1
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Kostka L, Kotrchová L, Randárová E, Ferreira CA, Malátová I, Lee HJ, Olson AP, Engle JW, Kovář M, Cai W, Šírová M, Etrych T. Evaluation of linear versus star-like polymer anti-cancer nanomedicines in mouse models. J Control Release 2023; 353:549-562. [PMID: 36470330 PMCID: PMC9892306 DOI: 10.1016/j.jconrel.2022.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Nanomedicines are considered next generation therapeutics with advanced therapeutic properties and reduced side effects. Herein, we introduce tailored linear and star-like water-soluble nanosystems as stimuli-sensitive nanomedicines for the treatment of solid tumors or hematological malignancies. The polymer carrier and drug pharmacokinetics were independently evaluated to elucidate the relationship between the nanosystem structure and its distribution in the body. Positron emission tomography and optical imaging demonstrated enhanced tumor accumulation of the polymer carriers in 4T1-bearing mice with increased tumor-to-blood and tumor-to-muscle ratios. Additionally, there was a significant accumulation of doxorubicin bound to various polymer carriers in EL4 tumors, as well as excellent in vivo therapeutic activity in EL4 lymphoma and moderate efficacy in 4T1 breast carcinoma. The linear nanomedicine showed at least comparable pharmacologic properties to the star-like nanomedicines regarding doxorubicin transport. Therefore, if multiple parameters are considered such as its optimized structure and simple and reproducible synthesis, this polymer carrier system is the most promising for further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Libor Kostka
- Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského nám. 2, Prague 6 16206, Czech Republic
| | - Lenka Kotrchová
- Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského nám. 2, Prague 6 16206, Czech Republic
| | - Eva Randárová
- Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského nám. 2, Prague 6 16206, Czech Republic
| | - Carolina A Ferreira
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Iva Malátová
- Institute of Microbiology CAS, Laboratory of Tumor Immunology, Vídeňská 1083, Prague 4 14220, Czech Republic
| | - Hye Jin Lee
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Aeli P Olson
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Marek Kovář
- Institute of Microbiology CAS, Laboratory of Tumor Immunology, Vídeňská 1083, Prague 4 14220, Czech Republic
| | - Weibo Cai
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, United States; Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Milada Šírová
- Institute of Microbiology CAS, Laboratory of Tumor Immunology, Vídeňská 1083, Prague 4 14220, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského nám. 2, Prague 6 16206, Czech Republic.
| |
Collapse
|
3
|
Smeda M, Jasztal A, Maleki EH, Bar A, Sternak M, Kwiatkowski G, Suraj-Prażmowska J, Proniewski B, Kieronska-Rudek A, Wojnar-Lason K, Skrzypek K, Majka M, Chrabaszcz K, Malek K, Chlopicki S. Endothelial-mesenchymal transition induced by metastatic 4T1 breast cancer cells in pulmonary endothelium in aged mice. Front Mol Biosci 2022; 9:1050112. [PMID: 36504711 PMCID: PMC9731229 DOI: 10.3389/fmolb.2022.1050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ageing is a major risk factor for cancer metastasis but the underlying mechanisms remain unclear. Here, we characterised ageing effects on cancer-induced endothelial-mesenchymal transition (EndMT) in the pulmonary circulation of female BALB/c mice in a metastatic 4T1 breast cancer model. The effect of intravenously injected 4T1 cells on pulmonary endothelium, pulmonary metastasis, lung tissue architecture, and systemic endothelium was compared between 40-week-old and 20-week-old mice. The 40-week-old mice showed features of ongoing EndMT in their lungs before 4T1 breast cancer cell injection. Moreover, they had preexisting endothelial dysfunction in the aorta detected by in vivo magnetic resonance imaging (MRI) compared to 20-week-old mice. The injection of 4T1 breast cancer cells into 40-week-old mice resulted in rapid EndMT progression in their lungs. In contrast, injection of 4T1 breast cancer cells into 20-week-old mice resulted in initiation and less pronounced EndMT progression. Although the number of metastases did not differ significantly between 20-week-old and 40-week-old mice, the lungs of older mice displayed altered lung tissue architecture and biochemical content, reflected in higher Amide II/Amide I ratio, higher fibronectin levels, and hypoxia-inducible factor 1 subunit alpha (HIF1α) levels as well as lower nitric oxide (NO) production. Our results indicate that age-dependent pre-existing endothelial dysfunction in the pulmonary endothelium of 40-week-old mice predisposed them to rapid EndMT progression in the presence of circulating 4T1 breast cancer cells what might contribute to a more severe metastatic breast cancer phenotype in these ageing mice compared to younger mice.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,*Correspondence: Stefan Chlopicki, ; Marta Smeda,
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Ebrahim H Maleki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Skrzypek
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Chrabaszcz
- Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland,Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland,*Correspondence: Stefan Chlopicki, ; Marta Smeda,
| |
Collapse
|
4
|
Kousalová J, Šírová M, Kostka L, Šubr V, Kovářová J, Běhalová K, Studenovský M, Kovář M, Etrych T. Metastatic spread inhibition of cancer cells through stimuli-sensitive HPMA copolymer-bound actinonin nanomedicines. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102578. [PMID: 35779856 DOI: 10.1016/j.nano.2022.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Jana Kousalová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic
| | - Milada Šírová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 14220 Prague, Czech Republic
| | - Libor Kostka
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic
| | - Vladimír Šubr
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic
| | - Jiřina Kovářová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 14220 Prague, Czech Republic
| | - Kateřina Běhalová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 14220 Prague, Czech Republic
| | - Martin Studenovský
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic
| | - Marek Kovář
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Vídeňská 1083, 14220 Prague, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, v.v.i., Heyrovského sq. 2, 16206 Prague, Czech Republic.
| |
Collapse
|
5
|
Velazquez FN, Zhang L, Viscardi V, Trocchia C, Hannun YA, Obeid LM, Snider AJ. Loss of sphingosine kinase 1 increases lung metastases in the MMTV-PyMT mouse model of breast cancer. PLoS One 2021; 16:e0252311. [PMID: 34043703 PMCID: PMC8158862 DOI: 10.1371/journal.pone.0252311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a very heterogeneous disease, and ~30% of breast cancer patients succumb to metastasis, highlighting the need to understand the mechanisms of breast cancer progression in order to identify new molecular targets for treatment. Sphingosine kinase 1 (SK1) has been shown to be upregulated in patients with breast cancer, and several studies have suggested its involvement in breast cancer progression and/or metastasis, mostly based on cell studies. In this work we evaluated the role of SK1 in breast cancer development and metastasis using a transgenic breast cancer model, mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT), that closely resembles the characteristics and evolution of human breast cancer. The results show that SK1 deficiency does not alter tumor latency or growth, but significantly increases the number of metastatic lung nodules and the average metastasis size in the lung of MMTV-PyMT mice. Additionally, analysis of Kaplan-Meier plotter of human disease shows that high SK1 mRNA expression can be associated with a better prognosis for breast cancer patients. These results suggest a metastasis-suppressing function for SK1 in the MMTV-PyMT model of breast cancer, and that its role in regulating human breast cancer progression and metastasis may be dependent on the breast cancer type.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Leiqing Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Valentina Viscardi
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Carolena Trocchia
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| |
Collapse
|
6
|
Guan T, Zhang H, Yang J, Lin W, Wang K, Su M, Peng W, Li Y, Lai Y, Liu C. Increased Risk of Cardiovascular Death in Breast Cancer Patients Without Chemotherapy or (and) Radiotherapy: A Large Population-Based Study. Front Oncol 2021; 10:619622. [PMID: 33585246 PMCID: PMC7876382 DOI: 10.3389/fonc.2020.619622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cardiovascular death (CVD) in breast cancer patients without chemotherapy (CT) or (and) radiotherapy (RT) has not been studied yet. This study evaluates the correlation between breast cancer and CVD risk independent of chemotherapy or (and) radiotherapy. Methods Data of female breast cancer patients without receiving CT or RT were retrieved from the Surveillance, Epidemiology, and End Result (SEER) database (2004–2015). Data were divided into two cohorts: tumor resection cohort and no resection cohort. The CVD risk in patients was expressed as standardized mortality ratios (SMRs). A 1:1 propensity score matching (PSM) was applied to balance inter-group bias, and competing risk regressions were utilized to evaluate the impact of tumor resection on CVD. Results The CVD risk was significantly higher (SMR = 2.196, 95% CI: 2.148–2.245, P<0.001) in breast cancer patients who did not receive CT or RT compared to the general population. Breast cancer patients without tumor resection showed higher CVD risk than patients who underwent tumour resection (tumor resection SMR = 2.031, 95% CI: 1.983–2.079, P<0.001; no resection SMR = 5.425, 95% CI: 5.087–5.781, P<0.001). After PSM, the CVD risk among patients without tumor resection indicated an increase of 1.165-fold compared to patients with tumor resection (HR=1.165, 95% CI: 1.039–1.306, P=0.009). Conclusions Female breast cancer patients are at higher risk of CVD despite unexposure to cardio-toxic CT or RT. However, female breast cancer patients subjected to tumor resection have decreased CVD risk. These results indicated that monitoring female breast cancer patients not receiving RT or CT might serve as a preventative measure against CVD.
Collapse
Affiliation(s)
- Tianwang Guan
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hanbin Zhang
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Jinming Yang
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Wenrui Lin
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Kenie Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Miao Su
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Weien Peng
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Yemin Li
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng Liu
- Department of Cardiology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.,Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Lim S, Dunlap KR, Rosa-Caldwell ME, Haynie WS, Jansen LT, Washington TA, Greene NP. Comparative plasma proteomics in muscle atrophy during cancer-cachexia and disuse: The search for atrokines. Physiol Rep 2020; 8:e14608. [PMID: 33063952 PMCID: PMC7556312 DOI: 10.14814/phy2.14608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/11/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle atrophy is common across a variety of pathologies. Underlying mechanisms of atrophy differ between pathologies, and in many conditions, circulating factors are tied to muscle atrophy. Therefore, we sought to identify alterations to the plasma proteome across divergent forms of muscle atrophy, disuse and cancer cachexia, as potential mediators of atrophy. C57BL6/J mice were assigned to Lewis Lung Carcinoma (LLC)-induced cachexia, disuse by hindlimb unloading (HU), or control (CON). Plasma samples were submitted for discovery proteomics and targets of interest confirmed by immunoblot. Considerably more peptides were altered in plasma from LLC (91) than HU (9) as compared to CON. Five total proteins were similarly modulated in HU and LLC compared to CON, none reached criteria for differential expression. Serum Amyloid A1 (SAA) was 4 and 6 Log2 FC greater in LLC than CON or HU, respectively, confirmed by immunoblot. Recent reports suggest SAA is sufficient to induce atrophy via TLR. Therefore, we assessed TLR2,4, and IL-6 mRNAs in hindlimb muscles. TLR mRNAs were not altered, suggesting SAA effects on atrophy during LLC are independent of TLR signaling. However, we noted > 6-fold induction of IL-6 in soleus of HU mice, despite minimal shift in the plasma proteome, indicating potential localized inflammation in atrophying muscle. Furthermore, paraoxonase 1 (PON1) was highly repressed in LLC mice and largely undetectable by immunoblot in this group. Our data suggest SAA and PON1 as potential novel atrokines for cancer cachexia and indicate localized inflammation in atrophying muscles independent of the plasma proteome.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kirsten R Dunlap
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
8
|
Kassassir H, Karolczak K, Siewiera KM, Wojkowska DW, Braun M, Watala CW. Time-dependent interactions of blood platelets and cancer cells, accompanied by extramedullary hematopoiesis, lead to increased platelet activation and reactivity in a mouse orthotopic model of breast cancer - implications for pulmonary and liver metastasis. Aging (Albany NY) 2020; 12:5091-5120. [PMID: 32191918 PMCID: PMC7138580 DOI: 10.18632/aging.102933] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/08/2020] [Indexed: 12/30/2022]
Abstract
Aging has become a significant risk factor for several diseases, including breast cancer. Platelet activation and platelet-cancer cell aggregate fractions were found to increase with tumor progression in a mouse model of breast cancer. At advanced stages of tumor development, platelets from mice with breast cancer were hyperreactive to low agonist concentrations and hyporeactive to high ones. Platelet activation and reactivity were strongly associated with breast cancer metastasis in the lungs and extramedullary hematopoiesis in the liver. A greater fraction of platelet aggregates was observed in 4T1-injected mice at the advanced stages of breast cancer. In vitro, platelet activation was elevated after incubation with 4T1 cells, and thrombin-stimulated platelets formed aggregates with 4T1 cells. Neither GPIbα, nor GPIIb/IIIa blocking antibodies, were able to affect platelet-cancer cell aggregation in vitro. The primed circulating platelets became more sensitive to subthreshold stimuli at advanced stages of tumor development, and the formation of platelet-cancer cell aggregates increased with cancer progression. Our findings demonstrate that the age-associated progression of breast cancer cells is connected with increased platelet functioning, and that it can be manifested by the increased number of metastases and extramedullary hematopoiesis in a time-dependent-manner.
Collapse
Affiliation(s)
- Hassan Kassassir
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Kamil Karolczak
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Karolina M Siewiera
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland.,Department of Cytobiology and Proteomics, Medical University of Lodz, Lodz, Poland
| | - Dagmara W Wojkowska
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Medical University of Lodz, Lodz, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Cezary W Watala
- Department of Haemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Retinol-Binding Protein 4 Accelerates Metastatic Spread and Increases Impairment of Blood Flow in Mouse Mammary Gland Tumors. Cancers (Basel) 2020; 12:cancers12030623. [PMID: 32156052 PMCID: PMC7139568 DOI: 10.3390/cancers12030623] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Retinol-binding protein 4 (RBP4) is proposed as an adipokine that links obesity and cancer. We analyzed the role of RBP4 in metastasis of breast cancer in patients and in mice bearing metastatic 4T1 and nonmetastatic 67NR mammary gland cancer. We compared the metastatic and angiogenic potential of these cells transduced with Rbp4 (4T1/RBP4 and 67NR/RBP4 cell lines). Higher plasma levels of RBP4 were observed in breast cancer patients with metastatic tumors than in healthy donors and patients with nonmetastatic cancer. Increased levels of RBP4 were observed in plasma, tumor tissue, liver, and abdominal fat. Moreover, the blood vessel network was highly impaired in mice bearing 4T1 as compared to 67NR tumors. RBP4 transductants showed further impairment of blood flow and increased metastatic potential. Exogenous RBP4 increased lung settlement by 67NR and 4T1 cells. In vitro studies showed increased invasive and clonogenic potential of cancer cells treated with or overexpressing RBP4. This effect is not dependent on STAT3 phosphorylation. RBP4 enhances the metastatic potential of breast cancer tumors through a direct effect on cancer cells and through increased endothelial dysfunction and impairment of blood vessels within the tumor.
Collapse
|
10
|
The endothelial barrier and cancer metastasis: Does the protective facet of platelet function matter? Biochem Pharmacol 2020; 176:113886. [PMID: 32113813 DOI: 10.1016/j.bcp.2020.113886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Overwhelming evidence suggests that platelets have a detrimental role in promoting cancer spread via platelet-cancer cell interactions linked to thrombotic mechanisms. On the other hand, a beneficial role of platelets in the preservation of the endothelial barrier in inflammatory conditions has been recently described, a phenomenon that could also operate in cancer-related inflammation. It is tempting to speculate that some antiplatelet strategies to combat cancer metastasis may impair the endogenous platelet-dependent mechanisms preserving endothelial barrier function. If the protective function of platelets is impaired, it may lead to increased endothelial permeability and more efficient cancer cell intravasation in the primary tumor and cancer cell extravasation at metastatic sites. In this commentary, we discuss current evidence that could support this hypothesis.
Collapse
|
11
|
Blat A, Wiercigroch E, Smeda M, Wislocka A, Chlopicki S, Malek K. Fourier transform infrared spectroscopic signature of blood plasma in the progression of breast cancer with simultaneous metastasis to lungs. JOURNAL OF BIOPHOTONICS 2019; 12:e201900067. [PMID: 31265171 DOI: 10.1002/jbio.201900067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
Despite advanced diagnostic techniques used for detecting cancer, this disease still remains a leading cause of death in the developed world. What is more, the greatest danger for patients is not related with growing of tumor but rather with metastasis of cancer cells to the distant organs. In this study, Fourier transform infrared (FTIR) spectroscopy was used to track chemical changes in blood plasma to find spectral markers of metastatic breast cancer during the disease progression. Plasma samples were taken 1-5 weeks after orthotropic inoculation of 4T1 metastatic breast cancer cells to mice. The earliest changes detected by FTIR spectroscopy in plasma were correlated with unsaturation of phospholipids and secondary structures of proteins that appeared 2 and 3 weeks, respectively, after 4T1 cells inoculation (micrometastatic phase). Significant alternations in the content and structure of lipids and carbohydrates were identified in plasma at the later stages (macrometastatic phase). When large primary tumors in breast and macrometastases in lung were developed, all bands in FTIR spectra significantly differed from those at earlier phases of the cancer progression. In conclusion, we showed that each phase of the breast cancer progression and its pulmonary metastasis can be characterized by a specific panel of spectral markers.
Collapse
Affiliation(s)
- Aneta Blat
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewelina Wiercigroch
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Adrianna Wislocka
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
- Chair of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland
| |
Collapse
|
12
|
Augustyniak K, Chrabaszcz K, Jasztal A, Smeda M, Quintas G, Kuligowski J, Marzec KM, Malek K. High and ultra-high definition of infrared spectral histopathology gives an insight into chemical environment of lung metastases in breast cancer. JOURNAL OF BIOPHOTONICS 2019; 12:e201800345. [PMID: 30548409 DOI: 10.1002/jbio.201800345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 05/23/2023]
Abstract
Using high definition (HD) and ultra-high definition (UHD) of Fourier-transform infrared (FTIR) spectroscopic imaging, we characterized spectrally pulmonary metastases in a murine model of breast cancer comparing them with histopathological results (Hematoxylin and eosin [H&E] staining). This comparison showed excellent agreement between the methods in case of localization of metastases with size below 1 mm and revealed that label-free HD and UHD IR spectral histopathology distinguish the type of neoplastic cells. We primary focused on differentiation between metastatic foci in the pleural cavity from cancer cells present in lung parenchyma and inflamed cells present in extracellular matrix of lungs due to growing of advanced metastases. In addition, a combination of unsupervised clustering and IR imaging indicated the high sensitivity of FTIR spectroscopy to identify chemical features of small macrometastases located under the pleural cavity and during epithelial-mesenchymal transition. FTIR-based spectral histopathology was proved to detect not only phases of breast cancer metastasis to lungs but also to differentiate various origins of metastases seeded from breast cancer.
Collapse
Affiliation(s)
| | - Karolina Chrabaszcz
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Guillermo Quintas
- Leitat Technological Center, Health & Biomedicine Division, Barcelona, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute, Hospital La Fe, Valencia, Spain
| | - Katarzyna M Marzec
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| |
Collapse
|
13
|
Suraj J, Kurpińska A, Zakrzewska A, Sternak M, Stojak M, Jasztal A, Walczak M, Chlopicki S. Early and late endothelial response in breast cancer metastasis in mice: simultaneous quantification of endothelial biomarkers using a mass spectrometry-based method. Dis Model Mech 2019; 12:dmm.036269. [PMID: 30683749 PMCID: PMC6451429 DOI: 10.1242/dmm.036269] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
The endothelium plays an important role in cancer metastasis, but the mechanisms involved are still not clear. In the present work, we characterised the changes in endothelial function at early and late stages of breast cancer progression in an orthotopic model of murine mammary carcinoma (4T1 cells). Endothelial function was analysed based on simultaneous microflow liquid chromatography–tandem mass spectrometry using multiple reaction monitoring (microLC/MS-MRM) quantification of 12 endothelium-related biomarkers, including those reflecting glycocalyx disruption – syndecan-1 (SDC-1), endocan (ESM-1); endothelial inflammation – vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin (E-sel); endothelial permeability – fms-like tyrosine kinase 1 (FLT-1), angiopoietin 2 (Angpt-2); and haemostasis – von Willebrand factor (vWF), tissue plasminogen activator (t-PA), plasminogen activator inhibitor 1 (PAI-1), as well as those that are pathophysiologically linked to endothelial function – adrenomedullin (ADM) and adiponectin (ADN). The early phase of metastasis in mouse plasma was associated with glycocalyx disruption (increased SDC-1 and ESM-1), endothelial inflammation [increased soluble VCAM-1 (sVCAM-1)] and increased vascular permeability (Angpt-2). During the late phase of metastasis, additional alterations in haemostasis (increased PAI-1 and vWF), as well as a rise in ADM and substantial fall in ADN concentration, were observed. In conclusion, in a murine model of breast cancer metastasis, we identified glycocalyx disruption, endothelial inflammation and increased endothelial permeability as important events in early metastasis, while the late phase of metastasis was additionally characterised by alterations in haemostasis. Summary: A microLC/MS-MRM-based approach for simultaneous determination of endothelium-related biomarkers identified glycocalyx disruption, endothelial inflammation and increased endothelial permeability as important events in early pulmonary metastasis in a murine model of breast cancer metastasis.
Collapse
Affiliation(s)
- Joanna Suraj
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348 Krakow, Poland.,Jagiellonian University Medical College, Faculty of Pharmacy, Chair and Department of Toxicology, Medyczna 9, 30-688 Krakow, Poland
| | - Anna Kurpińska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Marta Stojak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Maria Walczak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348 Krakow, Poland .,Jagiellonian University Medical College, Faculty of Pharmacy, Chair and Department of Toxicology, Medyczna 9, 30-688 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348 Krakow, Poland .,Jagiellonian University Medical College, Faculty of Medicine, Chair of Pharmacology, Grzegorzecka 16, 31-531 Krakow, Poland
| |
Collapse
|
14
|
Proteomic characterization of early lung response to breast cancer metastasis in mice. Exp Mol Pathol 2019; 107:129-140. [PMID: 30763573 DOI: 10.1016/j.yexmp.2019.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The tumor-promoting rearrangement of the lungs facilitates the process of cancer cell survival in a foreign microenvironment and enables their protection against immune defense. The study aimed to define the fingerprint of the early rearrangement of the lungs via the proteomic profiling of the lung tissue in the experimental model of tumor metastasis in a murine 4T1 mammary adenocarcinoma. MATERIALS AND METHODS The studies were performed on 7-8-week-old BALB/c female mice. Viable 4T1 cancer cells were orthotopically inoculated into the right mammary fat pad. The experiment was performed in the early phase of the tumor metastasis one and two weeks after cancer cell inoculation. The comparative analysis of protein profiles was carried out with the aid of the two-dimensional difference in gel electrophoresis (2D-DIGE). Proteins, of which expression differed significantly, were identified using nano-liquid chromatography coupled to a high-resolution mass spectrometry (nanoLC/hybrid ion trap- Orbitrap XL Discovery). RESULTS Palpable primary tumors were noted in the 2nd week after cancer cell inoculation. The investigated period preceded the formation of numerous macrometastases in the lungs, however the metastasis-promoting changes were visible very early. Primary tumor-induced inflammation developed in the lungs as early as after the 1st week and progressed during the 2nd week, accompanied by increased concentration of 2-OH-E+, an oxidative stress marker, and imbalance in nitric oxide metabolites, pointing to endothelium dysfunction. The early proteomic changes in the lungs in the 1st week after 4T1 cell inoculation resulted in the reorganization of lung tissue structure [actin, cytoplasmic 1 (Actb), tubulin beta chain (Tubb5), lamin-B1 (Lmnb1), serine protease inhibitor A3K (Serpina3k)] and activation of defense mechanisms [selenium-binding protein 1 (Selenbp1), endoplasmin (Hsp90b1), stress 70 protein, mitochondrial (Hspa9), heat shock protein HSP 90-beta (Hsp90ab1)], but also modifications in metabolic pathways [glucose-6-phosphate 1-dehydrogenase X (G6pdx), ATP synthase subunit beta, mitochondrial (Atp5b), L-lactate dehydrogenase B chain (Ldhb)]. Further development of the solid tumor after the 2nd week following cancer cell inoculation, secretion of prolific tumor-derived factors as well as the presence of the increasing number of circulating cancer cells and extravasation processes further impose reorganization of the lung tissue [Actb, vimentin (Vim), clathrin light chain A (Clta)], altering additional metabolic pathways [annexin A5 (Anxa5), Rho GDP-dissociation inhibitor 2 (Arhgdib), complement 1 Q subcomponent-binding protein, mitochondrial (C1qbp), 14-3-3 protein zeta/delta (Ywhaz), peroxiredoxin-6 (Prdx6), chitinase-like protein 4 (Chi3l4), reticulocalbin-1 (Rcn1), EF-hand domain-containing protein D2 (Efhd2), calumenin (Calu)]. Interestingly, many of differentially expressed proteins were involved in calcium homeostasis (Rcn1, Efhd2, Calu, Actb, Vim, Lmnb1, Clta, Tubb5, Serpina3k, Hsp90b1, Hsp90ab1, Hspa9. G6pdx, Atp5b, Anxa5, Arhgdib, Ywhaz). CONCLUSION The analysis enabled revealing the importance of calcium signaling during the early phase of metastasis development, early cytoskeleton and extracellular matrix reorganization, activation of defense mechanisms and metabolic adaptations. It seems that the tissue response is an interplay between pro- and anti-metastatic mechanisms accompanied by inflammation, oxidative stress and dysfunction of the barrier endothelial cells.
Collapse
|
15
|
Kus K, Kij A, Zakrzewska A, Jasztal A, Stojak M, Walczak M, Chlopicki S. Alterations in arginine and energy metabolism, structural and signalling lipids in metastatic breast cancer in mice detected in plasma by targeted metabolomics and lipidomics. Breast Cancer Res 2018; 20:148. [PMID: 30514398 PMCID: PMC6278167 DOI: 10.1186/s13058-018-1075-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background The early detection of metastasis based on biomarkers in plasma may improve cancer prognosis and guide treatment. The aim of this work was to characterize alterations in metabolites of the arginine pathway, energy metabolism, and structural and signalling lipids in plasma in the early and late stages of murine breast cancer metastasis. Methods Mice were orthotopically inoculated with 4T1 metastatic breast cancer cells, and plasma was analysed along the pulmonary metastasis progression using LC-MS/MS-based targeted metabolomics and lipidomics. Results Based on primary tumour growth and pulmonary metastases, 1–2 weeks after 4T1 cancer cell inoculation was defined as an early metastatic stage, and 3–4 weeks after 4T1 cancer cell inoculation was defined as a late metastatic stage. Early metastasis was featured in plasma by a shift of L-arginine metabolism towards arginase (increased ornithine/arginine ratio) and polyamine synthesis (increased putrescine). Late metastasis was reflected in plasma by further progression of changes in the arginine pathway with an additional increase in asymmetric dimethylarginine plasma concentration, as well as by a profound energy metabolism reprogramming towards glycolysis, an accelerated pentose phosphate pathway and a concomitant decrease in tricarboxylic cycle rate (“Warburg effect”). The late but not the early phase of metastasis was also characterized by a different lipid profile pattern in plasma, including a decrease in total phosphatidylcholines, a decrease in diester-bound phospholipid fraction and an increase in lysophospholipids associated with an increase in total sphingomyelins. Conclusions The early phase of metastasis in murine 4T1 metastatic breast cancer was associated with plasma metabolome changes characteristic of arginase activation and polyamine synthesis. The late metastasis was reflected in plasma not only by the alterations in arginine pathways but also by a shift towards glycolysis and the pentose pathway, remodelling of structural lipids and activation of lipid signalling, all of which coincided with metastasis progression. Electronic supplementary material The online version of this article (10.1186/s13058-018-1075-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kamil Kus
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348, Krakow, Poland.,Jagiellonian University Medical College, Chair and Department of Toxicology, Medyczna 9, 30-688, Krakow, Poland
| | - Agnieszka Zakrzewska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Marta Stojak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Maria Walczak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348, Krakow, Poland.,Jagiellonian University Medical College, Chair and Department of Toxicology, Medyczna 9, 30-688, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzynskiego 14, 30-348, Krakow, Poland. .,Jagiellonian University Medical College, Chair of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
16
|
Chrabaszcz K, Jasztal A, Smęda M, Zieliński B, Blat A, Diem M, Chlopicki S, Malek K, Marzec KM. Label-free FTIR spectroscopy detects and visualizes the early stage of pulmonary micrometastasis seeded from breast carcinoma. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3574-3584. [DOI: 10.1016/j.bbadis.2018.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/06/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022]
|
17
|
Porshneva K, Papiernik D, Psurski M, Nowak M, Matkowski R, Ekiert M, Milczarek M, Banach J, Jarosz J, Wietrzyk J. Combination Therapy with DETA/NO and Clopidogrel Inhibits Metastasis in Murine Mammary Gland Cancer Models via Improved Vasoprotection. Mol Pharm 2018; 15:5277-5290. [DOI: 10.1021/acs.molpharmaceut.8b00781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kseniia Porshneva
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Diana Papiernik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Marcin Nowak
- Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Rafał Matkowski
- Division of Surgical Oncology and Clinical Oncology, Department of Oncology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Lower Silesian Oncology Center, 53-413 Wroclaw, Poland
| | - Marcin Ekiert
- Division of Surgical Oncology and Clinical Oncology, Department of Oncology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Lower Silesian Oncology Center, 53-413 Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Jarosz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
18
|
Smeda M, Kieronska A, Adamski MG, Proniewski B, Sternak M, Mohaissen T, Przyborowski K, Derszniak K, Kaczor D, Stojak M, Buczek E, Jasztal A, Wietrzyk J, Chlopicki S. Nitric oxide deficiency and endothelial-mesenchymal transition of pulmonary endothelium in the progression of 4T1 metastatic breast cancer in mice. Breast Cancer Res 2018; 20:86. [PMID: 30075800 PMCID: PMC6091065 DOI: 10.1186/s13058-018-1013-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal transformation of pulmonary endothelial cells contributes to the formation of a metastatic microenvironment, but it is not known whether this precedes or follows early metastasis formation. In the present work, we characterize the development of nitric oxide (NO) deficiency and markers of endothelial–mesenchymal transition (EndMT) in the lung in relation to the progression of 4T1 metastatic breast cancer injected orthotopically in mice. Methods NO production, endothelial nitric oxide synthase (eNOS) phosphorylation status, markers of EndMT in the lung, pulmonary endothelium permeability, and platelet activation/reactivity were analyzed in relation to the progression of 4T1 breast cancer metastasis to the lung, as well as to lung tissue remodeling, 1–5 weeks after 4T1 cancer cell inoculation in Balb/c mice. Results Phosphorylation of eNOS and NO production in the lungs of 4T1 breast cancer-bearing mice was compromised prior to the development of pulmonary metastasis, and was associated with overexpression of Snail transcription factor in the pulmonary endothelium. These changes developed prior to the mesenchymal phenotypic switch in the lungs evidenced by a decrease in vascular endothelial-cadherin (VE-CAD) and CD31 expression, and the increase in pulmonary endothelial permeability, phenomena which coincided with early pulmonary metastasis. Increased activation of platelets was also detected prior to the early phase of metastasis and persisted to the late phase of metastasis, as evidenced by the higher percentage of unstimulated platelets binding fibrinogen without changes in von Willebrand factor and fibrinogen binding in response to ADP stimulation. Conclusions Decreased eNOS activity and phosphorylation resulting in a low NO production state featuring pulmonary endothelial dysfunction was an early event in breast cancer pulmonary metastasis, preceding the onset of its phenotypic switch toward a mesenchymal phenotype (EndMT) evidenced by a decrease in VE-CAD and CD31 expression. The latter coincided with development of the first metastatic nodules in the lungs. These findings suggest that early endothelial dysfunction featured by NO deficiency rather than EndMT, might represent a primary regulatory target to prevent early pulmonary metastasis. Electronic supplementary material The online version of this article (10.1186/s13058-018-1013-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Anna Kieronska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland.,Department of Pharmacology, Jagiellonian University, Medical College, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Mateusz G Adamski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Katarzyna Derszniak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Dawid Kaczor
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 4 St., 53-114, Wroclaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14 St., 30-348, Krakow, Poland. .,Department of Pharmacology, Jagiellonian University, Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|