels showed an age-dependent decrease in LECs in mouse anterior capsules. Pax6 could regulate the expression of HO-1 in LECs. The decrease of Pax6 weakened the antioxidant ability of LECs under H2O2-induced oxidative stress by downregulating HO-1, which may be a potential mechanism for the formation of age-related cataract.
Collapse
Affiliation(s)
- Yuxing Zheng
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxi Yang
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuduan Wu
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaobo Huang
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhizhen Feng
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Qu
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linyu Liu
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qianyun Li
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaoxia Xia
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Gonzalez-Salinas F, Martinez-Amador C, Trevino V. Characterizing genes associated with cancer using the CRISPR/Cas9 system: A systematic review of genes and methodological approaches. Gene 2022; 833:146595. [PMID: 35598687 DOI: 10.1016/j.gene.2022.146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/22/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system enables a versatile set of genomes editing and genetic-based disease modeling tools due to its high specificity, efficiency, and accessible design and implementation. In cancer, the CRISPR/Cas9 system has been used to characterize genes and explore different mechanisms implicated in tumorigenesis. Different experimental strategies have been proposed in recent years, showing dependency on various intrinsic factors such as cancer type, gene function, mutation type, and technical approaches such as cell line, Cas9 expression, and transfection options. However, the successful methodological approaches, genes, and other experimental factors have not been analyzed. We, therefore, initially considered more than 1,300 research articles related to CRISPR/Cas9 in cancer to finally examine more than 400 full-text research publications. We summarize findings regarding target genes, RNA guide designs, cloning, Cas9 delivery systems, cell enrichment, and experimental validations. This analysis provides valuable information and guidance for future cancer gene validation experiments.
Collapse
Affiliation(s)
- Fernando Gonzalez-Salinas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Claudia Martinez-Amador
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico
| | - Victor Trevino
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Morones Prieto avenue 3000, Monterrey, Nuevo Leon 64710, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Eugenio Garza Sada avenue 2501, Monterrey, Nuevo Leon 64849, México.
| |
Collapse
|
9
|
Differential Sensitivity of Two Leukemia Cell Lines towards Two Major Gas Plasma Products Hydrogen Peroxide and Hypochlorous Acid. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Oxidative stress has major implications for health and disease. At the same time, the term collectively describes the reactions to different types of reactive oxygen species (ROS) and oxidants, including hydrogen peroxide (H2O2) and hypochlorous acid (HOCl). However, how both compare in terms of cytotoxicity and mechanism of action is less known. Using two leukemia cell lines, Jurkat and THP-1, as model systems at similar cell concentrations, we found an 8-fold greater sensitivity of the former over the latter for H2O2 exposure. Unexpectantly, this was not the case with HOCl exposure. Jurkat cells were 2-fold more resistant to HOCl-induced cytotoxicity than THP-1 cells. In each cell type, the relatively more toxic oxidant also induced activation of caspases 3 and 7 at earlier time points, as time-lapse fluorescence microscopy revealed. The effects observed did not markedly correlate with changes in intracellular GSH and GSSG levels. In addition, siRNA-mediated knockdown of the Nrf2 target HMOX-1 encoding for HO-1 protein and the growth and survival factor IL-8 revealed Jurkat cells to become more sensitive to HOCl, while HO-1 and IL-8 siRNA-mediated knockdown in THP-1 cells produced greater sensitivity towards H2O2. siRNA-mediated knockdown of catalase increased oxidant sensitivity only negligibly. Collectively, the data suggest striking HOCl-resistance of Jurkat and H2O2 resistance of THP-1 cells, showing similar protective roles of HO-1 and IL-8, while caspase activation kinetics differ.
Collapse
|
10
|
Ochi S, Manabe S, Kikkawa T, Osumi N. Thirty Years' History since the Discovery of Pax6: From Central Nervous System Development to Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:6115. [PMID: 35682795 PMCID: PMC9181425 DOI: 10.3390/ijms23116115] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Pax6 is a sequence-specific DNA binding transcription factor that positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system (CNS). As indicated by the morphological and functional abnormalities in spontaneous Pax6 mutant rodents, Pax6 plays pivotal roles in various biological processes in the CNS. At the initial stage of CNS development, Pax6 is responsible for brain patterning along the anteroposterior and dorsoventral axes of the telencephalon. Regarding the anteroposterior axis, Pax6 is expressed inversely to Emx2 and Coup-TF1, and Pax6 mutant mice exhibit a rostral shift, resulting in an alteration of the size of certain cortical areas. Pax6 and its downstream genes play important roles in balancing the proliferation and differentiation of neural stem cells. The Pax6 gene was originally identified in mice and humans 30 years ago via genetic analyses of the eye phenotypes. The human PAX6 gene was discovered in patients who suffer from WAGR syndrome (i.e., Wilms tumor, aniridia, genital ridge defects, mental retardation). Mutations of the human PAX6 gene have also been reported to be associated with autism spectrum disorder (ASD) and intellectual disability. Rodents that lack the Pax6 gene exhibit diverse neural phenotypes, which might lead to a better understanding of human pathology and neurodevelopmental disorders. This review describes the expression and function of Pax6 during brain development, and their implications for neuropathology.
Collapse
Affiliation(s)
| | | | | | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (S.O.); (S.M.); (T.K.)
| |
Collapse
|
11
|
Shafi O, Siddiqui G. Tracing the origins of glioblastoma by investigating the role of gliogenic and related neurogenic genes/signaling pathways in GBM development: a systematic review. World J Surg Oncol 2022; 20:146. [PMID: 35538578 PMCID: PMC9087910 DOI: 10.1186/s12957-022-02602-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 02/16/2023] Open
Abstract
Background Glioblastoma is one of the most aggressive tumors. The etiology and the factors determining its onset are not yet entirely known. This study investigates the origins of GBM, and for this purpose, it focuses primarily on developmental gliogenic processes. It also focuses on the impact of the related neurogenic developmental processes in glioblastoma oncogenesis. It also addresses why glial cells are at more risk of tumor development compared to neurons. Methods Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving glioblastoma, gliogenesis, neurogenesis, stemness, neural stem cells, gliogenic signaling and pathways, neurogenic signaling and pathways, and astrocytogenic genes. Results The origin of GBM is dependent on dysregulation in multiple genes and pathways that accumulatively converge the cells towards oncogenesis. There are multiple layers of steps in glioblastoma oncogenesis including the failure of cell fate-specific genes to keep the cells differentiated in their specific cell types such as p300, BMP, HOPX, and NRSF/REST. There are genes and signaling pathways that are involved in differentiation and also contribute to GBM such as FGFR3, JAK-STAT, and hey1. The genes that contribute to differentiation processes but also contribute to stemness in GBM include notch, Sox9, Sox4, c-myc gene overrides p300, and then GFAP, leading to upregulation of nestin, SHH, NF-κB, and others. GBM mutations pathologically impact the cell circuitry such as the interaction between Sox2 and JAK-STAT pathway, resulting in GBM development and progression. Conclusion Glioblastoma originates when the gene expression of key gliogenic genes and signaling pathways become dysregulated. This study identifies key gliogenic genes having the ability to control oncogenesis in glioblastoma cells, including p300, BMP, PAX6, HOPX, NRSF/REST, LIF, and TGF beta. It also identifies key neurogenic genes having the ability to control oncogenesis including PAX6, neurogenins including Ngn1, NeuroD1, NeuroD4, Numb, NKX6-1 Ebf, Myt1, and ASCL1. This study also postulates how aging contributes to the onset of glioblastoma by dysregulating the gene expression of NF-κB, REST/NRSF, ERK, AKT, EGFR, and others.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
12
|
Rudd ML, Hansen NF, Zhang X, Urick ME, Zhang S, Merino MJ, Mullikin JC, Brody LC, Bell DW. KLF3 and PAX6 are candidate driver genes in late-stage, MSI-hypermutated endometrioid endometrial carcinomas. PLoS One 2022; 17:e0251286. [PMID: 35081118 PMCID: PMC8791453 DOI: 10.1371/journal.pone.0251286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
Endometrioid endometrial carcinomas (EECs) are the most common histological subtype of uterine cancer. Late-stage disease is an adverse prognosticator for EEC. The purpose of this study was to analyze EEC exome mutation data to identify late-stage-specific statistically significantly mutated genes (SMGs), which represent candidate driver genes potentially associated with disease progression. We exome sequenced 15 late-stage (stage III or IV) non-ultramutated EECs and paired non-tumor DNAs; somatic variants were called using Strelka, Shimmer, SomaticSniper and MuTect. Additionally, somatic mutation calls were extracted from The Cancer Genome Atlas (TCGA) data for 66 late-stage and 270 early-stage (stage I or II) non-ultramutated EECs. MutSigCV (v1.4) was used to annotate SMGs in the two late-stage cohorts and to derive p-values for all mutated genes in the early-stage cohort. To test whether late-stage SMGs are statistically significantly mutated in early-stage tumors, q-values for late-stage SMGs were re-calculated from the MutSigCV (v1.4) early-stage p-values, adjusting for the number of late-stage SMGs tested. We identified 14 SMGs in the combined late-stage EEC cohorts. When the 14 late-stage SMGs were examined in the TCGA early-stage data, only Krüppel-like factor 3 (KLF3) and Paired box 6 (PAX6) failed to reach significance as early-stage SMGs, despite the inclusion of enough early-stage cases to ensure adequate statistical power. Within TCGA, nonsynonymous mutations in KLF3 and PAX6 were, respectively, exclusive or nearly exclusive to the microsatellite instability (MSI)-hypermutated molecular subgroup and were dominated by insertions-deletions at homopolymer tracts. In conclusion, our findings are hypothesis-generating and suggest that KLF3 and PAX6, which encode transcription factors, are MSI target genes and late-stage-specific SMGs in EEC.
Collapse
Affiliation(s)
- Meghan L. Rudd
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy F. Hansen
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xiaolu Zhang
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mary Ellen Urick
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Suiyuan Zhang
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria J. Merino
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - James C. Mullikin
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lawrence C. Brody
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daphne W. Bell
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
13
|
Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme. Cells 2021; 10:cells10092342. [PMID: 34571991 PMCID: PMC8468137 DOI: 10.3390/cells10092342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignancy of the brain and spinal cord with a poor life expectancy. The low survivability of GBM patients can be attributed, in part, to its heterogeneity and the presence of multiple genetic alterations causing rapid tumor growth and resistance to conventional therapy. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated (Cas) nuclease 9 (CRISPR-Cas9) system is a cost-effective and reliable gene editing technology, which is widely used in cancer research. It leads to novel discoveries of various oncogenes that regulate autophagy, angiogenesis, and invasion and play important role in pathogenesis of various malignancies, including GBM. In this review article, we first describe the principle and methods of delivery of CRISPR-Cas9 genome editing. Second, we summarize the current knowledge and major applications of CRISPR-Cas9 to identifying and modifying the genetic regulators of the hallmark of GBM. Lastly, we elucidate the major limitations of current CRISPR-Cas9 technology in the GBM field and the future perspectives. CRISPR-Cas9 genome editing aids in identifying novel coding and non-coding transcriptional regulators of the hallmarks of GBM particularly in vitro, while work using in vivo systems requires further investigation.
Collapse
|
14
|
Zhang Y, He L, Huang L, Yao S, Lin N, Li P, Xu H, Wu X, Xu J, Lu Y, Li Y, Zhu S. Oncogenic PAX6 elicits CDK4/6 inhibitor resistance by epigenetically inactivating the LATS2-Hippo signaling pathway. Clin Transl Med 2021; 11:e503. [PMID: 34459131 PMCID: PMC8382979 DOI: 10.1002/ctm2.503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022] Open
Abstract
Intrinsic resistance to CDK4/6 inhibitors hinders their clinical utility in cancer treatment. Furthermore, the predictive markers of CDK4/6 inhibitors in gastric cancer (GC) remain incompletely described. Here, we found that PAX6 expression was negatively correlated with the response to palbociclib in vitro and in vivo in GC. We observed that the PAX6 expression level was negatively correlated with the overall survival of GC patients and further showed that PAX6 can promote GC cell proliferation and the cell cycle. The cell cycle is regulated by the interaction of cyclins with their partner serine/threonine cyclin-dependent kinases (CDKs), and the G1/S-phase transition is the main target of CDK4/6 inhibitors. Therefore, we tested whether PAX6 expression was correlated with the GC response to palbociclib. We found that PAX6 hypermethylates the promoter of LATS2 and inactivates the Hippo pathway, which upregulates cyclin D1 (CCND1) expression. This results in a suppressed response to palbociclib in GC. Furthermore, we found that the induction of the Hippo signaling pathway or treatment with a DNA methylation inhibitor could overcome PAX6-induced palbociclib resistance in GC. These findings uncover a tumor promoter function of PAX6 in GC and establish overexpressed PAX6 as a mechanism of resistance to palbociclib.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Gastroenterology and Hepatology, the First Affiliated HospitalSun Yat‐sen UniversityNo.58 Zhongshan 2nd RoadGuangzhou510630China
- Department of Hepatobiliary surgery, the Third Affiliated HospitalSun Yat‐sen UniversityNo.600 Tian he RoadGuangzhou510630China
- Department of Hepatic surgery, the First Affiliated HospitalSun Yat‐sen UniversityNo.58 Zhongshan 2nd RoadGuangzhou510080China
| | - Long‐Jun He
- State Key Laboratory of Oncology in South ChinaCancer CenterSun Yat‐sen UniversityNo.651 Dongfeng Road EastGuangzhou510060China
| | - Lin‐Lin Huang
- Department of Gastroenterology and Hepatology, the First Affiliated HospitalSun Yat‐sen UniversityNo.58 Zhongshan 2nd RoadGuangzhou510630China
- Department of Gastroenterology and HepatologyGuangdong Provincial People's Hospital/Guangdong Academy of Medical
SciencesNo.106 Zhongshan 2nd RoadGuangzhou510080China
| | - Sheng Yao
- Department of Gastroenterology and Hepatology, the First Affiliated HospitalSun Yat‐sen UniversityNo.58 Zhongshan 2nd RoadGuangzhou510630China
| | - Nan Lin
- Department of Hepatobiliary surgery, the Third Affiliated HospitalSun Yat‐sen UniversityNo.600 Tian he RoadGuangzhou510630China
| | - Ping Li
- Department of Gastroenterology and Hepatology, the First Affiliated HospitalSun Yat‐sen UniversityNo.58 Zhongshan 2nd RoadGuangzhou510630China
| | - Hui‐Wen Xu
- Department of Gastroenterology and Hepatology, the First Affiliated HospitalSun Yat‐sen UniversityNo.58 Zhongshan 2nd RoadGuangzhou510630China
| | - Xi‐Wen Wu
- Department of Hepatic surgery, the First Affiliated HospitalSun Yat‐sen UniversityNo.58 Zhongshan 2nd RoadGuangzhou510080China
| | - Jian‐Liang Xu
- Department of Hepatobiliary surgery, the Third Affiliated HospitalSun Yat‐sen UniversityNo.600 Tian he RoadGuangzhou510630China
| | - Yi Lu
- Department of Hepatobiliary surgery, the Third Affiliated HospitalSun Yat‐sen UniversityNo.600 Tian he RoadGuangzhou510630China
| | - Yan‐Jie Li
- Department of Hepatobiliary surgery, the Third Affiliated HospitalSun Yat‐sen UniversityNo.600 Tian he RoadGuangzhou510630China
| | - Sen‐Lin Zhu
- Department of Gastroenterology and Hepatology, the First Affiliated HospitalSun Yat‐sen UniversityNo.58 Zhongshan 2nd RoadGuangzhou510630China
| |
Collapse
|
15
|
|
16
|
Liu Z, Han L, Yu H, Gao N, Xin H. LINC01619 promotes non-small cell lung cancer development via regulating PAX6 by suppressing microRNA-129-5p. Am J Transl Res 2020; 12:2538-2553. [PMID: 32655789 PMCID: PMC7344070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
This article explored LINC01619 impact on non-small cell lung cancer (NSCLS) development. LINC01619 expression in tumor tissues/normal tissues of NSCLS patients was detected by qRT-PCR and in situ hybridization. PAX6 expression in clinical tissues was researched by immunohistochemistry. After transfection, SPCA1 and A549 cells were subjected to CCK-8 assay and cell colony formation experiment. Xenograft tumor experiment was conducted. ALDH+ cells from SPCA1 and A549 cells were separated and transfected. ALDH+ cells percentage, sphere number and cancer stem cell markers expression was determined by flow cytometry, sphere culture and Western blot respectively. Luciferase reporter gene assay and RNA binding protein immunoprecipitation assay was conducted. The colocalization of LINC01619 and miR-129-5p in cells was determined by RNA fluorescence in situ hybridization experiment. Gene expression in tissues and cells were assessed by qRT-PCR and Western blot. As a result, aberrantly up-regulated LINC01619 and PAX6 in NSCLC patients predicted poor prognosis. LINC01619 overexpression in SPCA1 cells enhanced cell viability, cloning ability, and xenograft tumors volume and weigh, whereas LINC01619 silencing in A549 cells weakened the above indicators. LINC01619 overexpression promoted cancer stem cells characteristics including increasing percentage of ALDH+ cells, sphere number and cancer stem cell markers expression. LINC01619 directly inhibited miR-129-5p and the two genes were mainly colocalized in the cytoplasm. PAX6 was up-regulated in NSCLC and directly suppressed by miR-129-5p. LINC01619 promoted cells viability, cloning ability and cancer stem cells characteristics in NSCLC via the miR-129-5p/PAX6 axis. Thus, LINC01619 promotes NSCLC development via regulating PAX6 by suppressing miR-129-5p.
Collapse
Affiliation(s)
- Zhengjia Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| | - Leng Han
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| | - Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| | - Nan Gao
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University Changchun 130033, Jilin Province, P. R. China
| |
Collapse
|
17
|
Saber A, Liu B, Ebrahimi P, Haisma HJ. CRISPR/Cas9 for overcoming drug resistance in solid tumors. Daru 2020; 28:295-304. [PMID: 30666557 PMCID: PMC7214581 DOI: 10.1007/s40199-019-00240-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES In this review, we focus on the application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome editing system, in the identification of resistance mechanisms and in overcoming drug resistance in the most frequent solid tumors. DATA ACQUISITION Data were collected by conducting systematic searching of scientific English literature using specific keywords such as "cancer", "CRISPR" and related combinations. RESULTS The review findings revealed the importance of CRISPR/Cas9 system in understanding drug resistance mechanisms and identification of resistance-related genes such as PBRM1, SLFN11 and ATPE1 in different cancers. We also provided an overview of genes, including RSF1, CDK5, and SGOL1, whose disruption can synergize with the currently available drugs such as paclitaxel and sorafenib. CONCLUSION The data suggest CRISPR/Cas9 system as a useful tool in elucidating the molecular basis of drug resistance and improving clinical outcomes. Graphical abstract The mechanisms of CRISPR/Cas9-mediated genome editing and double-strand breaks (DSBs) repair.
Collapse
Affiliation(s)
- Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Pirooz Ebrahimi
- Universal Scientific Education and Research Network, Tehran, Iran
- Parseh Medical Genetics Clinic, Tehran, Iran
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Cohen A, Troib S, Dotan S, Najmuldeen H, Yesilkaya H, Kushnir T, Shagan M, Portnoi M, Nachmani H, Benisty R, Tal M, Ellis R, Chalifa-Caspi V, Dagan R, Nebenzahl YM. Streptococcus pneumoniae Cell Wall-Localized Trigger Factor Elicits a Protective Immune Response and Contributes to Bacterial Adhesion to the Host. Sci Rep 2019; 9:4295. [PMID: 30862841 PMCID: PMC6414539 DOI: 10.1038/s41598-019-40779-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
Trigger factor (TF) has a known cytoplasmic function as a chaperone. In a previous study we showed that pneumococcal TF is also cell-wall localized and this finding combined with the immunogenic characteristic of TF, has led us to determine the vaccine potential of TF and decipher its involvement in pneumococcal pathogenesis. Bioinformatic analysis revealed that TF is conserved among pneumococci and has no human homologue. Immunization of mice with recombinant (r)TF elicited a protective immune response against a pneumococcal challenge, suggesting that TF contributes to pneumococcal pathogenesis. Indeed, rTF and an anti-rTF antiserum inhibited bacterial adhesion to human lung derived epithelial cells, indicating that TF contributes to the bacterial adhesion to the host. Moreover, bacteria lacking TF demonstrated reduced adhesion, in vitro, to lung-derived epithelial cells, neural cells and glial cells. The reduced adhesion could be restored by chromosomal complementation. Furthermore, bacteria lacking TF demonstrated significantly reduced virulence in a mouse model. Taken together, the ability of rTF to elicit a protective immune response, involvement of TF in bacterial adhesion, conservation of the protein among pneumococcal strains and the lack of human homologue, all suggest that rTF can be considered as a future candidate vaccine with a much broader coverage as compared to the currently available pneumococcal vaccines.
Collapse
Affiliation(s)
- Aviad Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shani Troib
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Hastyar Najmuldeen
- Department of Infection, Immunity and Inflammation to Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Department of Biology, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Hasan Yesilkaya
- Department of Infection, Immunity and Inflammation to Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maxim Portnoi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hannie Nachmani
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rachel Benisty
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
19
|
Zhou Y, Liang P, Ji W, Yu Z, Chen H, Jiang L. Ubiquitin-specific protease 4 promotes glioblastoma multiforme via activating ERK pathway. Onco Targets Ther 2019; 12:1825-1839. [PMID: 30881035 PMCID: PMC6407510 DOI: 10.2147/ott.s176582] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is one of the most common brain tumors in adults. Current treatments cannot increase survival to a large extent, as the glioblastoma development mechanisms remain unknown. It has been well documented that ubiquitination contributes to tumor initiation and/or progression in many kinds of cancer. Ubiquitin-specific protease 4 (USP4), a member of deubiquitinating enzymes (DUBs) family, can remove ubiquitin residues and play a role in cancer development. Methods In the current study, lentiviruses were used to manipulate the expression of USP4. Real-time PCR and Western blot were used to measure the expression level of USP4. Then, CCK-8 and annexin-V staining were used to detect cell proliferation and cell apoptosis, respectively. Results First, we found that USP4 was highly upregulated in GBM tissues in comparison with that in normal tissues and high level of USP4 correlated with poor prognosis. Moreover, knockdown of USP4 could significantly inhibit cell proliferation and increase cell apoptosis in U87 and T98G cells. Cells with stable USP4 reduction exhibited slower tumor growth rate and smaller tumor size than the control group cells in a xenograft mouse model. Inhibition of USP4 downregulated the expression of PCNA, Bcl-2 and p-ERK1/2, but upregulated the expression of Bax both in vitro and in vivo. Inversely, USP4 overexpression could attenuate the effects contributed by ERK inhibitor. TGF-βR inhibition reduced level of TGF-βR1, p-smad2 and p-ERK1/2 which can partially be rescued by USP4 overexpression. Conclusion USP4, as a potential novel oncogene, promotes GBM by activation of ERK pathway through regulating TGF-β.
Collapse
Affiliation(s)
- Yudong Zhou
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China,
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China,
| | - Wenyuan Ji
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China,
| | - Zengpeng Yu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China,
| | - Hui Chen
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China,
| | - Li Jiang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China, .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, People's Republic of China, .,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, People's Republic of China, .,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400014, People's Republic of China,
| |
Collapse
|
20
|
Liu B, Saber A, Haisma HJ. CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discov Today 2019; 24:955-970. [PMID: 30849442 DOI: 10.1016/j.drudis.2019.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9), as a powerful genome-editing tool, has revolutionized genetic engineering. It is widely used to investigate the molecular basis of different cancer types. In this review, we present an overview of recent studies in which CRISPR/Cas9 has been used for the identification of potential molecular targets. Based on the collected data, we suggest here that CRISPR/Cas9 is an effective system to distinguish between mutant and wild-type alleles in cancer. We show that several new potential therapeutic targets, such as CD38, CXCR2, MASTL, and RBX2, as well as several noncoding (nc)RNAs have been identified using CRISPR/Cas9 technology. We also discuss the obstacles and challenges that we face for using CRISPR/Cas9 as a therapeutic.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ali Saber
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Hidde J Haisma
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands.
| |
Collapse
|
21
|
Quintana-Urzainqui I, Kozić Z, Mitra S, Tian T, Manuel M, Mason JO, Price DJ. Tissue-Specific Actions of Pax6 on Proliferation and Differentiation Balance in Developing Forebrain Are Foxg1 Dependent. iScience 2018; 10:171-191. [PMID: 30529950 PMCID: PMC6287089 DOI: 10.1016/j.isci.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Differences in the growth and maturation of diverse forebrain tissues depend on region-specific transcriptional regulation. Individual transcription factors act simultaneously in multiple regions that develop very differently, raising questions about the extent to which their actions vary regionally. We found that the transcription factor Pax6 affects the transcriptomes and the balance between proliferation and differentiation in opposite directions in the diencephalon versus cerebral cortex. We tested several possible mechanisms to explain Pax6's tissue-specific actions and found that the presence of the transcription factor Foxg1 in the cortex but not in the diencephalon was most influential. We found that Foxg1 is responsible for many of the differences in cell cycle gene expression between the diencephalon and cortex and, in cortex lacking Foxg1, Pax6's action on the balance of proliferation versus differentiation becomes diencephalon like. Our findings reveal a mechanism for generating regional forebrain diversity in which one transcription factor completely reverses the actions of another.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - Zrinko Kozić
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Soham Mitra
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Tian Tian
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Martine Manuel
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - John O Mason
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|